A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s002030050310 below:

Pathways of energy conservation in methanogenic archaea

  • Abbanat DR, Ferry JG (1991) Resolution of component proteins in an enzyme complex fromMethanosarcina thermophila catalyzing the synthesis or cleavage of acetyl CoA. Proc Natl Acad Sci USA 88:3272–3276

    PubMed  Google Scholar 

  • Aceti DJ, Ferry JG (1988) Purification and characterization of acetate kinase from acetate grownMethanosarcina thermophila. J Biol Chem 263:15444–15448

    PubMed  Google Scholar 

  • Al-Mahrouq HA, Carper SW, Lancaster, JR Jr (1986) Discrimination between transmembrane ion gradient-driven and electron transfer-driven ATP synthesis in the methanogenic bacteria. FEBS Lett 207:262–265

    Google Scholar 

  • Becher B, Müller V, Gottschalk G (1992a) The methyltetrahydromethanopterin:coenzmye M methyltransferase ofMethanosarcina strain Göl is a primary sodium pump. FEMS Microbiol Lett 91:239–244

    Google Scholar 

  • Becher B, Müller V, Gottschalk G (1992b)N 5-Methyltetrahydromethanopterin:coenzyme M methyltransferase ofMethanosarcina strain Göl is an Na+-translocating membrane protein. J Bacteriol 174:7656–7660

    PubMed  Google Scholar 

  • Becher B, Müller V (1994) 160-1 drives the synthesis of ATP via a Na+-translocating F1Fo ATP synthase in membrane vesicles of the archaeonMethanosarcina mazei strain Göl. J Bacteriol 176:2543–2550

    PubMed  Google Scholar 

  • Bertram PA, Thauer RT (1994) Thermodynamics of the formylmethanofuran dehydrogenase reaction inMethanobacterium thermoautotrophicum. Eur J Biochem 226:811–818

    PubMed  Google Scholar 

  • Bertram PA, Schmitz RA, Linder D, Thauer RK (1994) Tungstate can substitute for molybdate in sustaining growth ofMethanobacterium thermoautotrophicum. Arch Microbiol 161:220–228

    PubMed  Google Scholar 

  • Blaut M (1994) Metabolism of methanogens. Antonie Van Leewenhoek 66:187–208

    Google Scholar 

  • Blaut M, Gottschalk G (1984) Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen inMethanosarcina barkeri. Eur J Biochem 141:217–222

    PubMed  Google Scholar 

  • Blaut M, Müller V, Gottschalk G (1987) Proton translocation coupled to methanogenesis from methanol + hydrogen inMethanosarcina barkeri. FEBS Lett 215:53–57

    Google Scholar 

  • Bobik TA, Wolfe RS (1989) Activation of formylmethanofuran synthesis in cell extracts ofMethanobacterium thermoautotrophicum. J Bacteriol 171:1423–1427

    PubMed  Google Scholar 

  • Börner G, Karrasch M, Thauer RK (1989) Formylmethanofuran dehydrogenase activity in cell extracts ofMethanobacterium thermoautotrophicum and ofMethanosarcina barkeri. FEBS Lett 244:21–25

    Google Scholar 

  • Börner G, Karrasch M, Thauer RK (1991) Molybdopterin adenine dinucleotide and molybdopterin hypoxanthine dinucleotide in formylmethanofuran dehydrogenase fromMethanobacterium thermoautotrophicum. FEBS Lett 290:31–34

    PubMed  Google Scholar 

  • Boone DR, Whitman WB, Rouvière P (1993) Diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York London, pp 33–80

    Google Scholar 

  • Bott M, Thauer RK (1989) Proton translocation coupled to the oxidation of carbon monoxide to CO2 and H2 inMethanosarcina barkeri. Eur J Biochem 179:469–472

    PubMed  Google Scholar 

  • Bott M, Eikmanns B, Thauer RK (1986) Coupling of carbon monoxide oxidation to CO2 and H2 with the phosphorylation of ADP in acetate-grownMethanosarcina barkeri. Eur J Biochem 159: 393–398

    PubMed  Google Scholar 

  • Carper SW, Lancaster JR Jr (1986) An electrogenic sodium-translocating ATPase inMethanococcus voltae. FEBS Lett 200:177–180

    Google Scholar 

  • Chen W, Konisky J (1993) Characterization of a membrane-associated ATPase fromMethanococcus voltae, a methanogenic member of the Archaea. J Bacteriol 175:5677–5682

    PubMed  Google Scholar 

  • Coremans JMCC, Van der Zwaan JW, Albracht SPJ (1989) Redox behaviour of nickel in hydrogenase fromMethanobacterium thermoautotrophicum. Correlation between nickel valence and enzyme activity. Biochim Biophys Acta 997:256–267

    Google Scholar 

  • Daas PJH, Hagen WR, Keltjens JT, Vogels GD (1994) Characterization and determination of the redox properties of the 2[4Fe-4S] ferredoxin fromMethanosarcina barkeri strain MS. FEBS Lett 356:342–344

    PubMed  Google Scholar 

  • Deppenmeier U (1995) Different structure and expression of the operons encoding the membrane-bound hydrogenases fromMethanosarcina mazei Göl. Arch Microbiol 164:370–376

    PubMed  Google Scholar 

  • Deppenmeier U, Blaut M, Mahlmann A, Gottschalk G (1990a) Membrane-bound F420H2-dependent heterodisulfide reductase in methanogenic bacterium strain Göl andMethanolobus tindarius. FEBS Lett 261:199–203

    Google Scholar 

  • Deppenmeier U, Blaut M, Mahlmann A, Gottschalk G (1990b) Reduced coenzyme F420H2-dependent heterodisulfide oxidoreductase: a proton-translocating redox system in methanogenic bacteria. Proc Natl Acad Sci USA 87:9449–9453

    PubMed  Google Scholar 

  • Deppenmeier U, Blaut M, Gottschalk G (1991) H2:heterodisulfide oxidoreductase, a second energy-conserving system in the methanogenic strain Göl. Arch Microbiol 155:272–277

    Google Scholar 

  • Deppenmeier U, Blaut M, Schmidt B, Gottschalk G (1992) Purification and properties of a F420-nonreactive membrane-bound hydrogenase fromMethanosarcina strain Göl. Arch Microbiol 157:505–511

    PubMed  Google Scholar 

  • Deppenmeier U, Blaut M, Lentes S, Herzberg C, Gottschalk G (1995) Analysis of thevhoGAC andvhtGAC operons fromMethanosarcina mazei strain Göl, both encoding a membrane-bound hydrogenase and a cytochromeb. Eur J Biochem 227:261–269

    PubMed  Google Scholar 

  • Dharmavaram RM, Konisky J (1987) Identification of a vanadatesensitive, membrane-bound ATPase in the archaebacteriumMethanococcus voltae. J Bacteriol 169:3921–3925

    PubMed  Google Scholar 

  • Dharmavaram RM, Konisky J (1989) Characterization of a P-type ATPase of the archaebacteriumMethanococcus voltae. J Biol Chem 264:14085–14089

    PubMed  Google Scholar 

  • Dross F, Geisler V, Lengler R, Theis F, Krafft T, Fahrenholz F, Kojro E, Duchene A, Tripier D, Juvenal K, Kröger A (1992) The quinone-reactive Ni/Fe-hydrogenase ofWolinella succinogenes. Eur J Biochem 206:93–102

    PubMed  Google Scholar 

  • Dybas M, Konisky J (1992) Energy transduction in the methanogenMethanococcus voltae is based on a sodium ion current. J Bacteriol 174:5575–5583

    PubMed  Google Scholar 

  • Eggen RIL, Geerling ACM, Jetten MSM, DeVos WM (1991) Cloning, expression, and sequence analysis of the genes for carbon monoxide dehydrogenase ofMethanothrix soehngenii. J Biol Chem 266:6883–6887

    PubMed  Google Scholar 

  • Fähnrich V (1994) Untersuchungen zum CO-abhängigen Elektronentransport in Vesikeln von Methanosarcina Stamm Göl. Diploma Thesis, University of Göttingen, Germany

  • Ferry JG (1992) Biochemistry of methanogenesis. Crit Rev Biochem Mol Biol 27:473–503

    PubMed  Google Scholar 

  • Fischer R, Thauer RK (1988) Methane formation from acetyl phosphate in cell extracts ofMethanosarcina barkeri. FEBS Lett 228: 249–253

    Google Scholar 

  • Fischer R, Thauer RK (1989) Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate inMethanosarcina barkeri. Arch Microbiol 151:459–465

    Google Scholar 

  • Fischer R, Thauer RK (1990) Ferredoxin-dependent methane formation from acetate in cell extracts ofMethanosarcina barkeri (strain MS). FEBS Lett 269:368–372

    PubMed  Google Scholar 

  • Gärtner P, Ecker A, Fischer R, Linder D, Fuchs G, Thauer RK (1993) Purification and properties ofN 5-methyltetrahydromethanopterin: coenzyme M methyltransferase fromMethanobacterium thermoautotrophicum. Eur J Biochem 213:537–545

    PubMed  Google Scholar 

  • Gärtner P, Weiss DS, Harms U, Thauer RK (1994)N 5-Methyltetrahydromethanopterin:coenzyme M methyltransferase fromMethanobacterium thermoautotrophicum. Catalytic mechanism and sodium ion dependence. Eur J Biochem 226:465–472

    PubMed  Google Scholar 

  • Grahame DA (1991) Catalysis of acetyl CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J Biol Chem 266:22227–22233

    PubMed  Google Scholar 

  • Grahame DA, Stadtman TC (1987) Carbon monoxide dehydrogenase fromMethanosarcina barkeri: disaggregation, purification, and physicochemical properties of the enzyme. J Biol Chem 262:3706–3712

    PubMed  Google Scholar 

  • Haase P, Deppenmeier U, Blaut M, Gottschalk G (1992) Purification and characterization of F420H2-dehydrogenase fromMethanolobus tindarius. Eur J Biochem 203:527–531

    PubMed  Google Scholar 

  • Halboth S, Klein A (1992)Methanococcus voltae harbors four gene clusters potentially encoding two [NiFe] and two [NiFeSe] hydrogenases, each of the cofactor F420-reducing or F420-non-reducing types. Mol Gen Genet 233:217–224

    PubMed  Google Scholar 

  • Harms U, Weiss DS, Gärtner P, Linder D, Thauer RK (1995) The energy conservingN 5-methyltetrahydromethanopterin:coenzyme M methyltransferase complex fromMethanobacterium thermoautotrophicum is composed of eight different subunits. Eur J Biochem 228:640–648

    PubMed  Google Scholar 

  • Hatchikian EC, Bruschi M, Forget N, Scandellari M (1982) Electron transport components from methanogenic bacteria: the ferredoxin fromMethanosarcina barkeri. Biochem Biophys Res Commun 109:1316–1323

    PubMed  Google Scholar 

  • Hedderich R, Berkessel A, Thauer RK (1990) Purification and properties of heterodisulfide reductase fromMethanobacterium thermoautotrophicum. Eur J Biochem 193:255–261

    PubMed  Google Scholar 

  • Hedderich R, Albracht SPJ, Linder D, Koch J, Thauer RK (1992) Isolation and characterization of polyferredoxin fromMethanobacterium thermoautotrophicum. FEBS Lett 298:65–68

    PubMed  Google Scholar 

  • Hedderich R, Koch J, Linder D, Thauer RK (1994) The heterodisulfide reductase fromMethanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine-nucleotide-dependent thioredoxin reductases. Eur J Biochem 225: 253–261

    PubMed  Google Scholar 

  • Heiden S, Hedderich R, Setzke E, Thauer RK (1993) Purification of a cytochromeb containing H2:heterodisulfide oxidoreductase complex from membranes ofMethanosarcina barkeri. Eur J Biochem 213:529–535

    PubMed  Google Scholar 

  • Heiden S, Hedderich R, Setzke E, Thauer RK (1994) Purification of two subunit cytochrome b containing heterodisulfide reductase from methanol-grownMethanosarcina barkeri. Eur J Biochem 221:855–861

    PubMed  Google Scholar 

  • Hughes PE, Tove SB (1982) Occurrence of α-tocopherolquinone and α-tocopherolquinol in microorganisms. J Bacteriol 151:1397–1402

    PubMed  Google Scholar 

  • Inatomi KI, Eya S, Maeda M, Futai M (1989a) Amino acid sequence of the α and β subunit ofMethanosarcina barkeri ATPase deduced from cloned genes. J Biol Chem 264:10954–10959

    PubMed  Google Scholar 

  • Inatomi KI, Maeda M, Futai M (1989b) Dicyclohexylcarbodimide-binding protein is a subunit of theMethanosarcina barkeri ATPase complex. Biochem Biophys Res Commun 162:1585–1590

    PubMed  Google Scholar 

  • Jablonski PE, Ferry JG (1991) Purification and properties of methyl coenzyme M methylreductase from acetate-grownMethanosarcina thermophila. J Bacteriol 173: 2481–2487

    PubMed  Google Scholar 

  • Jetten MSM, Stams AJM, Zehnder AJB (1989a) Purification and characterization of an oxygen-stable carbon monoxide dehydrogenase ofMethanothrix soehngenii. Eur J Biochem 181:437–441

    PubMed  Google Scholar 

  • Jetten MSM, Stams AJM, Zehnder AJB (1989b) Isolation and characterization of acetyl-coenzyme A synthetase fromMethanothrix soehngenii. J Bacteriol 171:5430–5435

    PubMed  Google Scholar 

  • Jetten MSM, Hagen WR, Pierik AJ, Stams AJM, Zehnder AJB (1991) Paramagnetic centers and acetyl CoA/CO exchange activity of carbon monoxide dehydrogenase fromMethanothrix soehngenii. Eur J Biochem 195:385–391

    PubMed  Google Scholar 

  • Jin SLC, Blanchard DK, Chen JS (1983) Two hydrogenases with distinct electron carrier specificity and subunit composition inMethanobacterium formicicum. Biochim Biophys Acta 748:8–20

    Google Scholar 

  • Jussofie A, Gottschalk G (1986) Further studies on the distribution of cytochromes in methanogenic bacteria. FEMS Lett 37:15–18

    Google Scholar 

  • Kaesler B, Schönheit P (1989a) The role of sodium ions in methanogenesis. Formaldehyde oxidation to CO2 and 2H2 in methanogenic bacteria is coupled with primary electrongenic Na+ translocation at a stoichiometry of 2–3 Na+/CO2. Eur J Biochem 184:223–232

    PubMed  Google Scholar 

  • Kaesler B, Schönheit P (1989b) The sodium cycle in methanogenesis-CO2 reduction to the formaldehyde level in methanogenic bacteria is driven by a primary electrochemical potential of Na+ generated by formaldehyde reduction to CH4. Eur J Biochem 186:309–316

    PubMed  Google Scholar 

  • Kamlage B, Blaut M (1992) Characterization of cytochromes fromMethanosarcina Strain Göl and their involvement in electron transport during growth on methanol. J Bacteriol 174:3921–3927

    PubMed  Google Scholar 

  • Karrasch M, Börner G, Enssle M, Thauer RK (1989) Formylmethanofuran dehydrogenase from methanogenic bacteria, a molybdoenzyme. FEBS Lett 253:226–230

    PubMed  Google Scholar 

  • Karrasch M, Börner G, Enssle M, Thauer RK (1990) The molybdoenzyme formylmethanofuran dehydrogenase fromMethanosarcina barkeri contains a pterin cofactor. Eur J Biochem 194:367–372

    PubMed  Google Scholar 

  • Keltjens JT, Vogels GD (1993) Conversion of methanol and methylamines to methane and carbon dioxide. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York London, pp 209–252

    Google Scholar 

  • Kemner JM, Zeikus JG (1994a) Purification and characterization of membrane-bound hydrogenase fromMethanosarcina barkeri MS. Arch Microbiol 161:47–54

    Google Scholar 

  • Kemner JM, Zeikus JG (1994b) Regulation and function of ferredoxin-linked versus cytochromeb-linked hydrogenase in electron transfer and energy metabolism ofMethanosarcina barkeri MS. Arch Microbiol 162:26–32

    Google Scholar 

  • Kemner JM, Krzycki JA, Prince RC, Zeikus JG (1987) Spectroscopic and enzymatic evidence for membrane-bound electron transport carriers and hydrogenase and their relation to cytochrome b function inMethanosarcina barkeri. FEMS Lett 48:267–272

    Google Scholar 

  • Kojima N, Fox JA, Hausinger RP, Daniels L, Orme-Johnson A, Walsh C (1983) Paramagnetic centers in nickel-containing, deazaflavin-reducing hydrogenase fromMethanobacterium thermoautotrophicum. Proc Natl Acad Sci USA 80:378–382

    PubMed  Google Scholar 

  • Krzycki JA, Mortenson LE, Prince RC (1989) Paramagnetic centers of carbon monoxide dehydrogenase from acetoclasticMethanosarcina barkeri. J Biol Chem 264:7217–7221

    PubMed  Google Scholar 

  • Kühn W, Gottschalk G (1983) Characterization of the cytochromes occurring inMethanosarcina species. Eur J Biochem 135:89–94

    PubMed  Google Scholar 

  • Kühn W, Fiebig K, Hippe H, Mah RA, Huser BA, Gottschalk G (1983) Distribution of cytochromes in methanogenic bacteria. FEMS Microbiol Lett 20:407–410

    Google Scholar 

  • Kumazawa Y, Fujiwara T, Fukumori Y, Koga Y, Yamanaka T (1994) Cytochromebc purified from the methanogenMethanosarcina barkeri. Curr Microbiol 29:53–56

    Google Scholar 

  • Laubinger W, Dimroth P (1987) Characterization of the Na+-stimulated ATPase ofPropiongenium modestum as an enzyme of the F1F0 type. Eur J Biochem 168:475–480

    PubMed  Google Scholar 

  • Lienard T (1995) Reinigung und Charakterisierung derN 5-Methyltetrahydromethanopterin:Coenzym M Methyltransferase ausMethanosarcina mazei Stamm Göl. Diploma thesis, University of Göttingen, Germany

  • Lovley DR, Ferry JG (1985) Production and consumption of H2 during growth ofMethanosarcina spp. on acetate. Appl Environ Microbiol 49:247–249

    Google Scholar 

  • Lu WP, Becher B, Gottschalk G, Ragsdale SW (1995) Electron paramagnetic resonance spectroscopic and electrochemical characterization of the partially purifiedN 5-methyltetrahydromethanopterin:coenzym M methyltransferase fromMethanosarcina mazei Göl. J Bacteriol 177:2245–2250

    PubMed  Google Scholar 

  • Lünsdorf H, Niedrig M, Fiebig K (1991) Immunocytochemical localization of the coenzyme F420-reducing hydrogenase inMethanosarcina barkeri Fusaro. J Bacteriol 173:978–984

    PubMed  Google Scholar 

  • Lundie LL, Ferry JG (1989) Activation of acetate byMethanosarcina thermophila. Purification and characterization of phosphotransacetylase. J Biol Chem 264:18392–18396

    PubMed  Google Scholar 

  • Mahlmann A, Deppenmeier U, Gottschalk G (1989) Methanofuran-b is required for CO2 formation from formaldehyde byMethanosarcina barkeri. FEMS Microbiol Lett 61:115–120

    Google Scholar 

  • Mayer F, Jussofie A, Salzmann M, Lübben M, Rohde M, Gottschalk G (1987) Immunoelectron microscopic demonstration of ATPase on the cytoplasmic membrane of the methanogenic bacterium strain Göl. J Bacteriol 169:2307–2309

    PubMed  Google Scholar 

  • Mountfort DO (1978) Evidence for ATP synthesis driven by a proton gradient inMethanosarcina barkeri. Biochem Biophys Res Commun 85:1346–1350

    PubMed  Google Scholar 

  • Moura I, Moura JJG, Huynh BH, Santos H, LeGall, J, Xavier AV (1982) Ferredoxin fromMethanosarcina barkeri: evidence for the presence of a three-iron cluster. Eur J Biochem 126:95–98

    PubMed  Google Scholar 

  • Müller V, Kozianowski G, Blaut M, Gottschalk G (1987a) Methanogenesis from trimethylamine+H2 byMethanosarcina barkeri is coupled to ATP synthesis by a chemiosmotic mechanism. Biochim. Biophys. Acta 892:207–212

    Google Scholar 

  • Müller V, Blaut M, Gottschalk G (1987b) Oxidation of trimethylamine to the level of formaldehyde byMethanosarcina barkeri is dependent on the proton motive force. FEMS Microbiol Lett 43:183–186

    Google Scholar 

  • Müller V, Blaut M, Gottschalk G (1987c) Generation of a transmembrane gradient of Na+ inMethanosarcina barkeri. Eur J Biochem 162:461–466

    PubMed  Google Scholar 

  • Müller V, Blaut M, Gottschalk G (1988a) The transmembrane electrochemical gradient of Na+ as driving force for the methanol oxidation inMethanosarcina barkeri. Eur J Biochem 172:601–606

    PubMed  Google Scholar 

  • Müller V, Winner C, Gottschalk G (1988b) Electron-transport-driven sodium extrusion during methanogenesis from formaldehyde+H2 byMethanosarcina barkeri. Eur J Biochem 178:519–525

    PubMed  Google Scholar 

  • Müller V, Blaut M, Gottschalk G (1993) Bioenergetics of methanogenesis. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 360–406

    Google Scholar 

  • Muth E (1988) Localization of the F420-reducing hydrogenase inMethanococcus voltae cells by immunogold technique. Arch Microbiol 150:205–207

    Google Scholar 

  • Muth E, Mörschel E, Klein A (1987) Purification and characterization of an 8-hydroxy-5-deazaflavin-reducing hydrogenase from the archaebacteriumMethanococcus voltae. Eur J Biochem 169: 571–577

    PubMed  Google Scholar 

  • Naumann E, Fahlbusch K, Gottschalk G (1984) Presence of a trimethylamine:HS-coenzyme M methyltransferase inMethanosarcina barkeri. Arch Microbiol 138:79–83

    Google Scholar 

  • Patel GB (1984) Characterization and nutritional properties ofMethanothrix concilli sp. nov., a mesophilic, acetoclastic methanogen. Can J Microbiol 30:1383–1396

    Google Scholar 

  • Peer CW, Painter MH, Rasche ME, Ferry JG (1994) Characterization of a CO:heterodisulfide oxidoreductase system from acetategrownMethanosarcina thermophila. J Bacteriol 176:6974–6979

    PubMed  Google Scholar 

  • Peinemann S, Müller V, Blaut M, Gottschalk G (1988) Bioenergetics of methanogenesis from acetate byMethanosarcina barkeri. J Bacteriol 170:1369–1372

    PubMed  Google Scholar 

  • Peinemann S, Blaut M, Gottschalk G (1989) ATP synthesis coupled to methane formation from methyl CoM and H2 catalyzed by vesicles of the methanogenic bacterial strain Göl. Eur J Biochem 186:175–180

    PubMed  Google Scholar 

  • Raybuck SA, Ramer SE, Abbanat DR, Peters JW, Orme-Johnson WH, Ferry JG, Walsh CT (1991) Demonstration of carbon-carbon bound cleavage of acetyl CoA by using isotopic exchange catalyzed by the CO dehydrogenase complex from acetategrownMethanosarcina thermophila. J Bacteriol 173:929–932

    PubMed  Google Scholar 

  • Reeve JN (1993) Structure and organization of genes. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York London, pp 493–527

    Google Scholar 

  • Reeve JN, Beckler GS, Cram DS, Hamilton PT, Brown JW, Krzycki JA, Kolodziej AF, Alex L, Orme-Johnson WH, Walsh CT (1989) A hydrogenase-linked gene inMethanobacterium thermoautotrophicum strain ΔH encodes a polyferredoxin. Proc Natl Acad Sci USA 86:3031–3035

    PubMed  Google Scholar 

  • Reidlinger J, Müller V (1994) Purification of the ATP synthase ofAcetobacterium woodii and identification as a Na+-translocating F1F0-type enzyme. Eur J Biochem 223:275–283

    PubMed  Google Scholar 

  • Schäfer G, Meyering-Vos M (1992) F-Type or V-Type — the chimeric nature of the archaebacterial ATP synthase. Biochim Biophys Acta 1101:232–235

    PubMed  Google Scholar 

  • Schmitz RA, Richter M, Linder D, Thauer RK (1992) A tungstencontaining active formylmethanofuran dehydrogenase in the thermophilic archaeonMethanobacterium wolfei. Eur J Biochem 207:559–565

    PubMed  Google Scholar 

  • Schwörer B, Thauer RK (1991) Activities of formylmethanofuran dehydrogenase, methylene-H4MPT dehydrogenase, methylene-H4MPT reductase, and heterodisulfide reductase in methanogenic bacteria. Arch Microbiol 155:459–465

    Google Scholar 

  • Setzke E, Hedderich R, Heiden S, Thauer RK (1994) H2:heterodisulfide oxidoreductase complex fromMethanobacterium thermoautotrophicum. Eur J Biochem 220:139–148

    PubMed  Google Scholar 

  • Shah NN, Clark DS (1990) Partial purification and characterization of two hydrogenases from the extreme thermophileMethanococcus jannaschii. Appl Environ Microbiol 56:858–863

    Google Scholar 

  • Smigan P, Horovska L, Greksak M (1989) Na+-driven ATP synthesis inMethanobacterium thermoautotrophicum can be modulated with sodium ion concentrations in the growth medium. FEBS Lett 242:85–88

    Google Scholar 

  • Smigan P, Rusnak P, Greksak M, Zhilina TN, Zavarzin GA (1992) Mode of sodium ion action on methanogenesis and ATPase of the moderate halophilic methanogenic bacteriumMethanohalophilus halophilus. FEBS Lett 300:193–196

    PubMed  Google Scholar 

  • Smigan P, Majernik A, Greksak M (1994) Na+-driven ATP synthesis inMethanobacterium thermoautotrophicum and its differentiation from H+-driven ATP synthesis by rhodamine 6G. FEBS Lett 349:424–428

    PubMed  Google Scholar 

  • Sorgenfrei O, Linder D, Karas M, Klein A (1993) A novel small subunit of a selenium containing [NiFe] hydrogenase ofMethanococcus voltae is posttranslationally processed by cleavage at a defined position. Eur J Biochem 213:1355–1358

    PubMed  Google Scholar 

  • Sowers KR, Baron SF, Ferry JG (1984)Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium from marine sediments. Appl Environ Microbiol 47:971–978

    Google Scholar 

  • Steigerwald VJ, Beckler GS, Reeve JN (1990) Conservation of hydrogenase and polyferredoxin structures in the hyperthermophilic archaebacteriumMethanothermus fervidus. J Bacteriol 172:4715–4718

    PubMed  Google Scholar 

  • Steigerwald VJ, Pihl TD, Reeve JN (1992) Identification and isolation of the polyferredoxin fromMethanobacterium thermoautotrophicum strain ΔH. Proc Natl Acad Sci USA 89:6929–6933

    PubMed  Google Scholar 

  • Stupperich E, Juza A, Hoppert M, Mayer F (1993) Cloning, sequencing, and immunological characterization of the corrinoid-containing subunit of theN 5-methyltetrahydromethanopterin: coenzyme M methyltransferase fromMethanobacterium thermoautotrophicum. Eur J Biochem 217:115–121

    PubMed  Google Scholar 

  • Sumi M, Sato MH, Denda K, Date T, Yoshida M (1992) A DNA fragment homologous to F1-ATPase β subunit was amplified from genomic DNA ofMethanosarcina barkeri. FEBS Lett 314:207–210

    PubMed  Google Scholar 

  • Terlesky KC, Ferry JG (1988a) Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grownMethanosarcina thermophila. J Biol Chem 263:4075–4079

    PubMed  Google Scholar 

  • Terlesky KC, Ferry JG (1988b) Purification and characterization of a ferredoxin from acetate-grownMethanosarcina thermophila. J Biol Chem 263:4080–4082

    PubMed  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  Google Scholar 

  • Thauer RK, Hedderich R, Fischer R (1993) Reactions and enzymes involved in methanogenesis from CO2 and H2. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York London, pp 209–252

    Google Scholar 

  • Unemoto T, Hayashi M (1989) Sodium-transport NADH-quinone reductase of a marineVibrio alginolyticus. J Bioenerg Biomembr 21:649–662

    PubMed  Google Scholar 

  • Van der Meijden P, Heythuysen HT, Pouwels A, Houwen FP, Van der Drift C, Vogels GD (1983) Methyltransferases involved in methanol conversion byMethanosarcina barkeri. Arch Microbiol 134:238–242

    PubMed  Google Scholar 

  • Wasserfallen A (1994) Formylmethanofuran synthesis by formylmethanofuran dehydrogenase fromMethanobacterium thermoautotrophicum Marburg. Biochem Biophys Res Commun 199:1256–1261

    PubMed  Google Scholar 

  • Weiss DS, Gärtner P, Thauer RK (1994) The energetics and sodium ion dependence ofN 5-methyltetrahydromethanopterin: coenzyme M methyltransferase studied with cob(I)alamin as methyl acceptor and methylcob(III)alamin as methyl donor. Eur J Biochem 226:799–809

    PubMed  Google Scholar 

  • Wilms R (1992) Die ATPase des methanogenen Bakteriums Stamm Göl: Analyse von Struktur und Funktion des Gesamtkomplexes mit Hilfe von biochemischen, immunologischen und elektronenmikroskopischen Methoden. PhD dissertation, University of Göttingen, Germany

  • Winner C, Gottschalk G (1989) H2 and CO2 production from methanol or formaldehyde by the methanogenic bacterium strain Göl treated with 2-bromoethanesulfonic acid. FEMS Microbiol Lett 65:259–264

    Google Scholar 

  • Woo GJ, Wasserfallen A, Wolfe RS (1993) Methylviologen hydrogenase II, a new member of the hydrogenase family fromMethanobacterium thermoautotrophicum ΔH. J Bacteriol 175: 5970–5977

    PubMed  Google Scholar 

  • Zimniak L, Dittrich P, Gogarten JP, Kibak H, Taiz L (1988) The cDNA sequence of the 69-kDa subunit of the carrot vacuolar H+-ATPase. Homology to the β-chain of F1Fo ATPases. J Biol Chem 263:9102–9112

    PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4