A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/JHEP09(2015)174 below:

The cosmological Higgstory of the vacuum instability

  • D. Buttazzo, G. Degrassi, P.P. Giardino, G.F. Giudice, F. Sala, A. Salvio et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].

    Article  ADS  Google Scholar 

  • G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  • J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto and A. Strumia, Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273 [INSPIRE].

    Article  ADS  Google Scholar 

  • P.B. Arnold, Can the electroweak vacuum be unstable?, Phys. Rev. D 40 (1989) 613 [INSPIRE].

    ADS  Google Scholar 

  • G. Altarelli and G. Isidori, Lower limit on the Higgs mass in the standard model: an update, Phys. Lett. B 337 (1994) 141 [INSPIRE].

    Article  ADS  Google Scholar 

  • J.A. Casas, J.R. Espinosa and M. Quirós, Standard model stability bounds for new physics within LHC reach, Phys. Lett. B 382 (1996) 374 [hep-ph/9603227] [INSPIRE].

  • T. Hambye and K. Riesselmann, Matching conditions and Higgs mass upper bounds revisited, Phys. Rev. D 55 (1997) 7255 [hep-ph/9610272] [INSPIRE].

  • G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].

  • G. Isidori, V.S. Rychkov, A. Strumia and N. Tetradis, Gravitational corrections to standard model vacuum decay, Phys. Rev. D 77 (2008) 025034 [arXiv:0712.0242] [INSPIRE].

    ADS  Google Scholar 

  • J. Ellis, J.R. Espinosa, G.F. Giudice, A. Hoecker and A. Riotto, The probable fate of the standard model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [INSPIRE].

    Article  ADS  Google Scholar 

  • F. Bezrukov, M. Yu. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    Article  ADS  Google Scholar 

  • S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].

    Article  ADS  Google Scholar 

  • J.R. Espinosa, G.F. Giudice and A. Riotto, Cosmological implications of the Higgs mass measurement, JCAP 05 (2008) 002 [arXiv:0710.2484] [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Kobakhidze and A. Spencer-Smith, Electroweak vacuum (in)stability in an inflationary universe, Phys. Lett. B 722 (2013) 130 [arXiv:1301.2846] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • K. Enqvist, T. Meriniemi and S. Nurmi, Generation of the Higgs condensate and its decay after inflation, JCAP 10 (2013) 057 [arXiv:1306.4511] [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Fairbairn and R. Hogan, Electroweak vacuum stability in light of BICEP2, Phys. Rev. Lett. 112 (2014) 201801 [arXiv:1403.6786] [INSPIRE].

    Article  ADS  Google Scholar 

  • K. Enqvist, T. Meriniemi and S. Nurmi, Higgs dynamics during inflation, JCAP 07 (2014) 025 [arXiv:1404.3699] [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Kobakhidze and A. Spencer-Smith, The Higgs vacuum is unstable, arXiv:1404.4709 [INSPIRE].

  • M. Herranen, T. Markkanen, S. Nurmi and A. Rajantie, Spacetime curvature and the Higgs stability during inflation, Phys. Rev. Lett. 113 (2014) 211102 [arXiv:1407.3141] [INSPIRE].

    Article  ADS  Google Scholar 

  • K. Kamada, Inflationary cosmology and the standard model Higgs with a small Hubble induced mass, Phys. Lett. B 742 (2015) 126 [arXiv:1409.5078] [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Shkerin and S. Sibiryakov, On stability of electroweak vacuum during inflation, Phys. Lett. B 746 (2015) 257 [arXiv:1503.02586] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • A. Hook, J. Kearney, B. Shakya and K.M. Zurek, Probable or improbable universe? Correlating electroweak vacuum instability with the scale of inflation, JHEP 01 (2015) 061 [arXiv:1404.5953] [INSPIRE].

    Article  ADS  Google Scholar 

  • J. Kearney, H. Yoo and K.M. Zurek, Is a Higgs vacuum instability fatal for high-scale inflation?, Phys. Rev. D 91 (2015) 123537 [arXiv:1503.05193] [INSPIRE].

    ADS  Google Scholar 

  • S.R. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D 21 (1980) 3305 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • S.W. Hawking and I.G. Moss, Supercooled phase transitions in the very early universe, Phys. Lett. B 110 (1982) 35 [INSPIRE].

    Article  ADS  Google Scholar 

  • G.W. Gibbons and S.W. Hawking, Cosmological event horizons, thermodynamics and particle creation, Phys. Rev. D 15 (1977) 2738 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • A.A. Starobinsky, Cosmological models with the intermediate de Sitter stage: theory and observational consequences, in Fundamental interactions, MGPI Press, Moscow Russia (1984).

  • A.A. Starobinsky, Stochastic de sitter (inflationary) stage in the early universe, in Current topics in field theory, quantum gravity and strings, in Current topics in field theory, quantum gravity and strings, H.J. de Vega and N. Sanchez eds., Springer (1986).

  • A.D. Linde, Eternally existing selfreproducing chaotic inflationary universe, Phys. Lett. B 175 (1986) 395 [INSPIRE].

    Article  ADS  Google Scholar 

  • A.D. Linde, Hard art of the universe creation (stochastic approach to tunneling and baby universe formation), Nucl. Phys. B 372 (1992) 421 [hep-th/9110037] [INSPIRE].

    Article  ADS  Google Scholar 

  • L. Di Luzio and L. Mihaila, On the gauge dependence of the standard model vacuum instability scale, JHEP 06 (2014) 079 [arXiv:1404.7450] [INSPIRE].

    Article  Google Scholar 

  • A. Andreassen, W. Frost and M.D. Schwartz, Consistent use of effective potentials, Phys. Rev. D 91 (2015) 016009 [arXiv:1408.0287] [INSPIRE].

    ADS  Google Scholar 

  • A. Andreassen, W. Frost and M.D. Schwartz, Consistent use of the standard model effective potential, Phys. Rev. Lett. 113 (2014) 241801 [arXiv:1408.0292] [INSPIRE].

    Article  ADS  Google Scholar 

  • N.K. Nielsen, Removing the gauge parameter dependence of the effective potential by a field redefinition, Phys. Rev. D 90 (2014) 036008 [arXiv:1406.0788] [INSPIRE].

    ADS  Google Scholar 

  • S.H.H. Tye and Y. Vtorov-Karevsky, Effective action of spontaneously broken gauge theories, Int. J. Mod. Phys. A 13 (1998) 95 [hep-th/9601176] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • W. Buchmüller, Z. Fodor and A. Hebecker, Gauge invariant treatment of the electroweak phase transition, Phys. Lett. B 331 (1994) 131 [hep-ph/9403391] [INSPIRE].

  • N.K. Nielsen, On the gauge dependence of spontaneous symmetry breaking in gauge theories, Nucl. Phys. B 101 (1975) 173 [INSPIRE].

    Article  ADS  Google Scholar 

  • R. Fukuda and T. Kugo, Gauge invariance in the effective action and potential, Phys. Rev. D 13 (1976) 3469 [INSPIRE].

    ADS  Google Scholar 

  • I.J.R. Aitchison and C.M. Fraser, Gauge invariance and the effective potential, Annals Phys. 156 (1984) 1 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • D. Binosi, J. Papavassiliou and A. Pilaftsis, Displacement operator formalism for renormalization and gauge dependence to all orders, Phys. Rev. D 71 (2005) 085007 [hep-ph/0501259] [INSPIRE].

  • D. Metaxas and E.J. Weinberg, Gauge independence of the bubble nucleation rate in theories with radiative symmetry breaking, Phys. Rev. D 53 (1996) 836 [hep-ph/9507381] [INSPIRE].

  • M. Garny and T. Konstandin, On the gauge dependence of vacuum transitions at finite temperature, JHEP 07 (2012) 189 [arXiv:1205.3392] [INSPIRE].

    Article  ADS  Google Scholar 

  • S.P. Martin, Taming the Goldstone contributions to the effective potential, Phys. Rev. D 90 (2014) 016013 [arXiv:1406.2355] [INSPIRE].

    ADS  Google Scholar 

  • J. Elias-Miro, J.R. Espinosa and T. Konstandin, Taming infrared divergences in the effective potential, JHEP 08 (2014) 034 [arXiv:1406.2652] [INSPIRE].

    Article  ADS  Google Scholar 

  • J.M. Frere and P. Nicoletopoulos, Gauge invariant content of the effective potential, Phys. Rev. D 11 (1975) 2332 [INSPIRE].

    ADS  Google Scholar 

  • M. Sher, The renormalization group and inflationary potentials, Phys. Lett. B 135 (1984) 52 [INSPIRE].

    Article  ADS  Google Scholar 

  • A.A. Starobinsky and J. Yokoyama, Equilibrium state of a selfinteracting scalar field in the de Sitter background, Phys. Rev. D 50 (1994) 6357 [astro-ph/9407016] [INSPIRE].

  • G. Dvali and S. Kachru, New old inflation, hep-th/0309095 [INSPIRE].

  • L. Pilo, A. Riotto and A. Zaffaroni, Old inflation in string theory, JHEP 07 (2004) 052 [hep-th/0401004] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • L. Pilo, A. Riotto and A. Zaffaroni, On the amount of gravitational waves from inflation, Phys. Rev. Lett. 92 (2004) 201303 [astro-ph/0401302] [INSPIRE].

  • B. Freivogel, G.T. Horowitz and S. Shenker, Colliding with a crunching bubble, JHEP 05 (2007) 090 [hep-th/0703146] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cim. B 44S10 (1966) 1 [Erratum ibid. B 48 (1967) 463] [Nuovo Cim B 44 (1966) 1] [INSPIRE].

  • S. Bartrum, A. Berera and J.G. Rosa, Fluctuation-dissipation dynamics of cosmological scalar fields, Phys. Rev. D 91 (2015) 083540 [arXiv:1412.5489] [INSPIRE].

    ADS  Google Scholar 

  • D.G. Figueroa, J. García-Bellido and F. Torrenti, The decay of the standard model Higgs after inflation, arXiv:1504.04600 [INSPIRE].

  • G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].

  • C.P. Burgess, H.M. Lee and M. Trott, Power-counting and the validity of the classical approximation during inflation, JHEP 09 (2009) 103 [arXiv:0902.4465] [INSPIRE].

    Article  ADS  Google Scholar 

  • J.L.F. Barbon and J.R. Espinosa, On the naturalness of Higgs inflation, Phys. Rev. D 79 (2009) 081302 [arXiv:0903.0355] [INSPIRE].

    ADS  Google Scholar 

  • V. Branchina and E. Messina, Stability, Higgs boson mass and new physics, Phys. Rev. Lett. 111 (2013) 241801 [arXiv:1307.5193] [INSPIRE].

    Article  ADS  Google Scholar 

  • V. Branchina, E. Messina and M. Sher, Lifetime of the electroweak vacuum and sensitivity to Planck scale physics, Phys. Rev. D 91 (2015) 013003 [arXiv:1408.5302] [INSPIRE].

    ADS  Google Scholar 

  • F. Loebbert and J. Plefka, Quantum gravitational contributions to the standard model effective potential and vacuum stability, arXiv:1502.03093 [INSPIRE].

  • P. Burda, R. Gregory and I. Moss, Gravity and the stability of the Higgs vacuum, Phys. Rev. Lett. 115 (2015) 071303 [arXiv:1501.04937] [INSPIRE].

    Article  ADS  Google Scholar 

  • P. Burda, R. Gregory and I. Moss, Vacuum metastability with black holes, JHEP 08 (2015) 114 [arXiv:1503.07331] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • E. Witten, Quantum gravity in de Sitter space, hep-th/0106109 [INSPIRE].

  • N. Goheer, M. Kleban and L. Susskind, The trouble with de Sitter space, JHEP 07 (2003) 056 [hep-th/0212209] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • N. Arkani-Hamed, S. Dubovsky, L. Senatore and G. Villadoro, (No) eternal inflation and precision Higgs physics, JHEP 03 (2008) 075 [arXiv:0801.2399] [INSPIRE].

  • D.N. Page, Is our universe decaying at an astronomical rate?, Phys. Lett. B 669 (2008) 197 [hep-th/0612137] [INSPIRE].

    Article  ADS  Google Scholar 

  • S. Dubovsky, L. Senatore and G. Villadoro, The volume of the universe after inflation and de Sitter entropy, JHEP 04 (2009) 118 [arXiv:0812.2246] [INSPIRE].

    Article  ADS  Google Scholar 

  • S. Dubovsky, L. Senatore and G. Villadoro, Universality of the volume bound in slow-roll eternal inflation, JHEP 05 (2012) 035 [arXiv:1111.1725] [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Lewandowski and A. Perko, Leading slow roll corrections to the volume of the universe and the entropy bound, JHEP 12 (2014) 060 [arXiv:1309.6705] [INSPIRE].

    Article  ADS  Google Scholar 

  • N. Arkani-Hamed, S. Dubovsky, A. Nicolis, E. Trincherini and G. Villadoro, A measure of de Sitter entropy and eternal inflation, JHEP 05 (2007) 055 [arXiv:0704.1814] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • A.H. Guth and E.J. Weinberg, Could the universe have recovered from a slow first order phase transition?, Nucl. Phys. B 212 (1983) 321 [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Kleban, T.S. Levi and K. Sigurdson, Observing the multiverse with cosmic wakes, Phys. Rev. D 87 (2013) 041301 [arXiv:1109.3473] [INSPIRE].

    ADS  Google Scholar 

  • S. Osborne, L. Senatore and K. Smith, Collisions with other universes: the optimal analysis of the WMAP data, arXiv:1305.1964 [INSPIRE].

  • S. Osborne, L. Senatore and K. Smith, Optimal analysis of azimuthal features in the CMB, JCAP 10 (2013) 001 [arXiv:1305.1970] [INSPIRE].

    Article  ADS  Google Scholar 

  • S.K. Blau, E.I. Guendelman and A.H. Guth, The dynamics of false vacuum bubbles, Phys. Rev. D 35 (1987) 1747 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • S. Chimento and D. Klemm, Multicentered black holes with a negative cosmological constant, Phys. Rev. D 89 (2014) 024037 [arXiv:1311.6937] [INSPIRE].

    ADS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4