A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s00170-010-2641-3 below:

Select laser melting of W–Ni–Fe powders: simulation and experimental study

Abstract

Using W, Ni, and Fe powders as raw materials, selective laser melting (SLM) technology was considered for fabrication of 90W–7Ni–3Fe parts in one step. The investigation into simulation of temperature field of SLM W–Ni–Fe powder system was highlighted. Effects of processing parameters of scan velocity, laser power, scan interval, and preheating process on temperature field distribution were studied through establishing a 3D model based on finite element analysis theory. The simulation results show that a lower thickness, narrower scan interval, and a slower scan velocity tend to improve the temperature in powder bed. Moreover, the parameter range in which the maximum temperature in powder bed could reach up to the melting point of W (about 3,420°C) was obtained. Experiments on different processing parameters were carried out, and a good agreement with the simulation results could be found.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. Upadhyaya A, Tiwari SK, Mishra P (2007) Microwave sintering of W Ni Fe alloy. Scripta Metall 56:5–8

    Article  Google Scholar 

  2. Osakada K, Shiomi M (2006) Flexible manufacturing of metallic products by selective laser melting of powder. Int J Mach Tool Manuf 46:1188–1193

    Article  Google Scholar 

  3. Simchi A (2006) Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater Sci Eng A 428:148–158

    Article  Google Scholar 

  4. Gu DD, Shen YF (2006) WC-Co particulate reinforcing Cu matrix composites produced by direct lasers intering. Mater Lett 60:3664–3668

    Article  Google Scholar 

  5. Gu DD, Shen YF (2009) Effects of processing parameters on consolidation and microstructure of W–Cu components by DMLS. J Alloy Compd 473:107–115

    Article  Google Scholar 

  6. Li RD, Shi YS, Liu JH, Zhan X, Wang ZG (2009) Selective laser melting W–10wt.%Cu composite powders. Int J Adv Manuf Technol. doi:10.1007/s00170-009-2304-4

    Google Scholar 

  7. Yang J, Wang FD (2009) 3D finite element temperature field modeling for direct laser fabrication. Int J Adv Manuf Technol 43:1060–1068

    Article  Google Scholar 

  8. Liu JH, Shi YS, Chen KH, Huang SH (2007) Research on manufacturing Cu matrix Fe–Cu–Ni–C alloy composite parts by indirect selective laser sintering. Int J Adv Manuf Technol 33:693–697

    Article  Google Scholar 

  9. Li RD, Liu JH, Shi YS, Zhang L, Du MZ (2009) Effects of processing parameters on rapid manufacturing 90W–7Ni–3Fe parts via selective laser melting. Powder Metall. doi:10.1179/174329009

    Google Scholar 

  10. Childs THC, Hauser C, Badrossamay M (2005) Raster scan selective laser melting of the surface layer of a tool steel powder bed. P I Mech Eng B-J Eng 219(4):379–384

    Article  Google Scholar 

  11. Dai K, Shaw L (2001) Thermal and stress modeling of multi-material laser processing. Acta Mater 49:4171–4181

    Article  Google Scholar 

  12. Dai K, Shaw L (2004) Thermal and mechanical finite element modeling of laser forming. Acta Mater 52:69–80

    Article  Google Scholar 

  13. Dong L, Makradi A, Ahzi S, Remond Y (2009) Three-dimensional transient finite element analysis of the selective laser sintering process. J Mater ProcessTech 209:700–706

    Article  Google Scholar 

  14. Kelly S, Kampe S (2007) Mirostructural evolution in laser-deposited multilayer Ti–6Al–4V builds: part II. Thermal modeling. Metall Mater Trans A 35:1869–1879

    Article  Google Scholar 

  15. Gusarov AV, Yadroitsev I, Bertrand P, Smurov I (2007) Heat transfer modelling and stability analysis of selective laser melting. Appl Surf Sci 254(4):975–979

    Article  Google Scholar 

  16. Yang JL, Ouyang HW, Wang Y (2009) Direct metal laser fabrication: machine development and experimental work. Int J Adv Manuf Technol. doi:10.1007/s00170-009-2174-9

    Google Scholar 

  17. Sih SS, Barlow JW (1995) The prediction of the thermal conductivity of powders. In: Proceedings of the 6th Annual SFF Symposium, pp 397–401

  18. Rykalin NN (1957) Berechnung der Wärmevorgang beim Scheißen. VEB verlag Technik

  19. Kieback B, Brand K, Schatt W (1994) Densification and alloy formation during sintering of heterogeneous systems. In: Powder Metallurgy World Congress (PM’94), June 6–9, Paris, France, Vol 2, pp 1473–1476

  20. Savitskii AP (1994) New concepts of the theory of sintering. In: Powder Metallurgy World Congress (PM’94), June 6–9, Paris, France, Vol 2, pp 1561–1563

  21. Ye WH, Wang CJ (1983) Tungsten resources, metallurgy, performances and the applications. Metallurgical Industry Publishing House, Beijing

    Google Scholar 

  22. Matsumoto M, Shiomi M, Osakada K, Abe F (2002) Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int J MachTools Manuf 42(1):61–67

    Article  Google Scholar 

  23. Kolossov S, Boillat E, Glardon R, Fischer P, Locher M (2004) 3D FE simulation for temperature evolution in the selective laser sintering process. Int J Mach Tools Manuf 44:117–123

    Article  Google Scholar 

  24. Han L, Liou FW (2004) Microstructure and thermal history in direct-laser fabricated Ti–6Al–4V samples. Int J Heat Mass Transfer 47:4385–4402

    Article  MATH  Google Scholar 

  25. McVey RW, Melnychuk RM (2007) Absorption of laser irradiation in a porous powder layer. J Laser Appl 19(4):214–224

    Article  Google Scholar 

  26. Tolochko NK, Laoui T, Khlopkov YV, Mozzharov SE, Titov VI, Ignatiev MB (2000) Absorptance of powder materials suitable for laser sintering. Rapid Prototyp J 6(3):155–160

    Article  Google Scholar 

Download references

Author information Authors and Affiliations
  1. State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China

    D. Q. Zhang, Q. Z. Cai & R. D. Li

  2. Heilongjiang Institute of Science and Technology, Harbin, 150027, People’s Republic of China

    J. H. Liu

  3. State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, People’s Republic of China

    J. H. Liu & L. Zhang

Authors
  1. D. Q. Zhang
  2. Q. Z. Cai
  3. J. H. Liu
  4. L. Zhang
  5. R. D. Li
Corresponding author

Correspondence to Q. Z. Cai.

About this article Cite this article

Zhang, D.Q., Cai, Q.Z., Liu, J.H. et al. Select laser melting of W–Ni–Fe powders: simulation and experimental study. Int J Adv Manuf Technol 51, 649–658 (2010). https://doi.org/10.1007/s00170-010-2641-3

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4