A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/JHEP12(2020)136 below:

A critical look at the electroweak phase transition

A critical look at the electroweak phase transition

Abstract

The electroweak phase transition broke the electroweak symmetry. Perturbative methods used to calculate observables related to this phase transition suffer from severe problems such as gauge dependence, infrared divergences, and a breakdown of perturbation theory. In this paper we develop robust perturbative tools for dealing with phase transitions. We argue that gauge and infrared problems are absent in a consistent power-counting. We calculate the finite temperature effective potential to two loops for general gauge-fixing parameters in a generic model. We demonstrate gauge invariance, and perform numerical calculations for the Standard Model in Fermi gauge.

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. WMAP collaboration, First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results, Astrophys. J. Suppl. 148 (2003) 1 [astro-ph/0302207] [INSPIRE].

  2. D.J. Weir, Gravitational waves from a first order electroweak phase transition: a brief review, Phil. Trans. Roy. Soc. Lond. A 376 (2018) 20170126 [arXiv:1705.01783] [INSPIRE].

    ADS  MATH  Google Scholar 

  3. C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with LISA: an update, JCAP 03 (2020) 024 [arXiv:1910.13125] [INSPIRE].

    Article  ADS  Google Scholar 

  4. M.J. Ramsey-Musolf, The electroweak phase transition: a collider target, JHEP 09 (2020) 179 [arXiv:1912.07189] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. N.F. Bell, M.J. Dolan, L.S. Friedrich, M.J. Ramsey-Musolf and R.R. Volkas, Two-step electroweak symmetry-breaking: theory meets experiment, JHEP 05 (2020) 050 [arXiv:2001.05335] [INSPIRE].

    Article  ADS  Google Scholar 

  6. D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].

    Article  ADS  Google Scholar 

  7. E. Senaha, Symmetry restoration and breaking at finite temperature: an introductory review, Symmetry 12 (2020) 733 [INSPIRE].

    Article  Google Scholar 

  8. H.H. Patel and M.J. Ramsey-Musolf, Baryon washout, electroweak phase transition, and perturbation theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Andreassen, W. Frost and M.D. Schwartz, Consistent use of effective potentials, Phys. Rev. D 91 (2015) 016009 [arXiv:1408.0287] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J.I. Kapusta and C. Gale, Finite-temperature field theory: principles and applications, Cambridge University Press, Cambridge, U.K. (2011) [INSPIRE].

    MATH  Google Scholar 

  11. P.B. Arnold and O. Espinosa, The effective potential and first order phase transitions: beyond leading-order, Phys. Rev. D 47 (1993) 3546 [Erratum ibid. 50 (1994) 6662] [hep-ph/9212235] [INSPIRE].

  12. M. Laine and A. Vuorinen, Basics of thermal field theory, Lect. Notes Phys. 925 (2016) 1 [arXiv:1701.01554] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  13. R.R. Parwani, Resummation in a hot scalar field theory, Phys. Rev. D 45 (1992) 4695 [Erratum ibid. 48 (1993) 5965] [hep-ph/9204216] [INSPIRE].

  14. D. Curtin, P. Meade and H. Ramani, Thermal resummation and phase transitions, Eur. Phys. J. C 78 (2018) 787 [arXiv:1612.00466] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Laine, M. Meyer and G. Nardini, Thermal phase transition with full 2-loop effective potential, Nucl. Phys. B 920 (2017) 565 [arXiv:1702.07479] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. K. Rummukainen, K. Kajantie, M. Laine, M.E. Shaposhnikov and M. Tsypin, The Ising model universality of the electroweak theory, Nucl. Phys. B Proc. Suppl. 73 (1999) 653 [hep-lat/9809121] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M. Gurtler, E.-M. Ilgenfritz and A. Schiller, Where the electroweak phase transition ends, Phys. Rev. D 56 (1997) 3888 [hep-lat/9704013] [INSPIRE].

    Article  ADS  Google Scholar 

  18. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Is there a hot electroweak phase transition at mH larger or equal to mW?, Phys. Rev. Lett. 77 (1996) 2887 [hep-ph/9605288] [INSPIRE].

    Article  ADS  Google Scholar 

  19. F. Karsch, T. Neuhaus, A. Patkos and J. Rank, Critical Higgs mass and temperature dependence of gauge boson masses in the SU(2) gauge Higgs model, Nucl. Phys. B Proc. Suppl. 53 (1997) 623 [hep-lat/9608087] [INSPIRE].

  20. M. Laine, Gauge dependence of the high temperature two loop effective potential for the Higgs field, Phys. Rev. D 51 (1995) 4525 [hep-ph/9411252] [INSPIRE].

    Article  ADS  Google Scholar 

  21. S.P. Martin and H.H. Patel, Two-loop effective potential for generalized gauge fixing, Phys. Rev. D 98 (2018) 076008 [arXiv:1808.07615] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. N.K. Nielsen, On the gauge dependence of spontaneous symmetry breaking in gauge theories, Nucl. Phys. B 101 (1975) 173 [INSPIRE].

    Article  ADS  Google Scholar 

  23. S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Dine, R.G. Leigh, P.Y. Huet, A.D. Linde and D.A. Linde, Towards the theory of the electroweak phase transition, Phys. Rev. D 46 (1992) 550 [hep-ph/9203203] [INSPIRE].

    Article  ADS  Google Scholar 

  25. K. Farakos, K. Kajantie, K. Rummukainen and M.E. Shaposhnikov, The electroweak phase transition at mHmW, Phys. Lett. B 336 (1994) 494 [hep-ph/9405234] [INSPIRE].

    Article  ADS  Google Scholar 

  26. Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  27. M. Garny and T. Konstandin, On the gauge dependence of vacuum transitions at finite temperature, JHEP 07 (2012) 189 [arXiv:1205.3392] [INSPIRE].

    Article  ADS  Google Scholar 

  28. S.P. Martin, Effective potential at three loops, Phys. Rev. D 96 (2017) 096005 [arXiv:1709.02397] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Ekstedt and J. Löfgren, The high-temperature expansion of the thermal sunset, arXiv:2006.02179 [INSPIRE].

  30. W. Buchmüller, T. Helbig and D. Walliser, First order phase transitions in scalar electrodynamics, Nucl. Phys. B 407 (1993) 387 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information Authors and Affiliations
  1. Institute of Particle and Nuclear Physics, Charles University, V Holešovičkách 2, 180 00, Prague, Czech Republic

    Andreas Ekstedt

  2. Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden

    Johan Löfgren

Authors
  1. Andreas Ekstedt
  2. Johan Löfgren
Corresponding author

Correspondence to Johan Löfgren.

Additional information Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2006.12614

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article Cite this article

Ekstedt, A., Löfgren, J. A critical look at the electroweak phase transition. J. High Energ. Phys. 2020, 136 (2020). https://doi.org/10.1007/JHEP12(2020)136

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4