A critical look at the electroweak phase transition
AbstractThe electroweak phase transition broke the electroweak symmetry. Perturbative methods used to calculate observables related to this phase transition suffer from severe problems such as gauge dependence, infrared divergences, and a breakdown of perturbation theory. In this paper we develop robust perturbative tools for dealing with phase transitions. We argue that gauge and infrared problems are absent in a consistent power-counting. We calculate the finite temperature effective potential to two loops for general gauge-fixing parameters in a generic model. We demonstrate gauge invariance, and perform numerical calculations for the Standard Model in Fermi gauge.
Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. ReferencesWMAP collaboration, First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results, Astrophys. J. Suppl. 148 (2003) 1 [astro-ph/0302207] [INSPIRE].
D.J. Weir, Gravitational waves from a first order electroweak phase transition: a brief review, Phil. Trans. Roy. Soc. Lond. A 376 (2018) 20170126 [arXiv:1705.01783] [INSPIRE].
C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with LISA: an update, JCAP 03 (2020) 024 [arXiv:1910.13125] [INSPIRE].
M.J. Ramsey-Musolf, The electroweak phase transition: a collider target, JHEP 09 (2020) 179 [arXiv:1912.07189] [INSPIRE].
N.F. Bell, M.J. Dolan, L.S. Friedrich, M.J. Ramsey-Musolf and R.R. Volkas, Two-step electroweak symmetry-breaking: theory meets experiment, JHEP 05 (2020) 050 [arXiv:2001.05335] [INSPIRE].
D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].
E. Senaha, Symmetry restoration and breaking at finite temperature: an introductory review, Symmetry 12 (2020) 733 [INSPIRE].
H.H. Patel and M.J. Ramsey-Musolf, Baryon washout, electroweak phase transition, and perturbation theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].
A. Andreassen, W. Frost and M.D. Schwartz, Consistent use of effective potentials, Phys. Rev. D 91 (2015) 016009 [arXiv:1408.0287] [INSPIRE].
J.I. Kapusta and C. Gale, Finite-temperature field theory: principles and applications, Cambridge University Press, Cambridge, U.K. (2011) [INSPIRE].
P.B. Arnold and O. Espinosa, The effective potential and first order phase transitions: beyond leading-order, Phys. Rev. D 47 (1993) 3546 [Erratum ibid. 50 (1994) 6662] [hep-ph/9212235] [INSPIRE].
M. Laine and A. Vuorinen, Basics of thermal field theory, Lect. Notes Phys. 925 (2016) 1 [arXiv:1701.01554] [INSPIRE].
R.R. Parwani, Resummation in a hot scalar field theory, Phys. Rev. D 45 (1992) 4695 [Erratum ibid. 48 (1993) 5965] [hep-ph/9204216] [INSPIRE].
D. Curtin, P. Meade and H. Ramani, Thermal resummation and phase transitions, Eur. Phys. J. C 78 (2018) 787 [arXiv:1612.00466] [INSPIRE].
M. Laine, M. Meyer and G. Nardini, Thermal phase transition with full 2-loop effective potential, Nucl. Phys. B 920 (2017) 565 [arXiv:1702.07479] [INSPIRE].
K. Rummukainen, K. Kajantie, M. Laine, M.E. Shaposhnikov and M. Tsypin, The Ising model universality of the electroweak theory, Nucl. Phys. B Proc. Suppl. 73 (1999) 653 [hep-lat/9809121] [INSPIRE].
M. Gurtler, E.-M. Ilgenfritz and A. Schiller, Where the electroweak phase transition ends, Phys. Rev. D 56 (1997) 3888 [hep-lat/9704013] [INSPIRE].
K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Is there a hot electroweak phase transition at mH larger or equal to mW?, Phys. Rev. Lett. 77 (1996) 2887 [hep-ph/9605288] [INSPIRE].
F. Karsch, T. Neuhaus, A. Patkos and J. Rank, Critical Higgs mass and temperature dependence of gauge boson masses in the SU(2) gauge Higgs model, Nucl. Phys. B Proc. Suppl. 53 (1997) 623 [hep-lat/9608087] [INSPIRE].
M. Laine, Gauge dependence of the high temperature two loop effective potential for the Higgs field, Phys. Rev. D 51 (1995) 4525 [hep-ph/9411252] [INSPIRE].
S.P. Martin and H.H. Patel, Two-loop effective potential for generalized gauge fixing, Phys. Rev. D 98 (2018) 076008 [arXiv:1808.07615] [INSPIRE].
N.K. Nielsen, On the gauge dependence of spontaneous symmetry breaking in gauge theories, Nucl. Phys. B 101 (1975) 173 [INSPIRE].
S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].
M. Dine, R.G. Leigh, P.Y. Huet, A.D. Linde and D.A. Linde, Towards the theory of the electroweak phase transition, Phys. Rev. D 46 (1992) 550 [hep-ph/9203203] [INSPIRE].
K. Farakos, K. Kajantie, K. Rummukainen and M.E. Shaposhnikov, The electroweak phase transition at mH ≃ mW, Phys. Lett. B 336 (1994) 494 [hep-ph/9405234] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
M. Garny and T. Konstandin, On the gauge dependence of vacuum transitions at finite temperature, JHEP 07 (2012) 189 [arXiv:1205.3392] [INSPIRE].
S.P. Martin, Effective potential at three loops, Phys. Rev. D 96 (2017) 096005 [arXiv:1709.02397] [INSPIRE].
A. Ekstedt and J. Löfgren, The high-temperature expansion of the thermal sunset, arXiv:2006.02179 [INSPIRE].
W. Buchmüller, T. Helbig and D. Walliser, First order phase transitions in scalar electrodynamics, Nucl. Phys. B 407 (1993) 387 [INSPIRE].
Institute of Particle and Nuclear Physics, Charles University, V Holešovičkách 2, 180 00, Prague, Czech Republic
Andreas Ekstedt
Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
Johan Löfgren
Correspondence to Johan Löfgren.
Additional information Publisher’s NoteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2006.12614
Rights and permissionsOpen Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article Cite this articleEkstedt, A., Löfgren, J. A critical look at the electroweak phase transition. J. High Energ. Phys. 2020, 136 (2020). https://doi.org/10.1007/JHEP12(2020)136
Received: 25 June 2020
Revised: 11 September 2020
Accepted: 10 November 2020
Published: 21 December 2020
DOI: https://doi.org/10.1007/JHEP12(2020)136
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4