A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s00159-011-0049-1 below:

Supernova remnants: the X-ray perspective

  • Abdo AA (Fermi LAT Collaboration) (2011) Observations of the young supernova remnant RX J1713.7-3946 with the Fermi large area telescope. e-prints arXiv:1103.5727

  • Abdo AA et al. (2009) Fermi LAT discovery of extended gamma-ray emission in the direction of supernova remnant W51C. Astrophys J 706:L1–L6. doi:10.1088/0004-637X/706/1/L1, arXiv:0910.0908

    Article  ADS  Google Scholar 

  • Abdo AA, Ackermann M, Ajello M, Allafort A, Antolini E et al. (2010a) Fermi large area telescope first source catalog. Astrophys J Suppl Ser 188:405–436. doi:10.1088/0067-0049/188/2/405, arXiv:1002.2280

    Article  ADS  Google Scholar 

  • Abdo AA et al. (2010b) Fermi large area telescope observations of the supernova remnant W28 (G6.4-0.1). Astrophys J 718:348–356. doi:10.1088/0004-637X/718/1/348

    Article  ADS  Google Scholar 

  • Abdo AA et al. (2010c) Fermi-Lat discovery of GeV gamma-ray emission from the young supernova remnant Cassiopeia A. Astrophys J 710:L92–L97. doi:10.1088/2041-8205/710/1/L92, arXiv:1001.1419

    Article  ADS  Google Scholar 

  • Abdo AA et al. (2010d) Fermi-LAT study of gamma-ray emission in the direction of supernova remnant W49B. Astrophys J 722:1303–1311. doi:10.1088/0004-637X/722/2/1303

    Article  ADS  Google Scholar 

  • Abdo AA et al. (2010e) Gamma-ray emission from the shell of supernova remnant W44 revealed by the Fermi LAT. Science 327:1103. doi:10.1126/science.1182787

    Article  ADS  Google Scholar 

  • Abdo AA et al. (2010f) Observation of supernova remnant IC 443 with the Fermi large area telescope. Astrophys J 712:459–468. doi:10.1088/0004-637X/712/1/459, arXiv:1002.2198

    Article  ADS  Google Scholar 

  • Acciari VA, Aliu E, Arlen T, Aune T, Beilicke M, Benbow W, Bradbury SM, Buckley JH, Bugaev V, Byrum K, Cannon A, Cesarini A, Ciupik L, Collins-Hughes E, Cui W, Dickherber R, Duke C, Errando M, Finley JP, Finnegan G, Fortson L, Furniss A, Galante N, Gall D, Gillanders GH, Godambe S, Griffin S, Grube J, Guenette R, Gyuk G, Hanna D, Holder J, Hughes JP, Hui CM, Humensky TB, Kaaret P, Karlsson N, Kertzman M, Kieda D, Krawczynski H, Krennrich F, Lang MJ, LeBohec S, Madhavan AS, Maier G, Majumdar P, McArthur S, McCann A, Moriarty P, Mukherjee R, Ong RA, Orr M, Otte AN, Pandel D, Park NH, Perkins JS, Pohl M, Quinn J, Ragan K, Reyes LC, Reynolds PT, Roache E, Rose HJ, Saxon DB, Schroedter M, Sembroski GH, Senturk GD, Slane P, Smith AW, Tešić G, Theiling M, Thibadeau S, Tsurusaki K, Varlotta A, Vassiliev VV, Vincent S, Vivier M, Wakely SP, Ward JE, Weekes TC, Weinstein A, Weisgarber T, Williams DA, Wood M, Zitzer B (2011) Discovery of TeV gamma-ray emission from Tycho’s supernova remnant. Astrophys J 730:L20. doi:10.1088/2041-8205/730/2/L20, arXiv:1102.3871

    Article  ADS  Google Scholar 

  • Acero F, Ballet J, Decourchelle A (2007) The gas density around SN 1006. Astron Astrophys 475:883–890. doi:10.1051/0004-6361:20077742, arXiv:0709.0956

    Article  ADS  Google Scholar 

  • Acero F, Ballet J, Decourchelle A, Lemoine-Goumard M, Ortega M, Giacani E, Dubner G, Cassam-Chenaï G (2009) A joint spectro-imaging analysis of the XMM-Newton and HESS observations of the supernova remnant RX J1713.7-3946. Astron Astrophys 505:157–167. doi:10.1051/0004-6361/200811556, arXiv:0906.1073

    Article  ADS  Google Scholar 

  • Aharonian FA, Atoyan AM (1999) On the origin of TeV radiation of SN 1006. Astron Astrophys 351:330–340. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1999A%26A...351..330A&db_key=AST

    ADS  Google Scholar 

  • Aharonian AF, Akhperjanian, Barrio J et al. (2001) Evidence for TeV gamma ray emission from Cassiopeia A. Astron Astrophys 370:112–120. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001A%26A...370..112A&db_key=AST

    Article  ADS  Google Scholar 

  • Aharonian FA et al. (2004) High-energy particle acceleration in the shell of a supernova remnant. Nature 432:75–77

    Article  ADS  Google Scholar 

  • Aharonian F et al. (2007) Primary particle acceleration above 100 TeV in the shell-type supernova remnant RX J1713.7-3946 with deep HESS observations. Astron Astrophys 464:235–243. doi:10.1051/0004-6361:20066381

    Article  ADS  Google Scholar 

  • Aharonian F, Akhperjanian AG, Barres de Almeida U et al. (2008a) HESS upper limits for Kepler’s supernova remnant. Astron Astrophys 488:219–223. doi:10.1051/0004-6361:200809401, arXiv:0806.3347

    Article  ADS  Google Scholar 

  • Aharonian F et al. (2008b) Discovery of very high energy gamma-ray emission coincident with molecular clouds in the W 28 (G6.4-0.1) field. Astron Astrophys 481:401–410. doi:10.1051/0004-6361:20077765, arXiv:0801.3555

    Article  ADS  Google Scholar 

  • Aharonian F et al. (2009) Discovery of gamma-ray emission from the shell-type supernova remnant RCW 86 with Hess. Astrophys J 692:1500–1505. doi:10.1088/0004-637X/692/2/1500, arXiv:0810.2689

    Article  ADS  Google Scholar 

  • Ahmad I, Greene JP, Moore EF, Ghelberg S, Ofan A, Paul M, Kutschera W (2006) Improved measurement of the Ti44 half-life from a 14-year long study. Phys Rev C 74(6):065803. doi:10.1103/PhysRevC.74.065803

    Article  ADS  Google Scholar 

  • Albert J et al. (2007a) Discovery of very high energy gamma radiation from IC 443 with the MAGIC telescope. Astrophys J 664:L87–L90. doi:10.1086/520957, arXiv:0705.3119

    Article  ADS  Google Scholar 

  • Albert J et al. (2007b) Observation of VHE γ-rays from Cassiopeia A with the MAGIC telescope. Astron Astrophys 474:937–940. doi:10.1051/0004-6361:20078168, arXiv:0706.4065

    Article  ADS  Google Scholar 

  • Allen MP, Horvath JE (2004) Influence of an internal magnetar on supernova remnant expansion. Astrophys J 616:346–356

    Article  ADS  Google Scholar 

  • Allen GE, Gotthelf EV, Petre R (1999) Evidence of 10-TeV to 100-TeV electrons in supernova remnants. In: Proceedings of the 26th international cosmic ray conference. arXiv:astro-ph/9908209

  • Allen GE, Houck JC, Sturner SJ (2008) Evidence of a curved synchrotron spectrum in the supernova remnant SN 1006. Astrophys J 683:773–785. doi:10.1086/589628, arXiv:0807.1702

    Article  ADS  Google Scholar 

  • Allen GE et al. (1997) Evidence of X-ray synchrotron emission from electrons accelerated to 40 TeV in the supernova remnant Cassiopeia A. Astrophys J 487:L97–L100. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1997ApJ...487L..97A&db_key=AST

    Article  ADS  Google Scholar 

  • Arnett D (1996) Supernovae and nucleosynthesis. Princeton series in astrophysics. Princeton University Press, Princeton

    Google Scholar 

  • Arnett WD, Bahcall JN, Kirshner RP, Woosley SE (1989) Supernova 1987A. Annu Rev Astron Astrophys 27:629–700. doi:10.1146/annurev.aa.27.090189.003213

    Article  ADS  Google Scholar 

  • Arons J (2003) Magnetars in the Metagalaxy: an origin for ultra-high-energy cosmic rays in the Nearby Universe. Astrophys J 589:871–892. doi:10.1086/374776, arXiv:astro-ph/0208444

    Article  ADS  Google Scholar 

  • Aschenbach B (1998) Discovery of a young nearby supernova remnant. Nature 396:141–142

    Article  ADS  Google Scholar 

  • Aschenbach B, Egger R, Trumper J (1995) Discovery of explosion fragments outside the VELA supernova remnant shock-wave boundary. Nature 373:587. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1995Natur.373..587A&db_key=AST

    Article  ADS  Google Scholar 

  • Asvarov AI, Guseinov OH, Kasumov FK, Dogel’ VA (1990) The hard X-ray emission of the young supernova remnants. Astron Astrophys 229:196–200

    ADS  Google Scholar 

  • Aubourg É, Tojeiro R, Jimenez R, Heavens A, Strauss MA, Spergel DN (2008) Evidence of short-lived SN Ia progenitors. Astron Astrophys 492:631–636. doi:10.1051/0004-6361:200809796, arXiv:0707.1328

    Article  ADS  Google Scholar 

  • Axford WI, Leer E, Skadron G (1977) The acceleration of cosmic rays by shock waves. In: International cosmic ray conference, vol 11, p 132

    Google Scholar 

  • Badenes C (2010) X-ray studies of supernova remnants: a different view of supernova explosions. Proc Nat Acad Sci 107:7141–7146. doi:10.1073/pnas.0914189107, arXiv:1002.0596

    Article  ADS  Google Scholar 

  • Badenes C, Bravo E, Borkowski KJ, Domínguez I (2003) Thermal X-ray emission from shocked ejecta in Type Ia supernova remnants: prospects for explosion mechanism identification. Astrophys J 593:358–369

    Article  ADS  Google Scholar 

  • Badenes C, Borkowski KJ, Bravo E (2005) Thermal X-ray emission from shocked ejecta in Type Ia supernova remnants. II. Parameters affecting the spectrum. Astrophys J 624:198–212. doi:10.1086/428829

    Article  ADS  Google Scholar 

  • Badenes C, Borkowski KJ, Hughes JP, Hwang U, Bravo E (2006) Constraints on the physics of Type Ia supernovae from the X-ray spectrum of the Tycho supernova remnant. Astrophys J 645:1373–1391. doi:10.1086/504399, arXiv:astro-ph/0511140

    Article  ADS  Google Scholar 

  • Badenes C, Hughes JP, Bravo E, Langer N (2007) Are the models for Type Ia supernova progenitors consistent with the properties of supernova remnants? Astrophys J 662:472–486. doi:10.1086/518022, arXiv:astro-ph/0703321

    Article  ADS  Google Scholar 

  • Badenes C, Bravo E, Hughes JP (2008a) The end of amnesia: a new method for measuring the metallicity of Type Ia supernova progenitors using manganese lines in supernova remnants. Astrophys J 680:L33–L36. doi:10.1086/589832, arXiv:0805.3344

    Article  ADS  Google Scholar 

  • Badenes C, Hughes JP, Cassam-Chenaï G, Bravo E (2008b) The persistence of memory, or how the X-ray spectrum of SNR 0509-67.5 reveals the brightness of its parent Type Ia supernova. Astrophys J 680:1149–1157. doi:10.1086/524700, arXiv:0801.4761

    Article  ADS  Google Scholar 

  • Ballet J (2006) X-ray synchrotron emission from supernova remnants. Adv Space Res 37:1902–1908. doi:10.1016/j.asr.2005.03.047, arXiv:astro-ph/0503309

    Article  ADS  Google Scholar 

  • Bamba A, Koyama K, Tomida H (2000) Discovery of non-thermal X-rays from the shell of RCW 86. Publ Astron Soc Jpn 52:1157–1163. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2000PASJ...52.1157B&db_key=AST

    ADS  Google Scholar 

  • Bamba A, Ueno M, Nakajima H, Koyama K (2004) Thermal and nonthermal X-rays from the large magellanic cloud superbubble 30 Doradus C. Astrophys J 602:257–263

    Article  ADS  Google Scholar 

  • Bamba A, Yamazaki R, Yoshida T, Terasawa T, Koyama K (2005) A spatial and spectral study of nonthermal filaments in historical supernova remnants: observational results with Chandra. Astrophys J 621:793–802. doi:10.1086/427620, arXiv:astro-ph/0411326

    Article  ADS  Google Scholar 

  • Bandiera R (1987) The origin of Kepler’s supernova remnant. Astrophys J 319:885–892. doi:10.1086/165505

    Article  ADS  Google Scholar 

  • Bandiera R, van den Bergh S (1991) Changes in the optical remnant of Kepler’s supernova during the period 1942–1989. Astrophys J 374:186–201. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1991ApJ...374..186B&db_key=AST

    Article  ADS  Google Scholar 

  • Becker RH, Szymkowiak AE, Boldt EA, Holt SS, Serlemitsos PJ (1980) Is the remnant of SN 1006 Crablike. Astrophys J 240:L33–L35

    Article  ADS  Google Scholar 

  • Behar E, Rasmussen AP, Griffiths RG, Dennerl K, Audard M, Aschenbach B, Brinkman AC (2001) High-resolution X-ray spectroscopy and imaging of supernova remnant N132D. Astron Astrophys 365:L242–L247. doi:10.1051/0004-6361:20000082

    Article  ADS  Google Scholar 

  • Beiersdorfer P, Phillips T, Jacobs VL, Hill KW, Bitter M, von Goeler S, Kahn SM (1993) High-resolution measurements, line identification, and spectral modeling of K-alpha transitions in Fe XVIII–Fe XXV. Astrophys J 409:846–859. doi:10.1086/172715

    Article  ADS  Google Scholar 

  • Bell AR (1978a) The acceleration of cosmic rays in shock fronts. I. Mon Not R Astron Soc 182:147–156. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1978MNRAS.182..147B&db_key=AST

    ADS  Google Scholar 

  • Bell AR (1978b) The acceleration of cosmic rays in shock fronts. II. Mon Not R Astron Soc 182:443–455. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1978MNRAS.182..443B&db_key=AST

    ADS  Google Scholar 

  • Bell AR (2004) Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon Not R Astron Soc 353:550–558

    Article  ADS  Google Scholar 

  • Bennett L, Ellison DC (1995) Investigation of intrinsic variability in one-dimensional parallel shocks using steady state hybrid simulations. J Geophys Res 100:3439–3448. doi:10.1029/94JA02579

    Article  ADS  Google Scholar 

  • Bennett L, Ellison DC (1999) A simple model of nonlinear diffusive shock acceleration. Astrophys J 526:385–399. doi:10.1086/307993

    Article  ADS  Google Scholar 

  • Berezhko EG, Völk HJ (2010) Nonthermal and thermal emission from the supernova remnant RX J1713.7-3946. Astron Astrophys 511:A34+. doi:10.1051/0004-6361/200913312, arXiv:0910.2094

    Article  ADS  Google Scholar 

  • Berezhko EG, Ksenofontov LT, Völk HJ (2003) Confirmation of strong magnetic field amplification and nuclear cosmic ray acceleration in SN 1006. Astron Astrophys 412:L11–L14

    Article  ADS  Google Scholar 

  • Bionta RM, Blewitt G, Bratton CB, Caspere D, Ciocio A (1987) Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud. Phys Rev Lett 58:1494–1496. doi:10.1103/PhysRevLett.58.1494

    Article  ADS  Google Scholar 

  • Blair WP (2005) Kepler’s supernova remnant: the view at 400 years. In: Turatto M, Benetti S, Zampieri L, Shea W (eds) 1604–2004: supernovae as cosmological lighthouses. Astronomical society of the pacific conference series, vol 342, p 416

    Google Scholar 

  • Blandford RD, Ostriker JP (1978) Particle acceleration by astrophysical shocks. Astrophys J 221:L29–L32. doi:10.1086/182658

    Article  ADS  Google Scholar 

  • Blasi P, Gabici S, Vannoni G (2005) On the role of injection in kinetic approaches to non-linear particle acceleration at non-relativistic shock waves. Mon Not R Astron Soc 361:907–918. doi:10.1111/j.1365-2966.2005.09227.x, arXiv:astro-ph/0505351

    Article  ADS  Google Scholar 

  • Bleeker JAM et al. (2001) Cassiopeia A: on the origin of the hard X-ray continuum and the implication of the observed O VIII Ly-α/Ly-β distribution. Astron Astrophys 365:L225–L230. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001A%26A...365L.225B&db_key=AST

    Article  ADS  Google Scholar 

  • Blondin JM, Mezzacappa A (2007) Pulsar spins from an instability in the accretion shock of supernovae. Nature 445:58–60. doi:10.1038/nature05428, arXiv:astro-ph/0611680

    Article  ADS  Google Scholar 

  • Blondin JM, Mezzacappa A, DeMarino C (2003) Stability of standing accretion shocks, with an eye toward core-collapse supernovae. Astrophys J 584:971–980. doi:10.1086/345812, arXiv:astro-ph/0210634

    Article  ADS  Google Scholar 

  • Bocchino F, Vink J, Favata F, Maggio A, Sciortino S (2000) A BeppoSAX and ROSAT view of the RCW86 supernova remnant. Astron Astrophys 360:671–682. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2000A%26A...360..671B&db_key=AST

    ADS  Google Scholar 

  • Bocchino F, Miceli M, Troja E (2009) On the metal abundances inside mixed-morphology supernova remnants: the case of IC 443 and G166.0+4.3. Astron Astrophys 498:139–145. doi:10.1051/0004-6361/200810742, arXiv:0901.3228

    Article  ADS  Google Scholar 

  • Böhringer H, Werner N (2009) X-ray spectroscopy of galaxy clusters: studying astrophysical processes in the largest celestial laboratories. Astron Astrophys Rev p 11. doi:10.1007/s00159-009-0023-3

    MATH  Google Scholar 

  • Bookbinder J (2010) The international X-ray observatory—RFI#1. e-prints arXiv:1001.2329

  • Borkowski KJ, Szymkowiak AE (1997) X-ray emission from dust in hot plasmas. Astrophys J 477:L49. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1997ApJ...477L..49B&db_key=AST

    Article  ADS  Google Scholar 

  • Borkowski KJ, Sarazin CL, Blondin JM (1994) On the X-ray spectrum of Kepler’s supernova remnant. Astrophys J 429:710–725. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1994ApJ...429..710B&db_key=AST

    Article  ADS  Google Scholar 

  • Borkowski KJ, Lyerly WJ, Reynolds SP (2001a) Supernova remnants in the Sedov expansion phase: thermal X-ray emission. Astrophys J 548:820–835. doi:10.1086/319011

    Article  ADS  Google Scholar 

  • Borkowski KJ, Rho J, Reynolds SP, Dyer KK (2001b) Thermal and nonthermal X-ray emission in supernova remnant RCW 86. Astrophys J 550:334–345. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001ApJ...550..334B&db_key=AST

    Article  ADS  Google Scholar 

  • Borkowski KJ, Hendrick SP, Reynolds SP (2006) Dense, Fe-rich ejecta in supernova remnants DEM L238 and DEM L249: a new class of Type Ia supernova? Astrophys J 652:1259–1267. doi:10.1086/508335, arXiv:astro-ph/0608297

    Article  ADS  Google Scholar 

  • Borkowski KJ, Hendrick SP, Reynolds SP (2007) X-ray-emitting ejecta of supernova remnant N132D. Astrophys J 671:L45–L48. doi:10.1086/524733, arXiv:0711.3140

    Article  ADS  Google Scholar 

  • Borkowski KJ, Reynolds SP, Green DA, Hwang U, Petre R, Krishnamurthy K, Willett R (2010) Radioactive scandium in the youngest galactic supernova remnant G1.9+0.3. Astrophys J 724:L161–L165. doi:10.1088/2041-8205/724/2/L161, arXiv:1006.3552

    Article  ADS  Google Scholar 

  • Boumis P, Meaburn J, López JA, Mavromatakis F, Redman MP, Harman DJ, Goudis CD (2004) The kinematics of the bi-lobal supernova remnant G 65.3+5.7. II. Astron Astrophys 424:583–588. doi:10.1051/0004-6361:20040410, arXiv:astro-ph/0405350

    Article  ADS  Google Scholar 

  • Branch D, Buta R, Falk SW, McCall ML, Uomoto A, Wheeler JC, Wills BJ, Sutherland PG (1982) Interpretation of the maximum light spectrum of a Type I supernova. Astrophys J 252:L61–L64. doi:10.1086/183720

    Article  ADS  Google Scholar 

  • Broersen S, Vink J, Raymond JC, Kaastra J (2011) Astron Astrophys 1:1–5. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1987A%26A...171..233B&db_key=AST

    Google Scholar 

  • Brun F, de Naurois M, Hofmann W, Carrigan S, Djannati-Ataï A, Ohm S (for the HESS Collaboration) (2011) Discovery of VHE gamma-ray emission from the W49 region with HESS e-prints arXiv:1104.5003

  • Burrows CJ, Krist J, Hester JJ, Sahai R, Trauger JT, Stapelfeldt KR, Gallagher JS III, Ballester GE, Casertano S, Clarke JT, Crisp D, Evans RW, Griffiths RE, Hoessel JG, Holtzman JA, Mould JR, Scowen PA, Watson AM, Westphal JA (1995) Hubble space telescope observations of the SN 1987A triple ring nebula. Astrophys J 452:680. doi:10.1086/176339

    Article  ADS  Google Scholar 

  • Burrows A, Livne E, Dessart L, Ott CD, Murphy J (2007) Features of the acoustic mechanism of core-collapse supernova explosions. Astrophys J 655:416–433. doi:10.1086/509773

    Article  ADS  Google Scholar 

  • Burrows DN et al. (2000) The X-ray remnant of SN 1987A. Astrophys J 543:L149–L152

    Article  ADS  Google Scholar 

  • Bykov AM (2004) Shocks and particle acceleration in SNRs: theoretical aspects. Adv Space Res 33:366–375

    Article  ADS  Google Scholar 

  • Bykov AM, Fleishman GD (1992) On non-thermal particle generation in superbubbles. Mon Not R Astron Soc 255:269–275

    ADS  Google Scholar 

  • Bykov AM, Uvarov YA (1999) Electron kinetics in collisionless shock waves. Sov Phys JETP 88:465–475. doi:10.1134/1.558817

    Article  ADS  Google Scholar 

  • Bykov AM, Chevalier RA, Ellison DC, Uvarov YA (2000) Nonthermal emission from a supernova remnant in a molecular cloud. Astrophys J 538:203–216. doi:10.1086/309103, arXiv:astro-ph/0003235

    Article  ADS  Google Scholar 

  • Bykov AM, Paerel FBS, Petrosian V (2008a) Equilibration processes in the warm-hot intergalactic medium. Space Sci. Rev. 134:141–153. arXiv:0801.1008

    Article  ADS  Google Scholar 

  • Bykov AM, Uvarov YA, Ellison DC (2008b) Dots, clumps, and filaments: the intermittent images of synchrotron emission in random magnetic fields of young supernova remnants. Astrophys J 689:L133–L136. doi:10.1086/595868, arXiv:0811.2498

    Article  ADS  Google Scholar 

  • Canizares CR, Flanagan KA, Davis DS, Dewey D, Houck JC (2001) High resolution spectroscopy of two oxygen-rich SNRs with the Chandra HETG. In: Giacconi R, Serio S, Stella L (eds) X-ray astronomy 2000. Astronomical society of the pacific conference series, vol 234, p 173. arXiv:astro-ph/0105060

    Google Scholar 

  • Canizares CR et al. (2005) The Chandra high-energy transmission grating: design, fabrication, ground calibration, and 5 years in flight. Publ Astron Soc Pac 117:1144–1171. doi:10.1086/432898, arXiv:astro-ph/0507035

    Article  ADS  Google Scholar 

  • Caprioli D, Blasi P, Amato E, Vietri M (2008) Dynamical effects of self-generated magnetic fields in cosmic-ray-modified shocks. Astrophys J 679:L139–L142. doi:10.1086/589505, arXiv:0804.2884

    Article  ADS  Google Scholar 

  • Cargill PJ, Papadopoulos K (1988) A mechanism for strong shock electron heating in supernova remnants. Astrophys J 329:L29–L32. doi:10.1086/185170

    Article  ADS  Google Scholar 

  • Carlton AK, Borkowski KJ, Reynolds SP, Hwang U, Petre R, Green DA, Krishnamurthy K, Willett R (2011) Expansion of the youngest galactic supernova remnant G1.9+0.3. e-prints arXiv:1106.4498

  • Cassam-Chenaï G, Hughes JP, Ballet J, Decourchelle A (2007) The blast wave of Tycho’s supernova remnant. Astrophys J 665:315–340. doi:10.1086/518782, arXiv:astro-ph/0703239

    Article  ADS  Google Scholar 

  • Cassam-Chenaï G, Hughes JP, Reynoso EM, Badenes C, Moffett D (2008) Morphological evidence for azimuthal variations of the cosmic-ray ion acceleration at the blast wave of SN 1006. Astrophys J 680:1180–1197. doi:10.1086/588015, arXiv:0803.0805

    Article  ADS  Google Scholar 

  • Cassam-Chenaï G et al. (2004) XMM-Newton observation of Kepler’s supernova remnant. Astron Astrophys 414:545–558

    Article  ADS  Google Scholar 

  • Castro D, Slane P (2010) Fermi large area telescope observations of supernova remnants interacting with molecular clouds. Astrophys J 717:372–378. doi:10.1088/0004-637X/717/1/372, arXiv:1002.2738

    Article  ADS  Google Scholar 

  • Charles PA, Kahn SM, McKee CF (1985) Einstein observations of selected regions of the Cygnus Loop. Astrophys J 295:456–462. doi:10.1086/163388

    Article  ADS  Google Scholar 

  • Chen Y, Seward FD, Sun M, Li J (2008) The thermal composite supernova remnant Kesteven 27 as viewed by Chandra: shock reflection from a Cavity Wall. Astrophys J 676:1040–1049. doi:10.1086/525240, arXiv:0711.0515

    Article  ADS  Google Scholar 

  • Chevalier RA (1982) Self-similar solutions for the interaction of stellar ejecta with an external medium. Astrophys J 258:790–797. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1982ApJ...258..790C&db_key=AST

    Article  ADS  Google Scholar 

  • Chevalier RA (1990) Supernovae. Springer, Berlin

    Google Scholar 

  • Chevalier RA (2005) Young core-collapse supernova remnants and their supernovae. Astrophys J 619:839–855. doi:10.1086/426584, arXiv:astro-ph/0409013

    Article  ADS  Google Scholar 

  • Chevalier RA (2010) Neutron stars in supernovae and their remnants. e-prints arXiv:1011.3731

  • Chevalier RA, Oishi J (2003) Cassiopeia A and its clumpy presupernova wind. Astrophys J 593:L23–L26

    Article  ADS  Google Scholar 

  • Chevalier RA, Kirshner RP, Raymond JC (1980) The optical emission from a fast shock wave with application to supernova remnants. Astrophys J 235:186–195. doi:10.1086/157623

    Article  ADS  Google Scholar 

  • Chieffi A, Limongi M (2004) Explosive yields of massive stars from Z=0 to Z=Z solar. Astrophys J 608:405–410. doi:10.1086/392523, arXiv:astro-ph/0402625

    Article  ADS  Google Scholar 

  • Chiotellis A, Schure KM, Vink J (2011) The imprint of a symbiotic binary progenitor on the properties of Kepler’s supernova remnant. Astron Astrophys (in press). doi:10.1051/0004-6361/2010147, e-prints arXiv:1103.5487

  • Claussen MJ, Frail DA, Goss WM, Gaume RA (1997) Polarization observations of 1720 MHz OH masers toward the three supernova remnants W28, W44, and IC 443. Astrophys J 489:143. doi:10.1086/304784, arXiv:astro-ph/9706067

    Article  ADS  Google Scholar 

  • Clayton DD, Silk J (1969) Measuring the rate of nucleosynthesis with a gamma-ray detector. Astrophys J 158:L43–L48

    Article  ADS  Google Scholar 

  • Cook WR et al. (1988) An imaging observation of SN 1987A at gamma-ray energies. Astrophys J 334:L87–L90

    Article  ADS  Google Scholar 

  • Cowie LL, McKee CF (1977) The evaporation of spherical clouds in a hot gas. I—Classical and saturated mass loss rates. Astrophys J 211:135–146. doi:10.1086/154911

    Article  ADS  Google Scholar 

  • Cox DP, Shelton RL, Maciejewski W, Smith RK, Plewa T, Pawl A, Rózyczka M (1999) Modeling W44 as a supernova remnant in a density gradient with a partially formed dense shell and thermal conduction in the hot interior. I. The analytical model. Astrophys J 524:179–191. doi:10.1086/307781

    Article  ADS  Google Scholar 

  • Crotts APS, Kunkel WE, McCarthy PJ (1989) Light echoes and transient luminescence near SN 1987A. Astrophys J 347:L61–L64. doi:10.1086/185608

    Article  ADS  Google Scholar 

  • Cui W, Cox DP (1992) Two-temperature models of old supernova remnants with ion and electron thermal conduction. Astrophys J 401:206–219. doi:10.1086/172053

    Article  ADS  Google Scholar 

  • Davidson K, Humphreys RM (1997) Eta Carinae and its environment. Annu Rev Astron Astrophys 35:1–32. doi:10.1146/annurev.astro.35.1.1

    Article  ADS  Google Scholar 

  • Davies B, Figer DF, Kudritzki R, Trombley C, Kouveliotou C, Wachter S (2009) The progenitor mass of the magnetar SGR1900+14. Astrophys J 707:844–851. doi:10.1088/0004-637X/707/1/844, arXiv:0910.4859

    Article  ADS  Google Scholar 

  • de Luca A (2008) Central compact objects in supernova remnants. In: Bassa C, Wang Z, Cumming A, Kaspi VM (eds) 40 Years of pulsars: millisecond pulsars. Magnetars and more, American institute of physics conference series, vol 983, pp 311–319. doi:10.1063/1.2900173, arXiv:0712.2209

    Google Scholar 

  • De Luca A, Caraveo PA, Mereghetti S, Tiengo A, Bignami GF (2006) A long-period, violently variable X-ray source in a young supernova remnant. Science 313:814–817. doi:10.1126/science.1129185, arXiv:astro-ph/0607173

    Article  ADS  Google Scholar 

  • Decourchelle A, Ellison DC, Ballet J (2000) Thermal X-ray emission and cosmic-ray production in young supernova remnants. Astrophys J 543:L57–L60. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2000ApJ...543L..57D&db_key=AST

    Article  ADS  Google Scholar 

  • Decourchelle A et al. (2001) XMM-Newton observation of the Tycho supernova remnant. Astron Astrophys 365:L218–L224

    Article  ADS  Google Scholar 

  • Delaney T, Rudnick L (2003) The first measurement of Cassiopeia A’s forward shock expansion rate. Astrophys J 589:818

    Article  ADS  Google Scholar 

  • DeLaney T, Rudnick L, Stage MD, Smith JD, Isensee K, Rho J, Allen GE, Gomez H, Kozasa T, Reach WT, Davis JE, Houck JC (2010) The three-dimensional structure of Cassiopeia A. Astrophys J 725:2038–2058. doi:10.1088/0004-637X/725/2/2038, arXiv:1011.3858

    Article  ADS  Google Scholar 

  • den Herder JW et al. (2001) The reflection grating spectrometer on board XMM-Newton. Astron Astrophys 365:L7–L17. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001A%26A...365L...7D&db_key=AST

    Article  ADS  Google Scholar 

  • Dewey D (2002) Extended source analysis for grating spectrometers. In: Branduardi-Raymont G (ed) High resolution X-ray spectroscopy with XMM-Newton and Chandra

    Google Scholar 

  • Dewey D, Delaney T, Lazendic JS (2007) Cas A: the bright X-ray knots and oxygen emission. In: Rev. Mex. Astron. Astrofis. Conference Series, vol 30, pp 84–89

    Google Scholar 

  • Dewey D, Zhekov SA, McCray R, Canizares CR (2008) Chandra HETG spectra of SN 1987A at 20 years. Astrophys J 676:L131–L134. doi:10.1086/587549, arXiv:0802.2340

    Article  ADS  Google Scholar 

  • Dickel JR, Sault R, Arendt RG, Korista KT, Matsui Y (1988) The evolution of the radio emission from Kepler’s supernova remnant. Astrophys J 330:254–263. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1988ApJ...330..254D&db_key=AST

    Article  ADS  Google Scholar 

  • Dieckmann ME, Bret A (2009) Particle-in-cell simulation of a strong double layer in a nonrelativistic plasma flow: electron acceleration to ultrarelativistic speeds. Astrophys J 694:154–164. doi:10.1088/0004-637X/694/1/154

    Article  ADS  Google Scholar 

  • Diehl R, Timmes FX (1998) Gamma-ray line emission from radioactive isotopes in stars and galaxies. Publ Astron Soc Pac 110:637–659

    Article  ADS  Google Scholar 

  • Dodson R, Legge D, Reynolds JE, McCulloch PM (2003) The Vela Pulsar’s proper motion and parallax derived from VLBI observations. Astrophys J 596:1137–1141. doi:10.1086/378089, arXiv:astro-ph/0302374

    Article  ADS  Google Scholar 

  • Dopita MA, Tuohy IR, Mathewson DS (1981) An oxygen-rich young supernova remnant in the Small Magellanic Cloud. Astrophys J 248:L105–L108. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1981ApJ...248L.105D&db_key=AST

    Article  ADS  Google Scholar 

  • Dotani T, Hayashida K, Inoue H, Itoh M, Koyama K (1987) Discovery of an unusual hard X-ray source in the region of supernova 1987A. Nature 330:230. doi:10.1038/330230a0

    Article  ADS  Google Scholar 

  • Drury LO, Duffy P, Kirk JG (1996) Limits on diffusive shock acceleration in dense and incompletely ionised media. Astron Astrophys 309:1002–1010. arXiv:astro-ph/9510066

    ADS  Google Scholar 

  • Drury L, Aharonian FA, Malyshev D, Gabici S (2009) On the plasma temperature in supernova remnants with cosmic-ray modified shocks. Astron Astrophys 496:1–6. doi:10.1051/0004-6361/200811394, arXiv:0811.3566

    Article  MATH  ADS  Google Scholar 

  • Dubner GM, Velázquez PF, Goss WM, Holdaway MA (2000) High-resolution VLA imaging of the supernova remnant W28 at 328 and 1415 MHz. Astron J 120:1933–1945. doi:10.1086/301583

    Article  ADS  Google Scholar 

  • Duncan RC, Thompson C (1992) Formation of very strongly magnetized neutron stars—implications for gamma-ray bursts. Astrophys J 392:L9–L13

    Article  ADS  Google Scholar 

  • Durant M, van Kerkwijk MH (2006) Distances to anomalous X-ray pulsars using red clump stars. Astrophys J 650:1070–1081. doi:10.1086/506380, arXiv:astro-ph/0606027

    Article  ADS  Google Scholar 

  • Dwarkadas VV (2005) The evolution of supernovae in circumstellar wind-blown bubbles. I. Introduction and one-dimensional calculations. Astrophys J 630:892–910. doi:10.1086/432109

    Article  ADS  Google Scholar 

  • CTA Consortium T (2010) Design concepts for the Cherenkov telescope array. e-prints arXiv:1008.3703

  • Elias JH, Matthews K, Neugebauer G, Persson SE (1985) Type I supernovae in the infrared and their use as distance indicators. Astrophys J 296:379–389. doi:10.1086/163456

    Article  ADS  Google Scholar 

  • Ellison DC, Patnaude DJ, Slane P, Raymond J (2010) Efficient cosmic ray acceleration, hydrodynamics, and self-consistent thermal X-ray emission applied to supernova remnant RX J1713.7-3946. Astrophys J 712:287–293. doi:10.1088/0004-637X/712/1/287, arXiv:1001.1932

    Article  ADS  Google Scholar 

  • Esposito JA, Hunter SD, Kanbach G, Sreekumar P (1996) EGRET observations of radio-bright supernova remnants. Astrophys J 461:820. doi:10.1086/177104

    Article  ADS  Google Scholar 

  • Favata F et al. (1997) The broad-band X-ray spectrum of the Cas A supernova remnant as seen by the BeppoSAX observatory. Astron Astrophys 324:L49–L52. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1997A%26A...324L..49F&db_key=AST

    ADS  Google Scholar 

  • Ferrario L, Wickramasinghe D (2006) Modelling of isolated radio pulsars and magnetars on the fossil field hypothesis. Mon Not R Astron Soc 367:1323–1328. doi:10.1111/j.1365-2966.2006.10058.x

    Article  ADS  Google Scholar 

  • Fesen RA, Hammell MC, Morse J, Chevalier RA, Borkowski KJ, Dopita MA, Gerardy CL, Lawrence SS, Raymond JC, van den Bergh S (2006) The expansion asymmetry and age of the Cassiopeia A supernova remnant. Astrophys J 645:283–292. doi:10.1086/504254, arXiv:astro-ph/0603371

    Article  ADS  Google Scholar 

  • Figer DF, Najarro F, Geballe TR, Blum RD, Kudritzki RP (2005) Massive stars in the SGR 1806-20 cluster. Astrophys J 622:L49–L52. doi:10.1086/429159, arXiv:astro-ph/0501560

    Article  ADS  Google Scholar 

  • Fink M, Röpke FK, Hillebrandt W, Seitenzahl IR, Sim SA, Kromer M (2010) Double-detonation sub-Chandrasekhar supernovae: can minimum helium shell masses detonate the core? Astron Astrophys 514:A53. doi:10.1051/0004-6361/200913892, arXiv:1002.2173

    Article  ADS  Google Scholar 

  • Flanagan KA, Canizares CR, Dewey D, Houck JC, Fredericks AC, Schattenburg ML, Markert TH, Davis DC (2004) Chandra high-resolution X-ray spectrum of supernova remnant 1E 0102.2-7219. Astrophys J 605:230–246. doi:10.1086/382145

    Article  ADS  Google Scholar 

  • Frail DA, Mitchell GF (1998) OH (1720 MHz) masers as signposts of molecular shocks. Astrophys J 508:690–695. doi:10.1086/306452, arXiv:astro-ph/9807011

    Article  ADS  Google Scholar 

  • Frail DA, Goss WM, Reynoso EM, Giacani EB, Green AJ, Otrupcek R (1996) A Survey for OH (1720 MHz) maser emission toward supernova remnants. Astron J 111:1651. doi:10.1086/117904

    Article  ADS  Google Scholar 

  • Fransson C, Björnsson CI (1998) Radio emission and particle acceleration in SN 1993J. Astrophys J 509:861–878. doi:10.1086/306531, arXiv:astro-ph/9807030

    Article  ADS  Google Scholar 

  • Fransson C, Cassatella A, Gilmozzi R, Kirshner RP, Panagia N, Sonneborn G, Wamsteker W (1989) Narrow ultraviolet emission lines from SN 1987A—evidence for CNO processing in the progenitor. Astrophys J 336:429–441. doi:10.1086/167022

    Article  ADS  Google Scholar 

  • Furuzawa A, Ueno D, Hayato A, Ozawa M, Tamagawa T, Bamba A, Hughes JP, Kunieda H, Makishima K, Holt SS, Hwang U, Kinugasa K, Petre R, Tamura K, Tsunemi H, Yamauchi S (2009) Doppler-broadened iron X-ray lines from Tycho’s supernova remnant. Astrophys J 693:L61–L65. doi:10.1088/0004-637X/693/2/L61, arXiv:0902.3049

    Article  ADS  Google Scholar 

  • Gabriel AH, Jordan C (1969) Interpretation of solar helium-like ion line intensities. Mon Not R Astron Soc 145:241

    ADS  Google Scholar 

  • Gaensler BM, Slane PO (2006) The evolution and structure of pulsar wind nebulae. Annu Rev Astron Astrophys 44:17–47. doi:10.1146/annurev.astro.44.051905.092528, arXiv:astro-ph/0601081

    Article  ADS  Google Scholar 

  • Gaensler BM, Wallace BJ (2003) A multifrequency radio study of supernova remnant G292.0+1.8 and its pulsar wind nebula. Astrophys J 594:326–339

    Article  ADS  Google Scholar 

  • Gaensler BM, McClure-Griffiths NM, Oey MS, Haverkorn M, Dickey JM, Green AJ (2005) A stellar wind bubble coincident with the anomalous X-ray pulsar 1E 1048.1-5937: are magnetars formed from massive progenitors? Astrophys J 620:L95–L98. doi:10.1086/428725, arXiv:astro-ph/0501563

    Article  ADS  Google Scholar 

  • Gaetz TJ, Butt YM, Edgar RJ, Eriksen KA, Plucinsky PP, Schlegel EM, Smith RK (2000) Chandra X-ray observatory arcsecond imaging of the young, oxygen-rich supernova remnant 1E 0102.2-7219. Astrophys J 534:L47–L50. doi:10.1086/312640, arXiv:astro-ph/0003355

    Article  ADS  Google Scholar 

  • Galama TJ, Vreeswijk PM, van Paradijs J et al. (1998) An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395:670–672. doi:10.1038/27150, arXiv:astro-ph/9806175

    Article  ADS  Google Scholar 

  • Garmire GP, Pavlov GG, Garmire AB, Zavlin VE (2000) 1E 161348-5055. IAU Circ 7350:2

    ADS  Google Scholar 

  • Garnavich PM et al. (1998) Supernova limits on the cosmic equation of state. Astrophys J 509:74–79. doi:10.1086/306495, arXiv:astro-ph/9806396

    Article  ADS  Google Scholar 

  • Gelfand JD, Gaensler BM (2007) The compact X-ray source 1E 1547.0-5408 and the radio shell G327.24-0.13: a new proposed association between a candidate magnetar and a candidate supernova remnant. Astrophys J 667:1111–1118. doi:10.1086/520526, arXiv:0706.1054

    Article  ADS  Google Scholar 

  • Ghavamian P, Raymond J, Smith RC, Hartigan P (2001) Balmer-dominated spectra of nonradiative shocks in the Cygnus Loop, RCW 86, and Tycho supernova remnants. Astrophys J 547:995–1009. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001ApJ...547..995G&db_key=AST

    Article  ADS  Google Scholar 

  • Ghavamian P, Winkler PF, Raymond JC, Long KS (2002) The optical spectrum of the SN 1006 supernova remnant revisited. Astrophys J 572:888–896. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002ApJ...572..888G&db_key=AST

    Article  ADS  Google Scholar 

  • Ghavamian P, Rakowski CE, Hughes JP, Williams TB (2003) The physics of supernova blast waves. I. Kinematics of DEM L71 in the large magellanic cloud. Astrophys J 590:833–845

    Article  ADS  Google Scholar 

  • Ghavamian P, Laming JM, Rakowski CE (2007) A physical relationship between electron–proton temperature equilibration and Mach number in fast collisionless shocks. Astrophys J 654:L69–L72. doi:10.1086/510740, arXiv:astro-ph/0611306

    Article  ADS  Google Scholar 

  • Ginzburg VL, Syrovatskii SI (1965) Cosmic magnetobremsstrahlung (synchrotron Radiation). Annu Rev Astron Astrophys 3:297. doi:10.1146/annurev.aa.03.090165.001501

    Article  ADS  Google Scholar 

  • Ginzburg VL, Syrovatskii SI (1969) The origin of cosmic rays. Gordon and Breach, New York

    Google Scholar 

  • Ginzburg VL, Syrovatskij SI (1967) Cosmic rays in the galaxy (Introductory Report). In: van Woerden H (ed) Radio astronomy and the galactic system. IAU symposium, vol 31, p 411

    Google Scholar 

  • Gonzalez M, Safi-Harb S (2003) New constraints on the energetics, progenitor mass, and age of the supernova remnant G292.0+1.8 containing PSR J1124-5916. Astrophys J 583:L91–L94

    Article  ADS  Google Scholar 

  • Goss WM, Shaver PA, Zealey WJ, Murdin P, Clark DH (1979) Optical identification and spectrum of the supernova remnant G292.0+1.8. Mon Not R Astron Soc 188:357–363

    ADS  Google Scholar 

  • Gotthelf EV, Halpern JP (2007) Precise timing of the X-ray pulsar 1E 1207.4-5209: a steady neutron star weakly magnetized at birth. Astrophys J 664:L35–L38. doi:10.1086/520637, arXiv:0704.2255

    Article  ADS  Google Scholar 

  • Gotthelf EV, Halpern JP (2008) CCO pulsars as anti-magnetars: evidence of neutron stars weakly magnetized at birth. In: Bassa C, Wang Z, Cumming A, Kaspi VM (eds) 40 Years of pulsars: millisecond pulsars, magnetars and more. American institute of physics conference series, vol 983, pp 320–324. doi:10.1063/1.2900174, arXiv:0711.1554

    Google Scholar 

  • Gotthelf EV, Halpern JP (2009) Discovery of a 112 ms X-ray pulsar in Puppis A: further evidence of neutron stars weakly magnetized at birth. Astrophys J 695:L35–L39. doi:10.1088/0004-637X/695/1/L35, arXiv:0902.3007

    Article  ADS  Google Scholar 

  • Gotthelf EV, Petre R, Vasisht G (1999) X-ray variability from the compact source in the supernova remnant RCW 103. Astrophys J 514:L107–L110. doi:10.1086/311948

    Article  ADS  Google Scholar 

  • Gotthelf EV et al. (2001) Chandra detection of the forward and reverse shocks in Cassiopeia A. Astrophys J 552:L39–L43. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001ApJ...552L..39G&db_key=AST

    Article  ADS  Google Scholar 

  • Gotthelf EV, Halpern JP, Seward FD (2005) Discovery of a 105 ms X-ray pulsar in Kesteven 79: on the nature of compact central objects in supernova remnants. Astrophys J 627:390–396. doi:10.1086/430300, arXiv:astro-ph/0503424

    Article  ADS  Google Scholar 

  • Green AJ, Frail DA, Goss WM, Otrupcek R (1997) Continuation of a survey of OH (1720 MHz) maser emission towards supernova remnants. Astron J 114:2058. doi:10.1086/118626

    Article  ADS  Google Scholar 

  • Green DA (2009) A revised galactic supernova remnant catalogue. Bull Astron Soc India 37:45–61

    ADS  Google Scholar 

  • Hachisu I, Kato M, Nomoto K (1996) A new model for progenitor systems of Type IA supernovae. Astrophys J 470:L97. doi:10.1086/310303

    Article  ADS  Google Scholar 

  • Hachisu I, Kato M, Nomoto K (1999) A wide symbiotic channel to Type IA supernovae. Astrophys J 522:487–503. doi:10.1086/307608, arXiv:astro-ph/9902304

    Article  ADS  Google Scholar 

  • Hamilton AJS, Chevalier RA, Sarazin CL (1983) X-ray line emission from supernova remnants. I—Models for adiabatic remnants. Astrophys J Suppl Ser 51:115–147. doi:10.1086/190841

    Article  ADS  Google Scholar 

  • Hamilton AJS, Sarazin CL, Szymkowiak AE (1986) The X-ray spectrum of SN 1006. Astrophys J 300:698–712. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1986ApJ...300..698H&db_key=AST

    Article  ADS  Google Scholar 

  • Hamilton AJS, Fesen RA, Blair WP (2007) A high-resolution ultraviolet absorption spectrum of supernova ejecta in SN 1006. Mon Not R Astron Soc 381:771–778. doi:10.1111/j.1365-2966.2007.12264.x, arXiv:astro-ph/0602553

    Article  ADS  Google Scholar 

  • Hamuy M, Phillips MM, Suntzeff NB, Maza J, González LE, Roth M, Krisciunas K, Morrell N, Green EM, Persson SE, McCarthy PJ (2003) An asymptotic-giant-branch star in the progenitor system of a type Ia supernova. Nature 424:651–654. arXiv:astro-ph/0306270

    Article  ADS  Google Scholar 

  • Hasinger G, Aschenbach B, Truemper J (1996) The X-ray lightcurve of SN 1987A. Astron Astrophys 312:L9–L12. arXiv:astro-ph/9606149

    ADS  Google Scholar 

  • Hayato A, Yamaguchi H, Tamagawa T, Katsuda S, Hwang U, Hughes JP, Ozawa M, Bamba A, Kinugasa K, Terada Y, Furuzawa A, Kunieda H, Makishima K (2010) Expansion velocity of ejecta in Tycho’s supernova remnant measured by Doppler broadened X-ray line emission. Astrophys J 725:894–903. doi:10.1088/0004-637X/725/1/894, arXiv:1009.6031

    Article  ADS  Google Scholar 

  • Heger A, Fryer CL, Woosley SE, Langer N, Hartmann DH (2003) How massive single stars end their life. Astrophys J 591:288–300

    Article  ADS  Google Scholar 

  • Heinke CO, Ho WCG (2010) Direct observation of the cooling of the Cassiopeia A neutron star. Astrophys J 719:L167–L171. doi:10.1088/2041-8205/719/2/L167, arXiv:1007.4719

    Article  ADS  Google Scholar 

  • Helder EA, Vink J (2008) Characterizing the nonthermal emission of Cassiopeia A. Astrophys J 686:1094–1102. doi:10.1086/591242

    Article  ADS  Google Scholar 

  • Helder EA, Kosenko D, Vink J (2010) Cosmic-ray acceleration efficiency versus temperature equilibration: the case of SNR 0509-67.5. Astrophys J 719:L140–L144. doi:10.1088/2041-8205/719/2/L140, arXiv:1007.3138

    Article  ADS  Google Scholar 

  • Helder EA, Vink J, Bassa CG (2011) Temperature equilibration behind the shock front: an optical and X-ray study of RCW 86. Astrophys J 737:85. doi:10.1088/0004-637X/737/2/85, arXiv:1106.0303

    Article  ADS  Google Scholar 

  • Helder EA et al. (2009) Measuring the cosmic-ray acceleration efficiency of a supernova remnant. Science 325:719–722

    Article  ADS  Google Scholar 

  • Helfand DJ, Becker RH (1984) Observation of stellar remnants from recent supernovae. Nature 307:215–221. doi:10.1038/307215a0

    Article  ADS  Google Scholar 

  • Helfand DJ, Gotthelf EV, Halpern JP (2001) Vela pulsar and its synchrotron nebula. Astrophys J 556:380–391. doi:10.1086/321533, arXiv:astro-ph/0007310

    Article  ADS  Google Scholar 

  • Helfand DJ, Collins BF, Gotthelf EV (2003) Chandra X-ray imaging spectroscopy of the young supernova remnant Kesteven 75. Astrophys J 582:783–792. doi:10.1086/344725, arXiv:astro-ph/0209348

    Article  ADS  Google Scholar 

  • Hendrick SP, Borkowski KJ, Reynolds SP (2003) Ejecta detection in middle-aged large magellanic cloud supernova remnants 0548-70.4 and 0534-69.9. Astrophys J 593:370–376. doi:10.1086/376356

    Article  ADS  Google Scholar 

  • Hendrick SP, Reynolds SP, Borkowski KJ (2005) An Fe-Ni bubble in the small magellanic cloud supernova remnant B0049-73.6. Astrophys J 622:L117–L120. doi:10.1086/429862

    Article  ADS  Google Scholar 

  • Heng K (2010) Balmer-dominated shocks: a concise review. Publ Astron Soc Aust 27:23–44. doi:10.1071/AS09057, arXiv:0908.4080

    Article  ADS  Google Scholar 

  • Heng K, Haberl F, Aschenbach B, Hasinger G (2008) Probing elemental abundances in SNR 1987A using XMM-Newton. Astrophys J 676:361–370. doi:10.1086/526517, arXiv:0710.3682

    Article  ADS  Google Scholar 

  • Hester JJ (2008) The Crab nebula: an astrophysical chimera. Annu Rev Astron Astrophys 46:127–155. doi:10.1146/annurev.astro.45.051806.110608

    Article  ADS  Google Scholar 

  • Hines DC et al. (2004) Imaging of the supernova remnant Cassiopeia A with the multiband imaging photometer for spitzer (MIPS). Astrophys J Suppl Ser 154:290–295

    Article  ADS  Google Scholar 

  • Hinton JA, Hofmann W (2009) Teraelectronvolt astronomy. Annu Rev Astron Astrophys 47:523–565. doi:10.1146/annurev-astro-082708-101816

    Article  ADS  Google Scholar 

  • Hiraga JS, Uchiyama Y, Takahashi T, Aharonian FA (2005) Spectral properties of nonthermal X-ray emission from the shell-type SNR RX J1713.7 3946 as revealed by XMM-Newton. Astron Astrophys 431:953–961. doi:10.1051/0004-6361:20047015, arXiv:astro-ph/0407401

    Article  ADS  Google Scholar 

  • Hirata K, Kajita T, Koshiba M, Nakahata M, Oyama Y (1987) Observation of a neutrino burst from the supernova SN 1987A. Phys Rev Lett 58:1490–1493. doi:10.1103/PhysRevLett.58.1490

    Article  ADS  Google Scholar 

  • Holt SS, Gotthelf EV, Tsunemi H, Negoro H (1994) ASCA observations of Cassiopeia A. Publ Astron Soc Jpn 46:L151–L155

    ADS  Google Scholar 

  • Hörandel JR (2008) Cosmic-ray composition and its relation to shock acceleration by supernova remnants. Adv Space Res 41:442–463. doi:10.1016/j.asr.2007.06.008, arXiv:astro-ph/0702370

    Article  ADS  Google Scholar 

  • Horvath JE, Allen MP (2011) The supernova remnant CTB 37B and its associated magnetar CXOU J171405.7-381031: evidence for a magnetar-driven remnant. e-prints arXiv:1104.2875

  • Huba JD (2002) NRL plasma formulary

  • Hughes JP, Helfand DJ (1985) Self-consistent models for the X-ray emission from supernova remnants—an application to Kepler’s remnant. Astrophys J 291:544–560

    Article  ADS  Google Scholar 

  • Hughes JP, Singh KP (1994) Elemental abundances of the supernova remnant G292.0+1.8: Evidence for a massive progenitor. Astrophys J 422:126–135

    Article  ADS  Google Scholar 

  • Hughes JP, Hayashi I, Koyama K (1998) ASCA X-ray spectroscopy of large magellanic cloud supernova remnants and the metal abundances of the large magellanic cloud. Astrophys J 505:732–748. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1998ApJ...505..732H&db_key=AST

    Article  ADS  Google Scholar 

  • Hughes JP, Rakowski CE, Burrows DN, Slane PO (2000) Nucleosynthesis and mixing in Cassiopeia A. Astrophys J 528:L109–L113. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2000ApJ...528L.109H&db_key=AST

    Article  ADS  Google Scholar 

  • Hughes JP, Slane PO, Burrows DN, Garmire G, Nousek JA, Olbert CM, Keohane JW (2001) A pulsar wind nebula in the oxygen-rich supernova remnant G292.0+1.8. Astrophys J 559:L153–L156. doi:10.1086/323974, arXiv:astro-ph/0106031

    Article  ADS  Google Scholar 

  • Hughes JP, Ghavamian P, Rakowski CE, Slane PO (2003a) Iron-rich ejecta in the supernova remnant DEM L71. Astrophys J 582:L95–L99. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2003ApJ...582L..95H&db_key=AST

    Article  ADS  Google Scholar 

  • Hughes JP, Slane PO, Park S, Roming PWA, Burrows DN (2003b) An X-ray pulsar in the oxygen-rich supernova remnant G292.0+1.8. Astrophys J 591:L139–L142

    Article  ADS  Google Scholar 

  • Hughes JP, Badenes C, Bamba A, Blair W, Decourchelle A, Dewey D, Fryer C, Hwang U, Laming JM, Nomoto K, Park S, Patnaude D, Plucinsky P, Rudnick L, Slane P, Thielemann FK, Vink J, Winkler PF (2009) Formation of the elements. In: astro2010: the astronomy and astrophysics decadal survey. Astronomy, vol 2010, p 136

    Google Scholar 

  • Hughes JP et al. (1995) ASCA observations of the Large Magellanic Cloud supernova remnant sample: typing supernovae from their remnants. Astrophys J 444:L81–L84. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1995ApJ...444L..81H&db_key=AST

    Article  ADS  Google Scholar 

  • Hwang U, Gotthelf EV (1997) X-ray emission-line imaging and spectroscopy of Tycho’s supernova remnant. Astrophys J 475:665

    Article  ADS  Google Scholar 

  • Hwang U, Laming JM (2003) Where was the iron synthesized in Cassiopeia A? Astrophys J 597:362–373

    Article  ADS  Google Scholar 

  • Hwang U, Holt SS, Petre R (2000) Mapping the X-ray-emitting ejecta in Cassiopeia A with Chandra. Astrophys J 537:L119–L122. doi:10.1086/312776, arXiv:astro-ph/0005560

    Article  ADS  Google Scholar 

  • Hwang U, Petre R, Holt SS, Szymkowiak AE (2001) The thermal X-ray-emitting shell of large magellanic cloud supernova remnant 0540-69.3. Astrophys J 560:742–748. doi:10.1086/322962, arXiv:astro-ph/0106415

    Article  ADS  Google Scholar 

  • Hwang U, Decourchelle A, Holt SS, Petre R (2002) Thermal and nonthermal X-ray emission from the forward shock in Tycho’s supernova remnant. Astrophys J 581:1101–1115. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002ApJ...581.1101H&db_key=AST

    Article  ADS  Google Scholar 

  • Hwang U, Petre R, Flanagan KA (2008) X-ray-emitting ejecta in Puppis A observed with Suzaku. Astrophys J 676:378–389. doi:10.1086/528925, arXiv:0712.3208

    Article  ADS  Google Scholar 

  • Hwang U et al. (2004) A million second Chandra view of Cassiopeia A. Astrophys J 615:L117–L120. doi:10.1086/426186, arXiv:astro-ph/0409760

    Article  ADS  Google Scholar 

  • Itoh H (1977) Theoretical spectra of the thermal X-rays from young supernova remnants. Publ Astron Soc Jpn 29:813–830

    ADS  Google Scholar 

  • Itoh H (1978) Two-fluid blast-wave model for SNR. Publ Astron Soc Jpn 30:489–498

    ADS  Google Scholar 

  • Itoh H (1984) Temperature relaxation in supernova remnants, revisited. Astrophys J 285:601–606. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1984ApJ...285..601I&db_key=AST

    Article  ADS  Google Scholar 

  • Itoh H, Masai K (1989) The effect of a circumstellar medium on the X-ray emission of young remnants of Type II supernovae. Mon Not R Astron Soc 236:885–899

    ADS  Google Scholar 

  • Iwamoto K et al. (1999) Nucleosynthesis in Chandrasekhar mass models for Type IA supernovae and constraints on progenitor systems and burning-front propagation. Astrophys J Suppl Ser 125:439–462. doi:10.1086/313278

    Article  ADS  Google Scholar 

  • Iyudin AF, Schonfelder V, Bennett K, Bloemen H, Diehl R, Hermsen W, Lichti GG, van der Meulen RD, Ryan J, Winkler C (1998) Emission from 44Ti associated with a previously unknown Galactic supernova. Nature 396:142–144

    Article  ADS  Google Scholar 

  • Iyudin AF et al. (1994) COMPTEL observations of Ti-44 gamma-ray line emission from CAS A. Astron Astrophys 284:L1–L4. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1994A%26A...284L...1I&db_key=AST

    ADS  Google Scholar 

  • Janka HT, Langanke K, Marek A, Martínez-Pinedo G, Müller B (2007) Theory of core-collapse supernovae. Phys Rep 442:38–74. doi:10.1016/j.physrep.2007.02.002, arXiv:astro-ph/0612072

    Article  ADS  Google Scholar 

  • Jerkstrand A, Fransson C, Kozma C (2011) The 44Ti-powered spectrum of SN 1987A. Astron Astrophys 530:A45. doi:10.1051/0004-6361/201015937, arXiv:1103.3653

    Article  ADS  Google Scholar 

  • Jones TW, Rudnick L, Jun B, Borkowski KJ, Dubner G, Frail DA, Kang H, Kassim NE, McCray R (1998) 10^51 Ergs: the evolution of shell supernova remnants. Publ Astron Soc Pac 110:125–151. doi:10.1086/316122, arXiv:astro-ph/9710227

    Article  ADS  Google Scholar 

  • Joyce RM, Birsa FB, Holt SS, Noordzy MP, Becker RH (1978) The Goddard space flight center solid state spectrometer for the HEAO-B mission. IEEE Trans Nucl Sci 25:453–458. doi:10.1109/TNS.1978.4329347

    Article  ADS  Google Scholar 

  • Kaastra JS, Jansen FA (1993) A spectral code for X-ray spectra of supernova remnants. Astron Astrophys 97:873–885

    ADS  Google Scholar 

  • Kaastra JS, Mewe R (1995) Optical depth effects in the X-ray emission from supernova remnants. Astron Astrophys 302:L13. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1995A%26A...302L..13K&db_key=AST

    ADS  Google Scholar 

  • Kaastra JS, Mewe R, Raassen T (2003) New results on X-ray models and atomic data. Atomic data for X-ray astronomy, 25th meeting of the IAU, Joint Discussion 17, 22 July 2003, Sydney, Australia 17

  • Kaastra JS, Paerels FBS, Durret F, Schindler S, Richter P (2008) Thermal radiation processes. Space Sci Rev 134:155–190. doi:10.1007/s11214-008-9310-y, arXiv:0801.1011

    Article  ADS  Google Scholar 

  • Kahabka P, van den Heuvel EPJ (1997) Luminous supersoft X-ray sources. Annu Rev Astron Astrophys 35:69–100. doi:10.1146/annurev.astro.35.1.69

    Article  ADS  Google Scholar 

  • Kahn SM, Gorenstein P, Harnden FR Jr, Seward FD (1985) Einstein observations of the VELA supernova remnant—the spatial structure of the hot emitting gas. Astrophys J 299:821–827. doi:10.1086/163748

    Article  ADS  Google Scholar 

  • Kalemci E, Boggs SE, Milne PA, Reynolds SP (2006) Searching for annihilation radiation from SN 1006 with SPI on INTEGRAL. Astrophys J 640:L55–L57. doi:10.1086/503289, arXiv:astro-ph/0602233

    Article  ADS  Google Scholar 

  • Kallman TR, Palmeri P, Bautista MA, Mendoza C, Krolik JH (2004) Photoionization modeling and the K lines of iron. Astrophys J Suppl Ser 155:675–701. doi:10.1086/424039, arXiv:astro-ph/0405210

    Article  ADS  Google Scholar 

  • Kargaltsev O, Pavlov GG (2008) Pulsar wind nebulae in the Chandra era. In: Bassa C, Wang Z, Cumming A, Kaspi VM (eds) 40 Years of pulsars: millisecond pulsars, magnetars and more. AIP conf. series, vol 983, pp 171–185. doi:10.1063/1.2900138

    Google Scholar 

  • Kaspi VM (1998) Radio pulsar/supernova remnant associations. Adv Space Res 21:167–176. doi:10.1016/S0273-1177(97)00801-6

    Article  ADS  Google Scholar 

  • Katsuda S, Tsunemi H (2005) Spatially resolved spectral analysis of Vela shrapnel D. Publ Astron Soc Jpn 57:621–628. arXiv:astro-ph/0507344

    ADS  Google Scholar 

  • Katsuda S, Tsunemi H (2006) Spatially resolved X-ray spectroscopy of Vela Shrapnel A. Astrophys J 642:917–922. doi:10.1086/501434, arXiv:astro-ph/0603454

    Article  ADS  Google Scholar 

  • Katsuda S, Mori K, Tsunemi H, Park S, Hwang U, Burrows DN, Hughes JP, Slane PO (2008a) Discovery of fast-moving X-ray-emitting ejecta knots in the oxygen-rich supernova remnant Puppis A. Astrophys J 678:297–302. doi:10.1086/586891, arXiv:0805.1369

    Article  ADS  Google Scholar 

  • Katsuda S, Tsunemi H, Kimura M, Mori K (2008b) Chandra observations of the northeastern Rim of the Cygnus Loop. Astrophys J 680:1198–1205. doi:10.1086/588188, arXiv:0806.4005

    Article  ADS  Google Scholar 

  • Katsuda S, Tsunemi H, Uchida H, Kimura M (2008c) Forward shock proper motions of Kepler’s supernova remnant. Astrophys J 689:225–230. doi:10.1086/592376, arXiv:0812.0339

    Article  ADS  Google Scholar 

  • Katsuda S, Petre R, Long KS, Reynolds SP, Winkler PF, Mori K, Tsunemi H (2009) The first X-ray proper-motion measurements of the forward shock in the northeastern limb of SN 1006. Astrophys J 692:L105–L108. doi:10.1088/0004-637X/692/2/L105, arXiv:0901.0149

    Article  ADS  Google Scholar 

  • Katsuda S, Petre R, Hughes JP, Hwang U, Yamaguchi H, Hayato A, Mori K, Tsunemi H (2010a) X-ray measured dynamics of Tycho’s supernova remnant. Astrophys J 709:1387–1395. doi:10.1088/0004-637X/709/2/1387, arXiv:1001.2484

    Article  ADS  Google Scholar 

  • Katsuda S, Petre R, Mori K, Reynolds SP, Long KS, Winkler PF, Tsunemi H (2010b) Steady X-ray synchrotron emission in the northeastern limb of SN 1006. Astrophys J 723:383–392. doi:10.1088/0004-637X/723/1/383, arXiv:1009.0280

    Article  ADS  Google Scholar 

  • Katsuda S, Tsunemi H, Mori K, Uchida H, Kosugi H, Kimura M, Nakajima H, Takakura S, Petre R, Hewitt JW, Yamaguchi H (2011) Possible charge-exchange X-ray emission in the Cygnus Loop detected with Suzaku. Astrophys J 730:24. doi:10.1088/0004-637X/730/1/24, arXiv:1103.1669

    Article  ADS  Google Scholar 

  • Katz B, Waxman E (2008) In which shell-type SNRs should we look for gamma-rays and neutrinos from P-P collisions? J Cosmol Astropart Phys 1:18. doi:10.1088/1475-7516/2008/01/018, arXiv:0706.3485

    Article  ADS  Google Scholar 

  • Kawasaki MT, Ozaki M, Nagase F, Masai K, Ishida M, Petre R (2002) ASCA Observations of the supernova remnant IC 443: thermal structure and detection of overionized plasma. Astrophys J 572:897–905. doi:10.1086/340383, arXiv:astro-ph/0202484

    Article  ADS  Google Scholar 

  • Kawasaki M, Ozaki M, Nagase F, Inoue H, Petre R (2005) Ionization states and plasma structures of mixed-morphology supernova remnants observed with ASCA. Astrophys J 631:935–946. doi:10.1086/432591, arXiv:astro-ph/0507348

    Article  ADS  Google Scholar 

  • Kelly PL, Kirshner RP, Pahre M (2008) Long γ-ray bursts and Type Ic core-collapse supernovae have similar locations in hosts. Astrophys J 687:1201–1207. doi:10.1086/591925, arXiv:0712.0430

    Article  ADS  Google Scholar 

  • Khokhlov AM (1991) Delayed detonation model for Type IA supernovae. Astron Astrophys 245:114–128

    ADS  Google Scholar 

  • Kifonidis K, Plewa T, Janka HT, Müller E (2003) Non-spherical core collapse supernovae. I. Neutrino-driven convection, Rayleigh–Taylor instabilities, and the formation and propagation of metal clumps. Astron Astrophys 408:621–649. doi:10.1051/0004-6361:20030863

    Article  ADS  Google Scholar 

  • Kifonidis K, Plewa T, Scheck L, Janka H, Müller E (2006) Non-spherical core collapse supernovae. II. The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987 A. Astron Astrophys 453:661–678. doi:10.1051/0004-6361:20054512, arXiv:astro-ph/0511369

    Article  ADS  Google Scholar 

  • Kinugasa K, Tsunemi H (1999) ASCA Observation of Kepler’s supernova remnant. Publ Astron Soc Jpn 51:239–252. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1999PASJ...51..239K&db_key=AST

    ADS  Google Scholar 

  • Kirshner RP (2007) SN 1987A: twenty years of serious fun with IUE and HST. In: Immler S, Weiler K, McCray R (eds) Supernova 1987A: 20 years after: supernovae and gamma-ray bursters. American institute of physics conference series, vol 937, pp 15–24. doi:10.1063/1.2803556

    Google Scholar 

  • Klein RI, McKee CF, Colella P (1994) On the hydrodynamic interaction of shock waves with interstellar clouds. 1: nonradiative shocks in small clouds. Astrophys J 420:213–236. doi:10.1086/173554

    Article  ADS  Google Scholar 

  • Koralesky B, Frail DA, Goss WM, Claussen MJ, Green AJ (1998a) Shock-excited maser emission from supernova remnants: G32.8-0.1, G337.8-0.1, G346.6-0.2, and the HB 3/W3 complex. Astron J 116:1323–1331. doi:10.1086/300508, arXiv:astro-ph/9805371

    Article  ADS  Google Scholar 

  • Koralesky B, Rudnick L, Gotthelf EV, Keohane JW (1998b) The X-ray expansion of the supernova remnant Cassiopeia A. Astrophys J 505:L27. doi:10.1086/311604, arXiv:astro-ph/9806241

    Article  ADS  Google Scholar 

  • Kosenko DI (2006) Inner-shell ionization, radiative losses and thermal conductivity in young SNRs. Mon Not R Astron Soc 369:1407–1410. doi:10.1111/j.1365-2966.2006.10384.x, arXiv:astro-ph/0605349

    Article  ADS  Google Scholar 

  • Kosenko D, Vink J, Blinnikov S, Rasmussen A (2008) XMM-Newton X-ray spectra of the SNR 0509-67.5: data and models. Astron Astrophys 490:223–230. doi:10.1051/0004-6361:200809495, arXiv:0807.0579

    Article  ADS  Google Scholar 

  • Kosenko D, Helder EA, Vink J (2010) The kinematics and chemical stratification of the Type Ia supernova remnant 0519-69.0. An XMM-Newton and Chandra study. Astron Astrophys 519:A11. doi:10.1051/0004-6361/200913903, arXiv:1001.0983

    Article  ADS  Google Scholar 

  • Kosenko D, Blinnikov SI, Vink J (2011) Modeling supernova remnants: effects of diffusive cosmic-ray acceleration on the evolution, application to observations. e-prints arXiv:1105.5966

  • Koyama K, Kinugasa K, Matsuzaki K, Nishiuchi M, Sugizaki M, Torii K, Yamauchi S, Aschenbach B (1997) Discovery of non-thermal X-rays from the northwest shell of the new SNR RX J1713.7-3946. Publ Astron Soc Jpn 49:L7–L11. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1997PASJ...49L...7K&db_key=AST

    ADS  Google Scholar 

  • Koyama K et al. (1995) Evidence for shock acceleration of high-energy electrons in the supernova remnant SN 1006. Nature 378:255

    Article  ADS  Google Scholar 

  • Krause MO (1979) Atomic radiative and radiationless yields for K and L shells. J Phys Chem Ref Data 8:307–327

    Article  ADS  Google Scholar 

  • Krause O, Birkmann SM, Usuda T, Hattori T, Goto M, Rieke GH, Misselt KA (2008a) The Cassiopeia A supernova was of Type IIb. Science 320:1195. doi:10.1126/science.1155788, arXiv:0805.4557

    Article  ADS  Google Scholar 

  • Krause O, Tanaka M, Usuda T, Hattori T, Goto M, Birkmann S, Nomoto K (2008b) Tycho Brahe’s 1572 supernova as a standard Type Ia as revealed by its light-echo spectrum. Nature 456:617–619. doi:10.1038/nature07608, arXiv:0810.5106

    Article  ADS  Google Scholar 

  • Krymskii GF (1977) A regular mechanism for the acceleration of charged particles on the front of a shock wave. Sov Phys Dokl 22:327

    MathSciNet  ADS  Google Scholar 

  • Kurfess JD et al. (1992) Oriented scintillation spectrometer experiment observations of Co-57 in SN 1987A. Astrophys J 399:L137–L140

    Article  ADS  Google Scholar 

  • Laming JM (2001a) Accelerated electrons in Cassiopeia A: An explanation for the hard X-ray tail. Astrophys J 546:1149–1158. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001ApJ...546.1149L&db_key=AST

    Article  ADS  Google Scholar 

  • Laming JM (2001b) Accelerated electrons in Cassiopeia A: thermal and electromagnetic effects. Astrophys J 563:828–841. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001ApJ...563..828L&db_key=AST

    Article  ADS  Google Scholar 

  • Laming JM, Hwang U, Radics B, Lekli G, Takács E (2006) The polar regions of Cassiopeia A: the aftermath of a gamma-ray burst? Astrophys J 644:260–273. doi:10.1086/503553, arXiv:astro-ph/0603434

    Article  ADS  Google Scholar 

  • Lasker BM (1979) The shell nebulae in the magellanic clouds—a survey in forbidden S II, H-alpha, and forbidden O III. Publ Astron Soc Pac 91:153–157. doi:10.1086/130459

    Article  ADS  Google Scholar 

  • Lazendic JS, Slane PO (2006) Enhanced abundances in three large-diameter mixed-morphology supernova remnants. Astrophys J 647:350–366. doi:10.1086/505380, arXiv:astro-ph/0505498

    Article  ADS  Google Scholar 

  • Lazendic JS, Wardle M, Burton MG, Yusef-Zadeh F, Whiteoak JB, Green AJ, Ashley MCB (2002) Shocked molecular gas towards the supernova remnant G359.1-0.5 and the Snake. Mon Not R Astron Soc 331:537–544. doi:10.1046/j.1365-8711.2002.05227.x, arXiv:astro-ph/0112410

    Article  ADS  Google Scholar 

  • Lazendic JS, Dewey D, Schulz NS, Canizares CR (2006) The kinematic and plasma properties of X-ray knots in Cassiopeia A from the Chandra HETGS. Astrophys J 651:250–267. doi:10.1086/507481, arXiv:astro-ph/0605078

    Article  ADS  Google Scholar 

  • Lee JJ, Park S, Hughes JP, Slane PO, Burrows DN (2011) SNR 0104-72.3: a remnant of a Type Ia supernova in a star-forming region? Astrophys J 731:L8. doi:10.1088/2041-8205/731/1/L8, arXiv:1012.5703

    Article  ADS  Google Scholar 

  • Leising MD (2001) Prospects for X-ray studies of supernova electron capture radioactivity. Astrophys J 563:185–190

    Article  ADS  Google Scholar 

  • Leising MD (2006) X-ray astronomy of radioactivity in SN 1987A. New Astron Rev 50:557–560. doi:10.1016/j.newar.2006.06.041

    Article  ADS  Google Scholar 

  • Leising MD, Share GH (1990) The gamma-ray light curves of SN 1987A. Astrophys J 357:638–648

    Article  ADS  Google Scholar 

  • Leonard PJT, Duncan MJ (1990) Runaway stars from young star clusters containing initial binaries. II—A mass spectrum and a binary energy spectrum. Astron J 99:608–616. doi:10.1086/115354

    Article  ADS  Google Scholar 

  • Levenson NA, Graham JR, Hester JJ, Petre R (1996) All quiet on the western front? X-ray and optical observations of a prototypical cloud–blast wave interaction in the Cygnus Loop. Astrophys J 468:323. doi:10.1086/177692

    Article  ADS  Google Scholar 

  • Levenson NA, Graham JR, Keller LD, Richter MJ (1998) Panoramic views of the Cygnus Loop. Astrophys J Suppl Ser 118:541–561. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1998ApJS..118..541L&db_key=AST

    Article  ADS  Google Scholar 

  • Levenson NA, Graham JR, Walters JL (2002) Shell shock and cloud shock: results from spatially resolved X-ray spectroscopy with Chandra in the Cygnus Loop. Astrophys J 576:798–805. doi:10.1086/341802, arXiv:astro-ph/0205191

    Article  ADS  Google Scholar 

  • Lewis KT, Burrows DN, Hughes JP, Slane PO, Garmire GP, Nousek JA (2003) The radial structure of supernova remnant N103B. Astrophys J 582:770–782. doi:10.1086/344717, arXiv:astro-ph/0209280

    Article  ADS  Google Scholar 

  • Li X, van den Heuvel EPJ, (1997) Evolution of white dwarf binaries: supersoft X-ray sources and progenitors of type IA supernovae. Astron Astrophys 322:L9–L12

    ADS  Google Scholar 

  • Liedahl DA (1999) The X-ray spectral properties of photoionized plasma and transient plasmas. Lecture notes in physics, vol 520. Springer, Berlin, p 189

    Google Scholar 

  • Long KS, Reynolds SP, Raymond JC, Winkler PF, Dyer KK, Petre R (2003) Chandra CCD imagery of the northeast and northwest limbs of SN 1006. Astrophys J 586:1162–1178

    Article  ADS  Google Scholar 

  • Lopez LA, Ramirez-Ruiz E, Badenes C, Huppenkothen D, Jeltema TE, Pooley DA (2009) Typing supernova remnants using X-ray line emission morphologies. Astrophys J 706:L106–L109. doi:10.1088/0004-637X/706/1/L106, arXiv:0910.3208

    Article  ADS  Google Scholar 

  • Lopez LA, Ramirez-Ruiz E, Huppenkothen D, Badenes C, Pooley DA (2011) Using the X-ray morphology of young supernova remnants to constrain explosion type, ejecta distribution, and chemical mixing. Astrophys J 732:114. doi:10.1088/0004-637X/732/2/114, arXiv:1011.0731

    Article  ADS  Google Scholar 

  • Lu FJ, Aschenbach B (2000) Spatially resolved X-ray spectroscopy of the Vela supernova remnant. Astron Astrophys 362:1083–1092

    ADS  Google Scholar 

  • Lynden-Bell D (1967) Statistical mechanics of violent relaxation in stellar systems. Mon Not R Astron Soc 136:101

    ADS  Google Scholar 

  • Maeda Y, Uchiyama Y, Bamba A, Kosugi H, Tsunemi H, Helder EA, Vink J, Kodaka N, Terada Y, Fukazawa Y, Hiraga J, Hughes JP, Kokubun M, Kouzu T, Matsumoto H, Miyata E, Nakamura R, Okada S, Someya K, Tamagawa T, Tamura K, Totsuka K, Tsuboi Y, Ezoe Y, Holt SS, Ishida M, Kamae T, Petre R, Takahashi T (2009) Suzaku X-ray imaging and spectroscopy of Cassiopeia A. Publ Astron Soc Jpn 61:1217. arXiv:0912.5020

    ADS  Google Scholar 

  • Mahoney WA, Varnell LS, Jacobson AS, Ling JC, Radocinski RG, Wheaton WA (1988) Gamma-ray observations of Co-56 in SN 1987A. Astrophys J 334:L81–L85

    Article  ADS  Google Scholar 

  • Malkov MA (1997) Analytic solution for nonlinear shock acceleration in the Bohm limit. Astrophys J 485:638. doi:10.1086/304471, arXiv:astro-ph/9707152

    Article  ADS  Google Scholar 

  • Malkov MA, Drury L (2001) Nonlinear theory of diffusive acceleration of particles by shock waves. Rep Prog Phys 64:429–481

    Article  ADS  Google Scholar 

  • Mannucci F, Della Valle M, Panagia N (2006) Two populations of progenitors for Type Ia supernovae? Mon Not R Astron Soc 370:773–783. doi:10.1111/j.1365-2966.2006.10501.x, arXiv:astro-ph/0510315

    ADS  Google Scholar 

  • Marcaide JM, Martí-Vidal I, Alberdi A, Pérez-Torres MA, Ros E, Diamond PJ, Guirado JC, Lara L, Shapiro II, Stockdale CJ, Weiler KW, Mantovani F, Preston RA, Schilizzi RT, Sramek RA, Trigilio C, van Dyk SD, Whitney AR (2009) A decade of SN 1993J: discovery of radio wavelength effects in the expansion rate. Astron Astrophys 505:927–945. doi:10.1051/0004-6361/200912133, arXiv:0903.3833

    Article  ADS  Google Scholar 

  • Markert TH, Clark GW, Winkler PF, Canizares CR (1983) High-velocity, asymmetric Doppler shifts of the X-ray emission lines of Cassiopeia A. Astrophys J 268:134–144

    Article  ADS  Google Scholar 

  • Martin DC, Seibert M, Neill JD, Schiminovich D, Forster K, Rich RM, Welsh BY, Madore BF, Wheatley JM, Morrissey P, Barlow TA (2007) A turbulent wake as a tracer of 30,000 years of Mira’s mass loss history. Nature 448:780–783. doi:10.1038/nature06003

    Article  ADS  Google Scholar 

  • Martin P, Vink J, Jiraskova S, Jean P, Diehl R (2010) Annihilation emission from young supernova remnants. Astron Astrophys 519:A100. doi:10.1051/0004-6361/201014171, arXiv:1006.2537

    Article  ADS  Google Scholar 

  • Mathewson DS, Dopita MA, Tuohy IR, Ford VL (1980) A new oxygen-rich supernova remnant in the Large Magellanic Cloud. Astrophys J 242:L73–L76. doi:10.1086/183406

    Article  ADS  Google Scholar 

  • Matsunaga K et al. (2001) Detection if eight molecular supershells in the southern Milky Way with Nanten. Publ Astron Soc Jpn 53:1003–1016

    ADS  Google Scholar 

  • Mazzali PA, Röpke FK, Benetti S, Hillebrandt W (2007) A common explosion mechanism for Type Ia supernovae. Science 315:825. doi:10.1126/science.1136259, arXiv:astro-ph/0702351

    Article  ADS  Google Scholar 

  • McCray R (2007) Supernova 1987A at age 20. In: Immler S, Weiler K, McCray R (eds) Supernova 1987A: 20 years after: supernovae and gamma-ray bursters. American institute of physics conference series, vol 937, pp 3–14. doi:10.1063/1.2803599

    Google Scholar 

  • McCray R, Snow TP Jr (1979) The violent interstellar medium. Annu Rev Astron Astrophys 17:213–240. doi:10.1146/annurev.aa.17.090179.001241

    Article  ADS  Google Scholar 

  • McKee CF (1974) X-ray emission from an inward-propagating shock in young supernova remnants. Astrophys J 188:335–340. doi:10.1086/152721

    Article  ADS  Google Scholar 

  • McKee CF, Hollenbach DJ (1980) Interstellar shock waves. Annu Rev Astron Astrophys 18:219–262

    Article  ADS  Google Scholar 

  • Mendoza C, Kallman TR, Bautista MA, Palmeri P (2004) Decay properties of K-vacancy states in Fe X-Fe XVII. Astron Astrophys 414:377–388. doi:10.1051/0004-6361:20031621, arXiv:astro-ph/0306320

    Article  ADS  Google Scholar 

  • Mereghetti S (2008) The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars. Astron Astrophys Rev 15:225–287. doi:10.1007/s00159-008-0011-z, arXiv:0804.0250

    Article  ADS  Google Scholar 

  • Mewe R (1999) Atomic physics of hot plasmas. Lecture notes in physics, vol 520. Springer, Berlin, p 109

    Google Scholar 

  • Mewe R, Schrijver J (1978) Heliumlike Ion line intensities. II Non-stationary Plasmas. Astron Astrophys 65:115

    ADS  Google Scholar 

  • Miceli M, Bocchino F, Maggio A, Reale F (2005) Shock-cloud interaction in the Vela SNR observed with XMM-Newton. Astron Astrophys 442:513–525. doi:10.1051/0004-6361:20041919, arXiv:astro-ph/0509911

    Article  ADS  Google Scholar 

  • Miceli M, Bocchino F, Reale F (2008) Physical and chemical inhomogeneities inside the Vela SNR Shell: indications of ejecta shrapnels. Astrophys J 676:1064–1072. doi:10.1086/528737, arXiv:0712.3017

    Article  ADS  Google Scholar 

  • Miceli M, Bocchino F, Iakubovskyi D, Orlando S, Telezhinsky I, Kirsch MGF, Petruk O, Dubner G, Castelletti G (2009) Thermal emission, shock modification, and X-ray emitting ejecta in SN 1006. Astron Astrophys 501:239–249. doi:10.1051/0004-6361/200811505, arXiv:0903.3392

    Article  ADS  Google Scholar 

  • Michael E, Zhekov S, McCray R, Hwang U, Burrows DN, Park S, Garmire GP, Holt SS, Hasinger G (2002) The X-ray spectrum of supernova remnant 1987A. Astrophys J 574:166–178. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002ApJ...574..166M&db_key=AST

    Article  ADS  Google Scholar 

  • Minkowski R (1941) Spectra of supernovae. Publ Astron Soc Pac 53:224. doi:10.1086/125315

    Article  ADS  Google Scholar 

  • Miyata E, Tsunemi H (1999) The radial structure of the Cygnus Loop supernova remnant: possible evidence of a cavity explosion. Astrophys J 525:305–317

    Article  ADS  Google Scholar 

  • Miyata E, Tsunemi H, Pisarski R, Kissel SE (1994) The plasma structure of the north-east rim of the Cygnus Loop as observed with ASCA. Publ Astron Soc Jpn 46:L101–L104

    ADS  Google Scholar 

  • Miyata E, Tsunemi H, Aschenbach B, Mori K (2001) Chandra X-ray observatory study of Vela Shrapnel A. Astrophys J 559:L45–L48

    Article  ADS  Google Scholar 

  • Miyata E, Katsuda S, Tsunemi H, Hughes JP, Kokubun M, Porter FS (2007) Detection of highly-ionized carbon and nitrogen emission lines from the Cygnus Loop supernova remnant with the Suzaku observatory. Publ Astron Soc Jpn 59:163–170

    ADS  Google Scholar 

  • Miyata E, Masai K, Hughes JP (2008) Evidence for resonance line scattering in the Suzaku X-ray spectrum of the Cygnus Loop. Publ Astron Soc Jpn 60:521. arXiv:0801.4418

    ADS  Google Scholar 

  • Mokiem MR, de Koter A, Vink JS, Puls J, Evans CJ, Smartt SJ, Crowther PA, Herrero A, Langer N, Lennon DJ, Najarro F, Villamariz MR (2007) The empirical metallicity dependence of the mass-loss rate of O- and early B-type stars. Astron Astrophys 473:603–614. doi:10.1051/0004-6361:20077545, arXiv:0708.2042

    Article  ADS  Google Scholar 

  • Morlino G, Blasi P, Vietri M (2007) On particle acceleration around shocks. IV. Particle spectrum as a function of the equation of state of the shocked plasma. Astrophys J 662:980–987. doi:10.1086/518395, arXiv:astro-ph/0703555

    Article  ADS  Google Scholar 

  • Morris T, Podsiadlowski P (2007) The triple-ring nebula around SN 1987A: fingerprint of a binary merger. Science 315:1103. doi:10.1126/science.1136351, arXiv:astro-ph/0703317

    Article  ADS  Google Scholar 

  • Morris T, Podsiadlowski P (2009) A binary merger model for the formation of the Supernova 1987A triple-ring nebula. Mon Not R Astron Soc 399:515–538. doi:10.1111/j.1365-2966.2009.15114.x

    Article  ADS  Google Scholar 

  • Morris DJ, Bennett K, Bloemen H, Diehl R, Hermsen W, Lichti GG, McConnell ML, Ryan JM, Schonfelder V (1997) Reassessment of the 56Co emission from SN 1991T. In: AIP Conf Proc 410: Proceedings of the fourth compton symposium, p 1084

    Google Scholar 

  • Muno MP, Clark JS, Crowther PA, Dougherty SM, de Grijs R, Law C, McMillan SLW, Morris MR, Negueruela I, Pooley D, Portegies Zwart S, Yusef-Zadeh F (2006) A neutron star with a massive progenitor in Westerlund 1. Astrophys J 636:L41–L44. doi:10.1086/499776, arXiv:astro-ph/0509408

    Article  ADS  Google Scholar 

  • Nagataki S, Hashimoto M, Sato K, Yamada S, Mochizuki YS (1998) The high ratio of 44Ti/ 56Ni in Cassiopeia A and the axisymmetric collapse-driven supernova explosion. Astrophys J 492:L45

    Article  ADS  Google Scholar 

  • Nemes N, Tsunemi H, Miyata E (2008) XMM-Newton observation of the northeastern Limb of the Cygnus Loop. Astrophys J 675:1293–1303. doi:10.1086/527523

    Article  ADS  Google Scholar 

  • Ng C, Gaensler BM, Staveley-Smith L, Manchester RN, Kesteven MJ, Ball L, Tzioumis AK (2008) Fourier modeling of the radio torus surrounding SN 1987A. Astrophys J 684:481–497. doi:10.1086/590330, arXiv:0805.4195

    Article  ADS  Google Scholar 

  • Nishiuchi M, Yokogawa J, Koyama K, Hughes JP (2001) ASCA observations of the twin supernova remnants in the large magellanic cloud, DEM L316. Publ Astron Soc Jpn 53:99–104. arXiv:astro-ph/0009318

    ADS  Google Scholar 

  • Nomoto K (1982) Accreting white dwarf models for Type I supernovae. I—Presupernova evolution and triggering mechanisms. Astrophys J 253:798–810. doi:10.1086/159682

    Article  ADS  Google Scholar 

  • Nomoto K, Thielemann FK, Yokoi K (1984) Accreting white dwarf models of Type I supernovae. III—Carbon deflagration supernovae. Astrophys J 286:644–658. doi:10.1086/162639

    Article  ADS  Google Scholar 

  • Nomoto K, Tanaka M, Tominaga N, Maeda K (2010) Hypernovae, gamma-ray bursts, and first stars. New Astron Rev 54:191–200. doi:10.1016/j.newar.2010.09.022

    Article  ADS  Google Scholar 

  • Nugis T, Lamers HJGLM (2000) Mass-loss rates of Wolf–Rayet stars as a function of stellar parameters. Astron Astrophys 360:227–244

    ADS  Google Scholar 

  • Ohnishi T, Koyama K, Tsuru TG, Masai K, Yamaguchi H, Ozawa M (2011) X-ray spectrum of a peculiar supernova remnant, G359.1-0.5. Publ Astron Soc Jpn 63:527

    ADS  Google Scholar 

  • Olausen SA, Kaspi VM, Ng CY, Zhu WW, Dib R, Gavriil FP, Woods PM (2011) On the extended emission around the anomalous X-ray pulsar 1E 1547.0-5408. Astrophys J 742:4. doi:10.1088/0004-637X/742/1/4, arXiv:1107.2952

    Article  ADS  Google Scholar 

  • Ott CD, Burrows A, Thompson TA, Livne E, Walder R (2006) The spin periods and rotational profiles of neutron stars at birth. Astrophys J Suppl Ser 164:130–155. doi:10.1086/500832, arXiv:astro-ph/0508462

    Article  ADS  Google Scholar 

  • Ozawa M, Koyama K, Yamaguchi H, Masai K, Tamagawa T (2009) Suzaku discovery of the strong radiative recombination continuum of iron from the supernova remnant W49B. Astrophys J 706:L71–L75. doi:10.1088/0004-637X/706/1/L71, arXiv:0910.3302

    Article  ADS  Google Scholar 

  • Palmeri P, Mendoza C, Kallman TR, MA Bautista, Meléndez M (2003) Modeling of iron K lines: radiative and Auger decay data for Fe II–Fe IX. Astron Astrophys 410:359–364. doi:10.1051/0004-6361:20031262, arXiv:astro-ph/0306321

    Article  ADS  Google Scholar 

  • Pannuti TG, Allen GE, Filipović MD, De Horta A, Stupar M, Agrawal R (2010a) Non-thermal X-ray emission from the northwestern Rim of the Galactic supernova remnant G266.2-1.2 (RX J0852.0-4622). Astrophys J 721:1492–1508. doi:10.1088/0004-637X/721/2/1492, arXiv:1008.1072

    Article  ADS  Google Scholar 

  • Pannuti TG, Rho J, Borkowski KJ, Cameron PB, (2010b) Mixed-morphology supernova remnants in X-rays: isothermal plasma in HB21 and probable oxygen-rich ejecta in CTB 1. Astronom J 140:1787–1805

    Article  ADS  Google Scholar 

  • Parizot E, Marcowith A, van der Swaluw E, Bykov AM, Tatischeff V (2004) Superbubbles and energetic particles in the Galaxy. I. Collective effects of particle acceleration. Astron Astrophys 424:747–760. doi:10.1051/0004-6361:20041269, arXiv:astro-ph/0405531

    Article  ADS  Google Scholar 

  • Parizot E, Marcowith A, Ballet J, Gallant YA (2006) Observational constraints on energetic particle diffusion in young supernovae remnants: amplified magnetic field and maximum energy. Astron Astrophys 453:387–395. doi:10.1051/0004-6361:20064985, arXiv:astro-ph/0603723

    Article  ADS  Google Scholar 

  • Park S, Hughes JP, Burrows DN, Slane PO, Nousek JA, Garmire GP (2003) 0103-72.6: A new oxygen-rich supernova remnant in the small magellanic cloud. Astrophys J 598:L95–L98. doi:10.1086/380599, arXiv:astro-ph/0309271

    Article  ADS  Google Scholar 

  • Park S, Zhekov SA, Burrows DN, McCray R (2005) SNR 1987A: Opening the future by reaching the past. Astrophys J 634:L73–L76. doi:10.1086/498848, arXiv:astro-ph/0510442

    Article  ADS  Google Scholar 

  • Park S, Zhekov SA, Burrows DN, Garmire GP, Racusin JL, McCray R (2006) Evolutionary status of SNR 1987A at the age of eighteen. Astrophys J 646:1001–1008. doi:10.1086/505023, arXiv:astro-ph/0604201

    Article  ADS  Google Scholar 

  • Park S, Hughes JP, Slane PO, Burrows DN, Gaensler BM, Ghavamian P (2007) A half-megasecond Chandra observation of the oxygen-rich supernova remnant G292.0+1.8. Astrophys J 670:L121–L124. doi:10.1086/524406, arXiv:0710.2902

    Article  ADS  Google Scholar 

  • Park S, Lee J, Hughes JP, Slane PO, Burrows DN, Mori K, Garmire GP (2009) Chandra observation of the Galactic SNR G272.2-3.2. In: American astronomical society meeting abstracts 214. American astronomical society meeting abstracts, vol 214, p 426.04

    Google Scholar 

  • Park S, Hughes JP, Slane PO, Mori K, Burrows DN (2010) A deep Chandra observation of the oxygen-rich supernova remnant 0540-69.3 in the large magellanic cloud. Astrophys J 710:948–957. doi:10.1088/0004-637X/710/2/948, arXiv:0912.5177

    Article  ADS  Google Scholar 

  • Park S et al. (2002) The structure of the oxygen-rich supernova remnant G292.0+1.8 from Chandra X-ray images: shocked ejecta and circumstellar medium. Astrophys J 564:L39–L43. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002ApJ...564L..39P&db_key=AST

    Article  ADS  Google Scholar 

  • Patnaude DJ, Fesen RA (2007) Small-scale X-ray variability in the Cassiopeia A supernova remnant. Astron J 133:147–153. doi:10.1086/509571, arXiv:astro-ph/0609412

    Article  ADS  Google Scholar 

  • Patnaude DJ, Fesen RA (2009) Proper motions and brightness variations of nonthermal X-ray filaments in the Cassiopeia A supernova remnant. Astrophys J 697:535–543. doi:10.1088/0004-637X/697/1/535, arXiv:0808.0692

    Article  ADS  Google Scholar 

  • Patnaude DJ, Fesen RA, Raymond JC, Levenson NA, Graham JR, Wallace DJ (2002) An isolated, recently shocked ISM cloud in the Cygnus Loop supernova remnant. Astron J 124:2118–2134. doi:10.1086/342537, arXiv:astro-ph/0206492

    Article  ADS  Google Scholar 

  • Patnaude DJ, Vink J, Laming JM, Fesen RA (2011) A decline in the nonthermal X-ray emission from Cassiopeia A. Astrophys J 729:L28. doi:10.1088/2041-8205/729/2/L28, arXiv:1012.0243

    Article  ADS  Google Scholar 

  • Perlmutter S et al. (1998) Discovery of a supernova explosion at half the age of the universe. Nature 391:51. arXiv:astro-ph/9712212

    Article  ADS  Google Scholar 

  • Petre R, Serlemitsos PJ, FE Marshall, Jahoda KA, Boldt EA, Holt SS, Kelley RL, Swank JH, Szymkowiak AE, Arnaud KA (1993) Highlights of the BBXRT mission. In: UV and X-ray spectroscopy of astrophysical and laboratory plasmas, pp 424–433

    Google Scholar 

  • Pfeffermann E, Aschenbach B (1996) ROSAT observation of a new supernova remnant in the Constellation Scorpius. In: Zimmermann HU, Trümper, Yorke H (eds) Roentgenstrahlung from the Universe, pp 267–268. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1996rftu.proc..267P&db_key=AST

    Google Scholar 

  • Phillips MM et al. (1992) SN 1991T—further evidence of the heterogeneous nature of Type IA supernovae. Astron J 103:1632–1637

    Article  ADS  Google Scholar 

  • Podsiadlowski P (1992) The progenitor of SN 1987A. Publ Astron Soc Pac 104:717–729. doi:10.1086/133043

    Article  ADS  Google Scholar 

  • Podsiadlowski P, Joss PC, Hsu JJL (1992) Presupernova evolution in massive interacting binaries. Astrophys J 391:246–264. doi:10.1086/171341

    Article  ADS  Google Scholar 

  • Podsiadlowski P, Hsu JJL, Joss PC, Ross RR (1993) The progenitor of supernova 1993J—a stripped supergiant in a binary system? Nature 364:509–511. doi:10.1038/364509a0

    Article  ADS  Google Scholar 

  • Pohl M, Yan H, Lazarian A (2005) Magnetically limited X-ray filaments in young supernova remnants. Astrophys J 626:L101–L104. doi:10.1086/431902

    Article  ADS  Google Scholar 

  • Porquet D, Mewe R, Dubau J, Raassen AJJ, Kaastra JS (2001) Line ratios for helium-like ions: applications to collision-dominated plasmas. Astron Astrophys 376:1113–1122. doi:10.1051/0004-6361:20010959, arXiv:astro-ph/0107329

    Article  ADS  Google Scholar 

  • Porquet D, Dubau J, Grosso N (2010) He-like ions as practical astrophysical plasma diagnostics: from Stellar Coronae to active galactic nuclei. Space Sci Rev 157:103–134. doi:10.1007/s11214-010-9731-2, arXiv:1101.3184

    Article  ADS  Google Scholar 

  • Prantzos N (2011) Nucleosynthesis and gamma-ray lines. e-prints arXiv:1101.2112

  • Prantzos N, Boehm C, Bykov AM, Diehl R, Ferrière K, Guessoum N, Jean P, Knoedlseder J, Marcowith A, Moskalenko IV, Strong A, Weidenspointner G (2011) The 511 keV emission from positron annihilation in the Galaxy. Rev Mod Phys 83:1001–1056. doi:10.1103/RevModPhys.83.1001, arXiv:1009.4620

    Article  ADS  Google Scholar 

  • Racusin JL, Park S, Zhekov S, Burrows DN, Garmire GP, McCray R (2009) X-ray evolution of SNR 1987A: the radial expansion. Astrophys J 703:1752–1759. doi:10.1088/0004-637X/703/2/1752, arXiv:0908.2097

    Article  ADS  Google Scholar 

  • Rakowski CE, Ghavamian P, Hughes JP (2003) The physics of supernova remnant blast waves. II. Electron-ion equilibration in DEM L71 in the large magellanic cloud. Astrophys J 590:846–857

    Article  ADS  Google Scholar 

  • Rakowski CE, Laming JM, Ghavamian P (2008) The heating of thermal electrons in fast collisionless shocks: the integral role of cosmic rays. Astrophys J 684:348–357. doi:10.1086/590245, arXiv:0805.3084

    Article  ADS  Google Scholar 

  • Rasmussen AP et al. (2001) The X-ray spectrum of the supernova remnant 1E 0102.2-7219. Astron Astrophys 365:L231–L236

    Article  ADS  Google Scholar 

  • Raymond JC, Blair WP, Long KS (1995) Detection of ultraviolet emission lines in SN 1006 with the Hopkins ultraviolet telescope. Astrophys J 454:L31–L37. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1995ApJ...454L..31R&db_key=AST

    Article  ADS  Google Scholar 

  • Raymond JC, Vink J, Helder EA, de Laat A (2011) Effects of neutral hydrogen on cosmic-ray precursors in supernova remnant shock waves. Astrophys J 731:L14. doi:10.1088/2041-8205/731/1/L14, arXiv:1103.3211

    Article  ADS  Google Scholar 

  • Reach WT, Rho J, Jarrett TH (2005) Shocked molecular gas in the supernova remnants W28 and W44: near-infrared and millimeter-wave observations. Astrophys J 618:297–320. doi:10.1086/425855, arXiv:astro-ph/0409414

    Article  ADS  Google Scholar 

  • Reed JE, Hester JJ, Fabian AC, Winkler PF (1995) The three-dimensional structure of the Cassiopeia A supernova remnant. I. The spherical shell. Astrophys J 440:706–721. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1995ApJ...440..706R&db_key=AST

    Article  ADS  Google Scholar 

  • Renaud M et al. (2006a) An INTEGRAL/IBIS view of young Galactic SNRs through the 44Ti gamma-ray lines. New Astron Rev 50:540–543. doi:10.1016/j.newar.2006.06.061, arXiv:astro-ph/0602304

    Article  MathSciNet  ADS  Google Scholar 

  • Renaud M et al. (2006b) The signature of 44Ti in Cassiopeia A revealed by IBIS/ISGRI on INTEGRAL. Astrophys J 647:L41–L44. doi:10.1086/507300

    Article  ADS  Google Scholar 

  • Rest A et al. (2005) Light echoes from ancient supernovae in the Large Magellanic Cloud. Nature 438:1132–1134. doi:10.1038/nature04365, arXiv:astro-ph/0510738

    Article  ADS  Google Scholar 

  • Rest A et al. (2008) Spectral identification of an ancient supernova using light echoes in the Large Magellanic Cloud. Astrophys J 680:1137–1148. doi:10.1086/587158, arXiv:0801.4762

    Article  ADS  Google Scholar 

  • Reville B, Kirk JG, Duffy P (2009) Steady-state solutions in nonlinear diffusive shock acceleration. Astrophys J 694:951–958. doi:10.1088/0004-637X/694/2/951, arXiv:0812.3993

    Article  ADS  Google Scholar 

  • Reynolds SP (1998) Models of synchrotron X-rays from shell supernova remnants. Astrophys J 493:375. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1998ApJ...493..375R&db_key=AST

    Article  ADS  Google Scholar 

  • Reynolds SP (2008) Supernova remnants at high energy. Annu Rev Astron Astrophys 46:89–126. doi:10.1146/annurev.astro.46.060407.145237

    Article  ADS  Google Scholar 

  • Reynolds SP, Chevalier RA (1981) Nonthermal radiation from supernova remnants in the adiabatic stage of evolution. Astrophys J 245:912

    Article  ADS  Google Scholar 

  • Reynolds SP, Ellison DC (1992) Electron acceleration in Tycho’s and Kepler’s supernova remnants—Spectral evidence of Fermi shock acceleration. Astrophys J 399:L75–L78. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1992ApJ...399L..75R&db_key=AST

    Article  ADS  Google Scholar 

  • Reynolds SP, Borkowski KJ, Hwang U, Hughes JP, Badenes C, Laming JM, Blondin JM (2007) A deep Chandra observation of Kepler’s supernova remnant: A Type Ia event with circumstellar interaction. Astrophys J 668:L135–L138. doi:10.1086/522830, arXiv:0708.3858

    Article  ADS  Google Scholar 

  • Reynolds SP, Borkowski KJ, Green DA, Hwang U, Harrus I, Petre R (2008) The youngest galactic supernova remnant: G1.9+0.3. Astrophys J 680:L41–L44. doi:10.1086/589570, arXiv:0803.1487

    Article  ADS  Google Scholar 

  • Reynoso EM, Dubner GM, Goss WM, Arnal EM (1995) VLA observations of neutral hydrogen in the direction of Puppis A. Astron J 110:318. doi:10.1086/117522

    Article  ADS  Google Scholar 

  • Reynoso EM, Moffett DA, Goss WM, Dubner GM, Dickel JR, Reynolds SP, Giacani EB (1997) A VLA study of the expansion of Tycho’s supernova remnant. Astrophys J 491:816. doi:10.1086/304997

    Article  ADS  Google Scholar 

  • Rho J, Petre R (1998) Mixed-morphology supernova remnants. Astrophys J 503:L167. doi:10.1086/311538

    Article  ADS  Google Scholar 

  • Rho J, Dyer KK, Borkowski KJ, Reynolds SP (2002) X-ray synchrotron-emitting Fe-rich ejecta in supernova remnant RCW 86. Astrophys J 581:1116–1131

    Article  ADS  Google Scholar 

  • Riess AG et al. (2007) New hubble space telescope discoveries of Type Ia supernovae at z>1: narrowing constraints on the early behavior of dark energy. Astrophys J 659:98–121. doi:10.1086/510378, arXiv:astro-ph/0611572

    Article  ADS  Google Scholar 

  • Riquelme MA, Spitkovsky A (2011) Electron injection by Whistler waves in non-relativistic shocks. Astrophys J 733:63. doi:10.1088/0004-637X/733/1/63, arXiv:1009.3319

    Article  ADS  Google Scholar 

  • Rosado M, Le Coarer E, Georgelin YP (1994) Kinematics of supernova remnants in the Small Magellanic Cloud I. The SNRs inside the nebular complex N 19, the SNR 0046-73.5 and the SNR 0050-72.8. Astron Astrophys 286:231–242

    ADS  Google Scholar 

  • Rothenflug R et al. (2004) Geometry of the non-thermal emission in SN 1006. Astron Astrophys 425:121–131. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1994A%26A...291..271R&db_key=AST

    Article  ADS  Google Scholar 

  • Ruiter AJ, Belczynski K, Fryer C (2009) Rates and delay times of Type Ia supernovae. Astrophys J 699:2026–2036. doi:10.1088/0004-637X/699/2/2026, arXiv:0904.3108

    Article  ADS  Google Scholar 

  • Rybicki GB, Lightman AP (1979) Radiative processes in astrophysics. Wiley, New York. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1979rpa..book.....R&db_key=AST

    Google Scholar 

  • Salvesen G, Raymond JC, Edgar RJ (2009) Shock speed, Cosmic ray pressure, and gas temperature in the Cygnus Loop. Astrophys J 702:327–339. doi:10.1088/0004-637X/702/1/327, arXiv:0812.2515

    Article  ADS  Google Scholar 

  • Sandie WG, Nakano GH, Chase LF, Fishman GJ, Meegan CA, Wilson RB, Paciesas WS, Lasche GP (1988) High-resolution observations of gamma-ray line emission from SN 1987A. Astrophys J 334:L91–L94

    Article  ADS  Google Scholar 

  • Sankrit R, Blair WP, Delaney T, Rudnick L, Harrus IM, Ennis JA (2005) HST/ACS imaging of a Balmer-dominated shock in Kepler’s supernova remnant. Adv Space Res 35:1027–1030. doi:10.1016/j.asr.2004.11.018

    Article  ADS  Google Scholar 

  • Schaefer BE (2008) A problem with the clustering of recent measures of the distance to the large magellanic cloud. Astron J 135:112–119. doi:10.1088/0004-6256/135/1/112, arXiv:0709.4531

    Article  ADS  Google Scholar 

  • Schure KM, Vink J, García-Segura G, Achterberg A (2008) Jets as diagnostics of the circumstellar medium and the explosion energetics of supernovae: the case of Cassiopeia A. Astrophys J 686:399–407. doi:10.1086/591432, arXiv:0806.4617

    Article  ADS  Google Scholar 

  • Schure KM, Kosenko D, Kaastra JS, Keppens R, Vink J (2009) A new radiative cooling curve based on an up-to-date plasma emission code. Astron Astrophys 508:751–757. doi:10.1051/0004-6361/200912495, arXiv:0909.5204

    Article  ADS  Google Scholar 

  • Schure KM, Achterberg A, Keppens R, Vink J (2010) Time-dependent particle acceleration in supernova remnants in different environments. Mon Not R Astron Soc 406:2633–2649. doi:10.1111/j.1365-2966.2010.16857.x, arXiv:1004.2766

    Article  ADS  Google Scholar 

  • Sedov LI (1959) Similarity and dimensional methods in mechanics. Similarity and dimensional methods in mechanics. Academic Press, New York

    MATH  Google Scholar 

  • Seward FD, Williams RM, Chu YH, Dickel JR, Smith RC, Points SD (2006) Chandra observation of the Magellanic cloud supernova remnant 0454-67.2 in N9. Astrophys J 640:327–334. doi:10.1086/499767, arXiv:astro-ph/0511619

    Article  ADS  Google Scholar 

  • Shelton RL, Cox DP, Maciejewski W, Smith RK, Plewa T, Pawl A, Rózyczka M (1999) Modeling W44 as a supernova remnant in a density gradient with a partially formed dense shell and thermal conduction in the hot interior. II. The hydrodynamic models. Astrophys J 524:192–212. doi:10.1086/307799, arXiv:astro-ph/9806090

    Article  ADS  Google Scholar 

  • Shelton RL, Kuntz KD, Petre R (2004a) Chandra observations and models of the mixed-morphology supernova remnant W44: global trends. Astrophys J 611:906–918. doi:10.1086/422352, arXiv:astro-ph/0407026

    Article  ADS  Google Scholar 

  • Shelton RL, Kuntz KD, Petre R (2004b) G65.2+5.7: A thermal composite supernova remnant with a cool shell. Astrophys J 615:275–279. doi:10.1086/424029, arXiv:astro-ph/0409692

    Article  ADS  Google Scholar 

  • Shen KJ, Bildsten L (2007) Thermally stable nuclear burning on accreting white dwarfs. Astrophys J 660:1444–1450. doi:10.1086/513457, arXiv:astro-ph/0702049

    Article  ADS  Google Scholar 

  • Shimada N, Hoshino M (2000) Strong electron acceleration at high Mach number shock waves: simulation study of electron dynamics. Astrophys J 543:L67–L71. doi:10.1086/318161

    Article  ADS  Google Scholar 

  • Shull JM, van Steenberg M (1982) The ionization equilibrium of astrophysically abundant elements. Astrophys J Suppl Ser 48:95–107

    Article  ADS  Google Scholar 

  • Slane P, Gaensler BM, Dame TM, Hughes JP, Plucinsky PP, Green A (1999) Nonthermal X-ray emission from the shell-type supernova remnant G347.3-0.5. Astrophys J 525:357–367. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1999ApJ...525..357S&db_key=AST

    Article  ADS  Google Scholar 

  • Slane P, Hughes JP, Edgar RJ, Plucinsky PP, Miyata E, Tsunemi H, Aschenbach B (2001) RX J0852.0-4622: another nonthermal shell-type supernova remnant (G266.2-1.2). Astrophys J 548:814–819. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001ApJ...548..814S&db_key=AST

    Article  ADS  Google Scholar 

  • Slane P, Helfand DJ, van der Swaluw E, Murray SS (2004) New Constraints on the structure and evolution of the pulsar wind Nebula 3C 58. Astrophys J 616:403–413. doi:10.1086/424814, arXiv:astro-ph/0405380

    Article  ADS  Google Scholar 

  • Smartt SJ (2009) Progenitors of core-collapse supernovae. Annu Rev Astron Astrophys 47:63–106. doi:10.1146/annurev-astro-082708-101737, arXiv:0908.0700

    Article  ADS  Google Scholar 

  • Smith RC (1997) The discovery of Balmer-filaments encercling SNR RCW 86. Astron J 114:2664. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1997AJ....114.2664S&db_key=AST

    Article  ADS  Google Scholar 

  • Smith RK, Hughes JP (2010) Ionization equilibrium timescales in collisional plasmas. Astrophys J 718:583–585. doi:10.1088/0004-637X/718/1/583, arXiv:1006.0254

    Article  ADS  Google Scholar 

  • Smith RC, Kirshner RP, Blair WP, Winkler PF (1991) Six Balmer-dominated supernova remnants. Astrophys J 375:652–662. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1991ApJ...375..652S&db_key=AST

    Article  ADS  Google Scholar 

  • Sorokina EI, Blinnikov SI, Kosenko DI, Lundqvist P (2004) Dynamics and radiation of young Type-Ia supernova remnants: important physical processes. Astron Lett 30:737–750. doi:10.1134/1.1819492, arXiv:astro-ph/0502026

    Article  ADS  Google Scholar 

  • Spitzer L (1965) Physics of fully ionized gases. Interscience, New York (2nd revised edn)

    Google Scholar 

  • Stanek KZ et al. (2003) Spectroscopic discovery of the supernova 2003dh associated with GRB 030329. Astrophys J 591:L17–L20

    Article  ADS  Google Scholar 

  • Stephenson FR, Green DA (2002) Historical supernovae and their remnants. Clarendon Press, Oxford. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002hsr..book.....S&db_key=AST

    Book  Google Scholar 

  • Strom R, Johnston HM, Verbunt F, Aschenbach B (1995) A radio-emitting X-ray “bullet” ejected by the Vela supernova. Nature 373:590–592. doi:10.1038/373590a0

    Article  ADS  Google Scholar 

  • Strüder L et al. (2001) The European photon imaging camera on XMM-Newton: The pn-CCD camera. Astron Astrophys 365:L18–L26. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001A%26A...365L..18S&db_key=AST

    Article  ADS  Google Scholar 

  • Sunyaev R, Kaniovsky A, Efremov V, Gilfanov M, Churazov E, Grebenev S, Kuznetsov A, Melioranskiy A, Yamburenko N, Yunin S, Stepanov D, Chulkov I, Pappe N, Boyarskiy M, Gavrilova E, Loznikov V, Prudkoglyad A, Rodin V, Reppin C, Pietsch W, Engelhauser J, Truemper J, Voges W, Kendziorra E, Bezler M, Staubert R, Brinkman AC, Heise J, Mels WA, Jager R, Skinner GK, Al-Emam O, Patterson TG, Willmore AP, Gilfanov M, Churazov E (1987) Discovery of hard X-ray emission from supernova 1987A. Nature 330:227–229. doi:10.1038/330227a0

    Article  ADS  Google Scholar 

  • Sushch I, Hnatyk B, Neronov A (2011) Modeling of the Vela complex including the Vela supernova remnant, the binary system γ 2 Velorum, and the Gum nebula. Astron Astrophys 525:A154. doi:10.1051/0004-6361/201015346, arXiv:1011.1177

    Article  ADS  Google Scholar 

  • Takahashi T, Kelley R, Mitsuda K, Kunieda H, Petre R, White N, Dotani T, Fujimoto R, Fukazawa Y, Hayashida K, Ishida M, Ishisaki Y, Kokubun M, Makishima K, Koyama K, Madejski GM, Mori K, Mushotzky R, Nakazawa K, Ogasaka Y, Ohashi T, Ozaki M, Tajima H, Tashiro M, Terada Y, Tsunemi H, Tsuru TG, Ueda Y, Yamasaki N, Watanabe S (2008) The NeXT Mission. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 7011. doi:10.1117/12.789640

    Google Scholar 

  • Tamagawa T, Hayato A, Nakamura S, Terada Y, Bamba A, Hiraga JS, Hughes JP, Hwang U, Kataoka J, Kinugasa K, Kunieda H, Tanaka T, Tsunemi H, Ueno M, Holt SS, Kokubun M, Miyata E, Szymkowiak A, Takahashi T, Tamura K, Ueno D, Makishima K (2009) Suzaku observations of Tycho’s supernova remnant. Publ Astron Soc Jpn 61:167. arXiv:0805.3377

    ADS  Google Scholar 

  • Tanaka Y, Inoue H, Holt SS (1994) The X-ray astronomy satellite ASCA. Publ Astron Soc Jpn 46:L37–L41

    ADS  Google Scholar 

  • Tatischeff V (2009) Radio emission and nonlinear diffusive shock acceleration of cosmic rays in the supernova SN 1993J. Astron Astrophys 499:191–213. doi:10.1051/0004-6361/200811511, arXiv:0903.2944

    Article  ADS  Google Scholar 

  • Taylor G (1950) The formation of a blast wave by a very intense explosion. I. Theoretical discussion. R Soc Lond Proc Ser A 201:159–174

    Article  MATH  ADS  Google Scholar 

  • Teegarden BJ, Barthelmy SD, Gehrels N, Tueller J, Leventhal M (1989) Resolution of the 1,238-keV gamma-ray line from supernova 1987A. Nature 339:122

    Article  ADS  Google Scholar 

  • Tenorio-Tagle G, Rozyczka M, Franco J, Bodenheimer P (1991) On the evolution of supernova remnants. II—Two-dimensional calculations of explosions inside pre-existing wind-driven bubbles. Mon Not R Astron Soc 251:318–329. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1991MNRAS.251..318T&db_key=AST

    ADS  Google Scholar 

  • The LS et al. (1996) CGRO/OSSE observations of the Cassiopeia A SNR. Astron Astrophys Suppl Ser 120:C357

    Article  ADS  Google Scholar 

  • Theiling MF, Leising MD (2006) Investigation of 44Ti decay X-ray lines in CasA. New Astron Rev 50:544–547. doi:10.1016/j.newar.2006.06.054

    Article  ADS  Google Scholar 

  • Thielemann FK, Nomoto K, Hashimoto MA (1996) Core-collapse supernovae and their ejecta. Astrophys J 460:408. doi:10.1086/176980

    Article  ADS  Google Scholar 

  • Thorstensen JR, Fesen RA, van den Bergh S (2001) The expansion center and dynamical age of the galactic supernova remnant Cassiopeia A. Astron J 122:297–307

    Article  ADS  Google Scholar 

  • Toledo-Roy JC, Velázquez PF, de Colle F, González RF, Reynoso EM, Kurtz SE, Reyes-Iturbide J (2009) Numerical model for the SNR DEM L316: simulated X-ray emission. Mon Not R Astron Soc 395:351–357. doi:10.1111/j.1365-2966.2009.14517.x

    Article  ADS  Google Scholar 

  • Troja E, Bocchino F, Miceli M, Reale F (2008) XMM-Newton observations of the supernova remnant IC 443. II. Evidence of stellar ejecta in the inner regions. Astron Astrophys 485:777–785. doi:10.1051/0004-6361:20079123, arXiv:0804.1049

    Article  ADS  Google Scholar 

  • Truelove JK, McKee CF (1999) Evolution of nonradiative supernova remnants. Astrophys J Suppl Ser 120:299–326. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1999ApJS..120..299T&db_key=AST

    Article  ADS  Google Scholar 

  • Tsunemi H, Miyata E, Aschenbach B (1999) Spectroscopic study of the Vela-Shrapnel. Publ Astron Soc Jpn 51:711. arXiv:astro-ph/9909393

    ADS  Google Scholar 

  • Tsunemi H, Katsuda S, Nemes N, Miller ED (2007) The plasma structure of the Cygnus Loop from the northeastern Rim to the southwestern Rim. Astrophys J 671:1717–1725. doi:10.1086/523263, arXiv:0710.1135

    Article  ADS  Google Scholar 

  • Tueller J et al. (1990) Observations of gamma-ray line profiles from SN 1987A. Astrophys J 351:L41–L44

    Article  ADS  Google Scholar 

  • Tüllmann R, Long KS, Pannuti TG, Winkler PF, Plucinsky PP, Gaetz TJ, Williams B, Kuntz KD, Pietsch W, Blair WP, Haberl F, Smith RK (2009) Chandra ACIS survey of M33 (ChASeM33): the enigmatic X-ray emission from IC131. Astrophys J 707:1361–1371. doi:10.1088/0004-637X/707/2/1361, arXiv:0910.5666

    Article  ADS  Google Scholar 

  • Tuohy IR, Burton WM, Clark DH (1982) The peculiar X-ray morphology of the supernova remnant G292.0+1.8—evidence for an asymmetric supernova explosion. Astrophys J 260:L65–L68. doi:10.1086/183871

    Article  ADS  Google Scholar 

  • Turner MJL et al. (2001) The European photon imaging camera on XMM-Newton: the MOS cameras. Astron Astrophys 365:L27–L35

    Article  ADS  Google Scholar 

  • Uchida H, Tsunemi H, Katsuda S, Kimura M (2008) The plasma structure of the southwestern region of the Cygnus Loop with the XMM-Newton observatory. Astrophys J 688:1102–1111. doi:10.1086/592398, arXiv:0809.0594

    Article  ADS  Google Scholar 

  • Uchida H, Tsunemi H, Katsuda S, Kimura M, Kosugi H, Takahashi H (2009) Line-of-sight shell structure of the Cygnus Loop. Astrophys J 705:1152–1159. doi:10.1088/0004-637X/705/2/1152, arXiv:0910.3731

    Article  ADS  Google Scholar 

  • Uchida H, Tsunemi H, Tominaga N, Katsuda S, Kimura M, Kosugi H, Takahashi H, Takakura S (2011) First detection of Ar-K line emission from the Cygnus Loop. e-prints arXiv:1102.1495

  • Uchiyama Y, Aharonian FA (2008) Fast variability of nonthermal X-ray emission in Cassiopeia A: probing electron acceleration in reverse-shocked ejecta. Astrophys J 677:L105–L108. doi:10.1086/588190, arXiv:0803.3410

    Article  ADS  Google Scholar 

  • Uchiyama Y, Aharonian FA, Tanaka T, Takahashi T, Maeda Y (2007) Extremely fast acceleration of cosmic rays in a supernova remnant. Nature 449:576–578. doi:10.1038/nature06210

    Article  ADS  Google Scholar 

  • Ueno M, Yamauchi S, Bamba A, Yamaguchi H, Koyama K, Ebisawa K (2006) Synchrotron X-Ray SNR candidates discovered in the ASCA galactic plane survey. In: Meurs EJA, Fabbiano G (eds) Populations of high energy sources in Galaxies. IAU Symposium, vol 230, pp 333–337. doi:10.1017/S1743921306008593

    Google Scholar 

  • van Adelsberg M, Heng K, McCray R, Raymond JC (2008) Spatial structure and collisionless electron heating in Balmer-dominated shocks. Astrophys J 689:1089–1104. doi:10.1086/592680, arXiv:0803.2521

    Article  ADS  Google Scholar 

  • van den Bergh S, Kamper KW (1977) The remnant of Kepler’s supernova. Astrophys J 218:617–619. doi:10.1086/155719

    Article  ADS  Google Scholar 

  • van der Heyden KJ, Paerels F, Cottam J, Kaastra JS, Branduardi-Raymont G (2001) Detection of X-ray line emission from the shell of SNR B0540-69.3 with XMM-Newton RGS. Astron Astrophys 365:L254–L258. doi:10.1051/0004-6361:20000113, arXiv:astro-ph/0011487

    Article  ADS  Google Scholar 

  • van der Heyden KJ, Behar E, Vink J, Rasmussen AP, Kaastra JS, Bleeker JAM, Kahn SM, Mewe R (2002a) High-resolution X-ray imaging and spectroscopy of N 103B. Astron Astrophys 392:955–962. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002A%26A...392..955V&db_key=AST

    Article  ADS  Google Scholar 

  • van der Heyden KJ, Bleeker JAM, Kaastra JS, Vink J (2003) High resolution spectroscopy and emission line imaging of DEM L 71 with XMM-Newton. Astron Astrophys 406:141–148

    Article  ADS  Google Scholar 

  • van der Heyden KJ, Bleeker JAM, Kaastra JS (2004) Synoptic study of the SMC SNRs using XMM-Newton. Astron Astrophys 421:1031–1043. doi:10.1051/0004-6361:20034156, arXiv:astro-ph/0309030

    Article  ADS  Google Scholar 

  • van der Heyden KJ et al. (2002b) High-resolution X-ray imaging and spectroscopy of N 103B. Astron Astrophys 392:955–962. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002A%26A...392..955V&db_key=AST

    Article  ADS  Google Scholar 

  • van der Laan H (1962) Expanding supernova remnants and galactic radio sources. Mon Not R Astron Soc 124:125

    ADS  Google Scholar 

  • van der Swaluw E, Wu Y (2001) Inferring initial spin periods for neutron stars in composite remnants. Astrophys J 555:L49–L53. doi:10.1086/321733

    Article  ADS  Google Scholar 

  • van Loon JT, Cioni M, Zijlstra AA, Loup C (2005) An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars. Astron Astrophys 438:273–289. doi:10.1051/0004-6361:20042555, arXiv:astro-ph/0504379

    Article  ADS  Google Scholar 

  • van Veelen B, Langer N, Vink J, García-Segura G, van Marle AJ (2009) The hydrodynamics of the supernova remnant Cassiopeia A. The influence of the progenitor evolution on the velocity structure and clumping. Astron Astrophys 503:495–503. doi:10.1051/0004-6361/200912393, arXiv:0907.1197

    Article  ADS  Google Scholar 

  • Velázquez PF, Martinell JJ, Raga AC, Giacani EB (2004) Effects of thermal conduction on the X-ray and synchrotron emission from supernova remnants. Astrophys J 601:885–895. doi:10.1086/380755

    Article  ADS  Google Scholar 

  • Vink J (2004a) High resolution X-ray spectroscopy of SN 1006. arXiv:astro-ph/0412447

  • Vink J (2004b) X- and γ-ray studies of Cas A: exposing core collapse to the core. New Astron Rev 48:61–67

    Article  ADS  Google Scholar 

  • Vink J (2006) X-ray high resolution and imaging spectroscopy of supernova remnants. In: Wilson A (ed) The X-ray Universe 2005. ESA SP-604, vol 1, p 319 (ESA, ESTEC, The Netherlands)

    Google Scholar 

  • Vink J (2008a) Multiwavelength signatures of cosmic ray acceleration by young supernova remnants. In: American institute of physics conference series, vol 1085, pp 169–180. doi:10.1063/1.3076632

    Google Scholar 

  • Vink J (2008b) Non-thermal bremsstrahlung from supernova remnants and the effect of Coulomb losses. Astron Astrophys 486:837–841. doi:10.1051/0004-6361:200809669, arXiv:0806.4393

    Article  ADS  Google Scholar 

  • Vink J (2008c) The kinematics of Kepler’s supernova remnant as revealed by Chandra. Astrophys J 689:231–241. doi:10.1086/592375, arXiv:0803.4011

    Article  ADS  Google Scholar 

  • Vink J, Bamba A (2009) The discovery of a pulsar wind nebula around the magnetar candidate AXP 1E1547.0-5408. Astrophys J 707:L148–L152. arXiv:0909.3843

    Article  ADS  Google Scholar 

  • Vink J, Kuiper L (2006) Supernova remnant energetics and magnetars: no evidence in favour of millisecond proto-neutron stars. Mon Not R Astron Soc 370:L14–L18. doi:10.1111/j.1745-3933.2006.00178.x, arXiv:astro-ph/0604187

    Article  ADS  Google Scholar 

  • Vink J, Laming JM (2003) On the magnetic fields and particle acceleration in Cassiopeia A. Astrophys J 584:758–769. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2003ApJ...584..758V&db_key=AST

    Article  ADS  Google Scholar 

  • Vink J, Kaastra JS, Bleeker JAM (1996) A new mass estimate and puzzling abundances of SNR Cassiopeia A. Astron Astrophys 307:L41–L44. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1996A%26A...307L..41V&db_key=AST

    ADS  Google Scholar 

  • Vink J, Kaastra JS, Bleeker JAM (1997) X-ray spectroscopy of the supernova remnant RCW 86. A new challenge for modeling the emission from supernova remnants. Astron Astrophys 328:628–633. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1997A%26A...328..628V&db_key=AST

    ADS  Google Scholar 

  • Vink J, Bloemen H, Kaastra JS, Bleeker JAM (1998) The expansion of Cassiopeia A as seen in X-rays. Astron Astrophys 339:201–207. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1998A%26A...339..201V&db_key=AST

    ADS  Google Scholar 

  • Vink J, Maccarone MC, Kaastra JS, Mineo T, Bleeker JAM, Preite-Martinez A, Bloemen H, (1999) A comparison of the X-ray line and continuum morphology of Cassiopeia A. Astron Astrophys 344:289–294. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1999A%26A...344..289V&db_key=AST

    ADS  Google Scholar 

  • Vink J, Laming JM, Gu MF, Rasmussen A, Kaastra J (2003) Slow temperature equilibration behind the shock front of SN 1006. Astrophys J 587:31–34. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2003ApJ...584..758V&db_key=AST

    Article  ADS  Google Scholar 

  • Vink J, Bleeker J, Kaastra JS, Rasmussen A (2004) High resolution X-ray spectroscopy of G292.0+1.8/MSH 11-54. Nucl Phys B, Proc Suppl 132:62–65. doi:10.1016/j.nuclphysbps.2004.04.009

    Article  ADS  Google Scholar 

  • Vink J, Bleeker J, van der Heyden K, Bykov A, Bamba A, Yamazaki R (2006) The X-ray synchrotron emission of RCW 86 and the implications for its age. Astrophys J 648:L33–L37. doi:10.1086/507628

    Article  ADS  Google Scholar 

  • Vink J, Yamazaki R, Helder EA, Schure KM (2010) The relation between post-shock temperature, cosmic-ray pressure, and cosmic-ray escape for non-relativistic shocks. Astrophys J 722:1727–1734. doi:10.1088/0004-637X/722/2/1727, arXiv:1008.4367

    Article  ADS  Google Scholar 

  • Vink J et al. (2001) Detection of the 67.9 and 78.4 keV lines associated with the radioactive decay of 44Ti in Cassiopeia A. Astrophys J 560:L79–L82. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001ApJ...560L..79V&db_key=AST

    Article  ADS  Google Scholar 

  • Vladimirov AE, Bykov AM, Ellison DC (2008) Turbulence dissipation and particle injection in nonlinear diffusive shock acceleration with magnetic field amplification. Astrophys J 688:1084–1101. doi:10.1086/592240, arXiv:0807.1321

    Article  ADS  Google Scholar 

  • Völk HJ, Berezhko EG, Ksenofontov LT (2003) Variation of cosmic ray injection across supernova shocks. Astron Astrophys 409:563–571. doi:10.1051/0004-6361:20031082, arXiv:astro-ph/0306016

    Article  ADS  Google Scholar 

  • Völk HJ, Berezhko EG, Ksenofontov LT (2005) Magnetic field amplification in Tycho and other shell-type supernova remnants. Astron Astrophys 433:229–240

    Article  ADS  Google Scholar 

  • Wampler EJ, Wang L, Baade D, Banse K, D’Odorico S, Gouiffes C, Tarenghi M (1990) Observations of the nebulosities near SN 1987A. Astrophys J 362:L13–L16. doi:10.1086/185836

    Article  ADS  Google Scholar 

  • Wang L, Howell DA, Höflich P, Wheeler JC (2001) Bipolar supernova explosions. Astrophys J 550:1030–1035. doi:10.1086/319822

    Article  ADS  Google Scholar 

  • Warren JS, Hughes JP (2004) Raising the dead: clues to Type Ia supernova physics from the remnant 0509-67.5. Astrophys J 608:261–273

    Article  ADS  Google Scholar 

  • Warren JS et al. (2005) Cosmic-ray acceleration at the forward shock in Tycho’s supernova remnant: evidence from Chandra X-ray observations. Astrophys J 634:376–389. doi:10.1086/496941

    Article  ADS  Google Scholar 

  • Weaver R, McCray R, Castor J, Shapiro P, Moore R (1977) Interstellar bubbles. II—Structure and evolution. Astrophys J 218:377–395. doi:10.1086/155692

    Article  ADS  Google Scholar 

  • Webber WR (1998) A new estimate of the local interstellar energy density and ionization rate of galactic cosmic rays. Astrophys J 506:329–334. doi:10.1086/306222

    Article  ADS  Google Scholar 

  • Weiler KW, Panagia N (1978) Are Crab-type supernova remnants (Plerions) short-lived? Astron Astrophys 70:419

    ADS  Google Scholar 

  • Weiler KW, Panagia N, Sramek RA, van Dyk SD, Williams CL, Stockdale CJ, Kelley MT (2009) Radio emission from supernovae. In: Giobbi G, Tornambe A, Raimondo G, Limongi M, Antonelli LA, Menci N, Brocato E (eds) American institute of physics conference series, vol 1111, pp 440–447. doi:10.1063/1.3141589

    Google Scholar 

  • Weinberg NN, Quataert E (2008) Non-linear saturation of g-modes in proto-neutron stars: quieting the acoustic engine. Mon Not R Astron Soc 387:L64–L68. doi:10.1111/j.1745-3933.2008.00486.x, arXiv:0802.1522

    Article  ADS  Google Scholar 

  • Westerlund BE (1969) OB stars near the supernova remnant RCW 86. Astron J 74:879–881. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1969AJ.....74..879W&db_key=AST

    Article  ADS  Google Scholar 

  • Wheeler JC, Meier DL, Wilson JR (2002) Asymmetric supernovae from magnetocentrifugal jets. Astrophys J 568:807–819. doi:10.1086/338953, arXiv:astro-ph/0112020

    Article  ADS  Google Scholar 

  • White RL, Long KS (1991) Supernova remnant evolution in an interstellar medium with evaporating clouds. Astrophys J 373:543–555. doi:10.1086/170073

    Article  ADS  Google Scholar 

  • Williams RM, Chu YH (2005) Supernova remnants in the magellanic clouds. VI. The DEM L316 supernova remnants. Astrophys J 635:1077–1086. doi:10.1086/497681, arXiv:astro-ph/0509696

    Article  ADS  Google Scholar 

  • Williams BJ, Blair WP, Blondin JM, Borkowski KJ, Ghavamian P, Long KS, Raymond JC, Reynolds SP, Rho J, Winkler PF (2011) RCW 86: A Type Ia supernova in a wind-blown bubble. Astrophys J 741:96. doi:10.1088/0004-637X/741/2/96, arXiv:1108.1207

    Article  ADS  Google Scholar 

  • Willingale R, West RG, Pye JP, Stewart GC (1996) ROSAT PSPC observations of the remnant of SN 1006. Mon Not R Astron Soc 278:749–762. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1996MNRAS.278..749W&db_key=AST

    ADS  Google Scholar 

  • Willingale R, Bleeker JAM, van der Heyden KJ, Kaastra JS, Vink J (2002) X-ray spectral imaging and Doppler mapping of Cassiopeia A. Astron Astrophys 381:1039–1048. URL: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002A%26A...381..1039W&db_key=AST

    Article  ADS  Google Scholar 

  • Willingale R, Bleeker JAM, van der Heyden KJ, Kaastra JS (2003) The mass and energy budget of Cassiopeia A. Astron Astrophys 398:1021–1028

    Article  ADS  Google Scholar 

  • Winkler PF, Clark GW, Markert TH, Petre R, Canizares CR (1981) X-ray line emission from the Puppis A supernova remnant—oxygen lines. Astrophys J 245:574–580

    Article  ADS  Google Scholar 

  • Woltjer L (1972) Supernova remnants. Annu Rev Astron Astrophys 10:129. doi:10.1146/annurev.aa.10.090172.001021

    Article  ADS  Google Scholar 

  • Woosley S, Janka T (2005) The physics of core-collapse supernovae. Nat Phys 1:147–154. doi:10.1038/nphys172, arXiv:astro-ph/0601261

    Article  Google Scholar 

  • Woosley SE, Weaver TA (1995) The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys J Suppl Ser 101:181

    Article  ADS  Google Scholar 

  • Woosley SE, Eastman RG, Weaver TA, Pinto PA (1994) SN 1993J: a Type IIb supernova. Astrophys J 429:300–318. doi:10.1086/174319

    Article  ADS  Google Scholar 

  • Woosley SE, Kasen D, Blinnikov S, Sorokina E (2007) Type Ia supernova light curves. Astrophys J 662:487–503. doi:10.1086/513732, arXiv:astro-ph/0609562

    Article  ADS  Google Scholar 

  • Yamaguchi H, Koyama K, Katsuda S, Nakajima H, Hughes JP, Bamba A, Hiraga JS, Mori K, Ozaki M, Tsuru TG (2007) X-ray spectroscopy of SN 1006 with Suzaku. e-prints 706, arXiv:0706.4146

  • Yamaguchi H, Koyama K, Katsuda S, Nakajima H, Hughes JP, Bamba A, Hiraga JS, Mori K, Ozaki M, Tsuru TG (2008) X-ray spectroscopy of SN 1006 with Suzaku. Publ Astron Soc Jpn 60:141. arXiv:0706.4146

    ADS  Google Scholar 

  • Yamaguchi H, Ozawa M, Koyama K, Masai K, Hiraga JS, Ozaki M, Yonetoku D (2009) Discovery of strong radiative recombination continua from the supernova remnant IC 443 with Suzaku. Astrophys J 705:L6–L9. doi:10.1088/0004-637X/705/1/L6, arXiv:0909.3848

    Article  ADS  Google Scholar 

  • Yang X, Lu F, Chen L (2008) High spatial resolution X-ray spectroscopy of Cas A with Chandra. Chin J Astron Astrophys 8:439–450. doi:10.1088/1009-9271/8/4/08, arXiv:0712.1071

    Article  MathSciNet  ADS  Google Scholar 

  • Yang XJ, Tsunemi H, Lu FJ, Chen L (2009) A Cr-K emission line survey in young supernova remnants with Chandra. Astrophys J 692:894–901. doi:10.1088/0004-637X/692/1/894, arXiv:0810.4687

    Article  ADS  Google Scholar 

  • Young PA et al. (2006) Constraints on the progenitor of Cassiopeia A. Astrophys J 640:891–900. doi:10.1086/500108, arXiv:astro-ph/0511806

    Article  ADS  Google Scholar 

  • Yusef-Zadeh F, Uchida KI, Roberts D (1995) Shock-excited OH maser emission outlining the galactic center supernova remnant G359.1-0.05. Science 270:1801–1804. doi:10.1126/science.270.5243.1801

    Article  ADS  Google Scholar 

  • Yusef-Zadeh F, Roberts DA, Goss WM, Frail DA, Green AJ (1996) Detection of 1720 MHz hydroxl masers at the galactic center: evidence for shock-excited gas and Milligauss fields. Astrophys J 466:L25. doi:10.1086/310165

    Article  ADS  Google Scholar 

  • Yusef-Zadeh F, Goss WM, Roberts DA, Robinson B, Frail DA (1999) Three new supernova remnant OH masers near the galactic center: evidence for large-scale maser emission from supernova remnants. Astrophys J 527:172–179. doi:10.1086/308087, arXiv:astro-ph/9907370

    Article  ADS  Google Scholar 

  • Zel’dovich Y, Raizer YP (1966) Elements of gasdynamics and the classical theory of shock waves. Academic Press, New York, edited by Hayes WD, Probstein RF

    Google Scholar 

  • Zhekov SA, McCray R, Dewey D, Canizares CR, Borkowski KJ, Burrows DN, Park S (2009) High-resolution X-ray spectroscopy of SNR 1987A: Chandra Letg and HETG observations in 2007. Astrophys J 692:1190–1204. doi:10.1088/0004-637X/692/2/1190, arXiv:0810.5313

    Article  ADS  Google Scholar 

  • Zhekov SA, Park S, McCray R, Racusin JL, Burrows DN (2010) Evolution of the Chandra CCD spectra of SNR 1987A: probing the reflected-shock picture. Mon Not R Astron Soc 407:1157–1169. doi:10.1111/j.1365-2966.2010.16967.x, arXiv:1005.1037

    Article  ADS  Google Scholar 

  • Zirakashvili VN, Aharonian F (2007) Analytical solutions for energy spectra of electrons accelerated by nonrelativistic shock-waves in shell type supernova remnants. Astron Astrophys 465:695–702. doi:10.1051/0004-6361:20066494, arXiv:astro-ph/0612717

    Article  MATH  ADS  Google Scholar 

  • Zirakashvili VN, Aharonian FA (2010) Nonthermal radiation of young supernova remnants: the case of RX J1713.7-3946. Astrophys J 708:965–980. doi:10.1088/0004-637X/708/2/965, arXiv:0909.2285

    Article  ADS  Google Scholar 

  • Zirakashvili VN, Ptuskin VS (2008) The influence of the Alfvénic drift on the shape of cosmic ray spectra in SNRs. In: Aharonian FA, Hofmann W, Rieger F (eds) American institute of physics conference series, vol 1085, pp 336–339. doi:10.1063/1.3076675

    Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4