A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s00213-003-1636-2 below:

Serotonergic/glutamatergic interactions: the effects of mGlu2/3 receptor ligands in rats trained with LSD and PCP as discriminative stimuli

  • Adams B, Moghaddam B (2001) Effect of clozapine, haloperidol, or M100907 on phencyclidine-activated glutamate efflux in the prefrontal cortex. Biol Psychiatry 50:750–757

    Article  CAS  PubMed  Google Scholar 

  • Aghajanian GK, Marek GJ (1999a) Serotonin and hallucinogens. Neuropsychopharmacology 21:16S–23S

    Article  CAS  PubMed  Google Scholar 

  • Aghajanian GK, Marek GJ (1999b) Serotonin-glutamate interactions: new target for antipsychotic drugs. Neuropsychopharmacology 21:S122–S133

    CAS  Google Scholar 

  • Aghajanian GK, Marek GJ (2000) Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Rev 31:302–312

    CAS  PubMed  Google Scholar 

  • Anis NA, Berry SC, Burton NR, Lodge D (1983) The dissociative anesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurons by N-methyl-aspartate. Br J Pharmacol 79:565–575

    CAS  PubMed  Google Scholar 

  • Ator NA (1990) Drug discrimination and drug stimulus generalization with anxiolytics. Drug Dev Res 20:189–204

    CAS  Google Scholar 

  • Balster RL (1990) Perception of drug effects. In: Berkeley MA, Stebbens WG (eds) Comparative perception (vol 1). Wiley, New York, pp 127–154

  • Balster RL, Willetts J (1996) Phencyclidine: a drug of abuse and a tool for neuroscience research. In: Shuster CR, Kuhar MJ (eds) Pharmacological aspects of drug dependence: towards an integrated neurobehavioral approach. Springer, Berlin, pp 233–262

  • Brauer LH, Goudie AJ, deWit H (1997) Dopamine ligands and the stimulus effects of amphetamine: animal models versus human laboratory data. Psychopharmacology 130:2–13

    Article  CAS  PubMed  Google Scholar 

  • Breese, GR, Knapp, DJ, Moy, SS (2002) Integrative role for serotonergic and glutamatergic receptor mechanisms in the action of NMDA antagonists: potential relationships to antipsychotic drug actions on NMDA antagonist responsiveness. Neurosci Biobehav Rev 26:441–455

    Article  CAS  PubMed  Google Scholar 

  • Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260

    Article  CAS  PubMed  Google Scholar 

  • Cartmell J, Schoepp DD (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 75:899–907

    Google Scholar 

  • Cartmell J, Monn JA, Schoepp DD (1999) The metabotropic glutamate 2/3 receptor agonists LY354740 and Ly379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats. J Pharmacol Exp Ther 291:161–170

    CAS  PubMed  Google Scholar 

  • Cartmell J, Monn JA, Schoepp DD (2000) Attenuation of specific PCP-evoked behaviors by the potent mGlu2/3 receptor agonist, LY379268, and comparison with the atypical antipsychotic, clozapine. Psychopharmacology 148:423–429

    Article  CAS  PubMed  Google Scholar 

  • Compton AD, Slemmer JE, Drew MR, Hyman JM, Golden KM, Balster RL, Wiley JL (2001) Combinations of clozapine and phencyclidine: effects on drug discrimination and behavioral inhibition in rats. Neuropharmacology 40:289–297

    Article  CAS  PubMed  Google Scholar 

  • Conn PJ, Pin J-P (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    CAS  PubMed  Google Scholar 

  • Corbett R, Zhou L, Sorensen SM, Mondadori C (1999) Animal models of negative symptoms: M100907 antagonizes PCP-induced immobility in a forced swim test in mice. Neuropsychopharmacology 21:S211–S218

    Article  CAS  Google Scholar 

  • Dall’Olio R, Gaggi R, Bonfante V, Gandolfi O (1999) The non-competitive NMDA receptor blocker dizocilpine potentiates serotonergic function. Behav Pharmacol 10:63–71

    CAS  PubMed  Google Scholar 

  • Fiorella D, Helsley SE, Rabin RA, Winter JC (1995a) The interactions of typical and atypical antipsychotics with the (−)-DOM discriminative stimulus. Neuropharmacology 34:1297–1303

    Article  CAS  PubMed  Google Scholar 

  • Fiorella D, Palumbo PA, Rabin RA, Winter JC (1995b) The time-dependent stimulus effects of R(−)-2,5-dimethoxy-4-methamphetamine ((−)-DOM): implications for drug-induced stimulus control as a method for the study of hallucinogenic agents. Psychopharmacology 119:239–245

    CAS  PubMed  Google Scholar 

  • Fiorella D, Rabin RA, Winter JC (1995c) The role of 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs I: Antagonist correlation analysis. Psychopharmacology 121:347–356

    Google Scholar 

  • Gewirtz JC, Marek GJ (2000) Behavioral evidence for interactions between a hallucinogenic drug and group II metabotropic glutamate receptors. Neuropsychopharmacology 23:569–576

    Article  CAS  PubMed  Google Scholar 

  • Habara T, Hamamura T, Miki M, Ohashi K, Kuroda S (2001) M100907, a selective 5-HT2A receptor antagonist, attenuates phencyclidine-induced Fos expression in discrete regions of rat brain. Eur J Pharmacol 417:189–194

    Article  CAS  PubMed  Google Scholar 

  • Heffter A (1897) Uber Pellote. Arch Exptl Pathol Pharmakol 40:418–425

    Google Scholar 

  • Hirschhorn ID, Winter JC (1971) Mescaline and lysergic acid diethylamide (LSD) as discriminative stimuli. Psychopharmacology 22:64–71

    CAS  Google Scholar 

  • Hofmann A (1959) Psychotomimetic drugs, chemical and pharmacological aspects. Acta Physiol Pharmacol Neerl 8:240–258

    CAS  PubMed  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    CAS  PubMed  Google Scholar 

  • Kapur S, Seeman P (2002) NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D2 and serotonin 5-HT2 receptors—implications for models of schizophrenia. Mol Pharmacol 7:837–844

    Article  CAS  Google Scholar 

  • Keenan KP, Smith PF, Hertzog P, Soper K, Ballam GC, Clark RL (1994) The effects of overfeeding and dietary restriction on Sprague-Dawley rat survival and early pathology biomarkers of aging. Toxicol Pathol 22:300–315

    CAS  PubMed  Google Scholar 

  • Kim HS, Park IS, Park WK (1998) NMDA receptor antagonists enhance 5-HT2 receptor mediated behavior, head twitch response, in mice. Life Sci 63:2305–2311

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Park IS, Lim, HK (1999) NMDA receptor antagonists enhance 5-HT2 receptor mediated behavior, head twitch response, in PCPA-treated mice. Arch Pharm Res 22:113–118

    CAS  PubMed  Google Scholar 

  • Klodzinska A, Bijak M, Tokarski K, Pilc A (2002) Group II mGlu receptor agonists inhibit behavioral and electrophysiological effects of DOI in mice. Pharmacol Biochem Behav 73:327–332

    Article  CAS  PubMed  Google Scholar 

  • Koek W (1999) N-Methyl-d-aspartate antagonists and drug discrimination. Pharmacol Biochem Behav 64:275–281

    Article  CAS  PubMed  Google Scholar 

  • Krystal JH, Belger A, D’Souza DC, Anand A, Charney DS, Aghajanian GK, Moghaddam B (1999) Therapeutic implications of the hyperglutamatergic effects of NMDA antagonists. Neuropsychopharmacology 22:S143–S157

    Article  Google Scholar 

  • Luby ED (1981) Phencyclidine revisited. In: Domino EF (ed) PCP (phencyclidine): historical and current perspectives. NPP Books, Ann Arbor, pp 25–30

  • Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelly R (1959) Study of the new schizophrenomimetic drug l-sernyl. Arch Neurol Psychiatry 81:363–368

    Google Scholar 

  • Mansbach RS, Balster RL (1991) Pharmacological specificity of the phencyclidine discriminative stimulus in rats. Pharmacol Biochem Behav 39:971–975

    Article  CAS  PubMed  Google Scholar 

  • Marek GJ (2000) A novel approach to the identification of psychiatric drugs: serotonin-glutamate interactions in the prefrontal cortex. CNS Drug Rev 6:206–218

    CAS  Google Scholar 

  • Marek GJ, Wright RA, Schoepp DD, Monn JA, Aghajanian GK (2000) Physiological antagonism between 5-hydroxytryptamine2A and group II metabotropic glutamate receptors in prefrontal cortex. J Pharmacol Exp Ther 292:76–87

    Google Scholar 

  • Martin-Ruiz R, Puig MV, Celada P, Shapiron DA, Roth BL, Mengod G, Artigas F (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors thorough a glutamate-dependent mechanism. J Neurosci 21:9856–9866

    CAS  PubMed  Google Scholar 

  • Maurel-Remy S, Bervoets K, Millan MJ (1995) Blockade of phencyclidine-induced hyperlocomotion by clozapine and MDL 100,907 in rats reflects antagonism of 5-HT2A receptors. Eur J Pharmacol 280:R9–R11

    CAS  PubMed  Google Scholar 

  • Meert T, Stolerman I (1999) Drug discrimination in behavioral neuroscience. Pharmacol Biochem Behav 64:191–453

    Article  CAS  Google Scholar 

  • Miner LAH, Backstrom JR, Sanders-Bush E, Sesack SR (2003) Ultrastructural localization of serotonin2A receptors in the middle layers of the rat prelimbic prefrontal cortex. Neuroscience 116:107–117

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam B, Adams BW (1998) Reversal of phencylidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281:1349–1352

    CAS  PubMed  Google Scholar 

  • Nabeshima T, Ishikawa K, Yamiguchi K, Furakawa H, Kameyama T (1984a) Phencyclidine interacts with serotonin2 but not serotonin1 receptor. Res Commun Subst Abuse 5:81–87

    CAS  Google Scholar 

  • Nabeshima T, Noda Y, Ishikawa K, Furakawa, Kameyama T (1984b) Phencyclidine decreases binding capacity of serotonin2 receptor in vitro. Res Commun Subst Abuse 5:175–186

    CAS  Google Scholar 

  • Nabeshima T, Ishikawa K, Yamiguchi K, Furakawa H, Kameyama T (1988) Protection with phencyclidine against inactivation of 5-HT2 receptors by sulfhydral-modifying reagents. Biochem Pharmacol 37:3277–3283

    Article  CAS  PubMed  Google Scholar 

  • Olney JW, Farber NB (1995) NMDA antagonists as neurotherapeutic drugs, psychotogens, neurotoxins, and research tools for studying schizophrenia. Neuropsychopharmacology 13:335–345

    Article  CAS  PubMed  Google Scholar 

  • Ossowska K, Pietraszek M, Warda J, Zajaczkowski W, Wolfarth S, Pilc A (2000) The role of glutamate receptors in antipsychotic drug action. Amino Acids 19:87–94

    CAS  PubMed  Google Scholar 

  • Sanger DJ, Benavides J, Perrault G, Morel E, Cohen C, Joly D, Zivkovic B (1994) Recent developments in the behavioral pharmacology of benzodiazepine (omega) receptors: evidence for functional significance of receptor subtypes. Neurosci Biobehav Rev 18:355–372

    CAS  PubMed  Google Scholar 

  • Schoepp DD (2001) Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharmacol Exp Ther 299:12–20

    Google Scholar 

  • Schreiber R, Brocco M, Audinot V, Gobert A, Veiga S, Millan MJ (1995) DOI-induced head-twitches in the rat are mediated by 5-HT2A receptors: modulation by novel 5-HT2A/2C antagonists, D1 antagonists, and 5-HT1A agonists. J Pharmacol Exp Ther 273:101–112

    CAS  PubMed  Google Scholar 

  • Schreiber R, Lowe D, Voerste A, De Vry J (2000) LY354740 affects startle responding but not sensorimotor gating or discriminative effects of phencyclidine. Eur J Pharmacol 388:R3–R4

    CAS  PubMed  Google Scholar 

  • Schuster C, Johanson C (1988) Relationship between the discriminative stimulus properties and subjective effects of drugs In: Colpaert F, Balster R (eds) Transduction mechanisms of drug stimuli. Springer, Berlin, pp 161–175

    Google Scholar 

  • Steinpreis RE (1996) The behavioral and neurochemical effects of phencyclidine in humans and animals: some implications for modeling psychosis. Behav Brain Res 74:45–55

    CAS  PubMed  Google Scholar 

  • Swanson CJ, Schoepp DD (2002) The group II metabotropic glutamate receptor agonist (−)-2-oxa-4-aminobicyclo(3.1.0)hexane-4,6-dicarboxylate (LY379268) and clozapine reverse phencyclidine-induced behaviors in monoamine-depleted rats. J Pharmacol Exp Ther 303:919–927

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Bakshi V, Geyer MA (1996) Seroquel restores sensorimotor gating in phencyclidine-treated rats. J Pharmacol Exp Ther 279:1290–1299

    CAS  PubMed  Google Scholar 

  • Tricklebank MD, Singh L, Oles RJ, Wong EHF, Iversen SD (1987) A role for N-methyl-d-aspartic acid in the discriminative stimulus properties of phencyclidine. Eur J Pharmacol 141:497–501

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider FX (1998) Advances and pathophysiological models of hallucinogenic drug actions in humans: a preamble to schizophrenia research. Pharmacopsychiatry 31:92–103

    CAS  PubMed  Google Scholar 

  • Winter JC (1974) Hallucinogens as discriminative stimuli. Fed Proc 33:1825–1832

    CAS  PubMed  Google Scholar 

  • Winter JC (1978) Drug-induced stimulus control. In: Blackman DE, Sanger DJ (eds) Contemporary research in behavioral pharmacology. Plenum Press, New York, pp 209–237

  • Winter JC, Fiorella DJ, Timineri DM, Filipink RA, Helsley SE, Rabin RA (1999) Serotonergic receptor subtypes and hallucinogen-induced stimulus control. Pharmacol Biochem Behav 64:283–293

    Article  CAS  PubMed  Google Scholar 

  • Winter JC, Doat M, Rabin RA (2000) Potentiation of DOM-induced stimulus control by non-competitive NMDA antagonists: a link between the glutamatergic and serotonergic hypotheses of schizophrenia. Life Sci 68:337–344

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Harano M, Annoh N, Nakamura K (1999) Involvement of serotonin 2A receptors in phencyclidine-induced disruption of prepulse inhibition of the acoustic startle in rats. Biol Psychiatry 46:832–838

    CAS  PubMed  Google Scholar 

  • Zukin SR, Zukin RS (1979) Specific (3H)phencyclidine binding in rat central nervous system. Proc Natl Acad Sci USA 76:5372–5376

    CAS  PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4