A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/JHEP08(2011)151 below:

Direct stau production at hadron colliders in cosmologically motivated scenarios

  • J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).

    Google Scholar 

  • H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1 [SPIRES].

    Article  ADS  Google Scholar 

  • H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept. 117 (1985) 75 [SPIRES].

    Article  ADS  Google Scholar 

  • S.P. Martin, A Supersymmetry Primer, hep-ph/9709356 [SPIRES].

  • M. Drees, R. Godbole and P. Roy, Theory and Phenomenology of Sparticles: An account of four-dimensional N = 1 supersymmetry in high energy physics, World Scientific, Hackensack U.S.A. (2004).

    Google Scholar 

  • H. Baer and X. Tata, Weak scale supersymmetry: From superfields to scattering events, Cambridge University Press, Cambridge U.S.A. (2006).

    Book  Google Scholar 

  • G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].

    Article  ADS  Google Scholar 

  • E.A. Baltz, M. Battaglia, M.E. Peskin and T. Wizansky, Determination of dark matter properties at high-energy colliders, Phys. Rev. D 74 (2006) 103521 [hep-ph/0602187] [SPIRES].

    ADS  Google Scholar 

  • F.D. Steffen, Dark Matter Candidates — Axions, Neutralinos, Gravitinos and Axinos, Eur. Phys. J. C 59 (2009) 557 [arXiv:0811.3347] [SPIRES].

    Article  ADS  Google Scholar 

  • CMS collaboration, V. Khachatryan et al., Search for Supersymmetry in pp Collisions at 7 TeV in Events with Jets and Missing Transverse Energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [SPIRES].

    ADS  Google Scholar 

  • ATLAS collaboration, J.B.G. da Costa et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7 \) TeV proton-proton collisions, Phys. Lett. B 701 (2011) 186 [arXiv:1102.5290] [SPIRES].

    Article  ADS  Google Scholar 

  • P. Bechtle et al., What if the LHC does not find supersymmetry in the \( \sqrt {s} = 7 \) TeV run?, Phys. Rev. D 84 (2011) 011701 [arXiv:1102.4693] [SPIRES].

    ADS  Google Scholar 

  • M.J. Dolan, D. Grellscheid, J. Jaeckel, V.V. Khoze and P. Richardson, New Constraints on Gauge Mediation and Beyond from LHC SUSY Searches at 7 TeV, JHEP 06 (2011) 095 [arXiv:1104.0585] [SPIRES].

    Article  ADS  Google Scholar 

  • J.R. Ellis, T. Falk, K.A. Olive and M. Srednicki, Calculations of neutralino stau coannihilation channels and the cosmologically relevant region of MSSM parameter space, Astropart. Phys. 13 (2000) 181 [hep-ph/9905481] [SPIRES].

    Article  ADS  Google Scholar 

  • Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].

    ADS  Google Scholar 

  • A.G. Akeroyd, M.A. Diaz, J. Ferrandis, M.A. Garcia-Jareno and J.W.F. Valle, Charged Higgs boson and stau phenomenology in the simplest R-parity breaking model, Nucl. Phys. B 529 (1998) 3 [hep-ph/9707395] [SPIRES].

    Article  ADS  Google Scholar 

  • B.C. Allanach, A. Dedes and H.K. Dreiner, The R parity violating minimal supergravity model, Phys. Rev. D 69 (2004) 115002 [hep-ph/0309196] [SPIRES].

    ADS  Google Scholar 

  • W. Buchmüller, L. Covi, K. Hamaguchi, A. Ibarra and T. Yanagida, Gravitino dark matter in R-parity breaking vacua, JHEP 03 (2007) 037 [hep-ph/0702184] [SPIRES].

    Article  ADS  Google Scholar 

  • H.K. Dreiner, S. Grab and M.K. Trenkel, Stau LSP Phenomenology: Two versus Four-Body Decay Modes. Example: Resonant Single Slepton Production at the LHC, Phys. Rev. D 79 (2009) 016002 [arXiv:0808.3079] [SPIRES].

    ADS  Google Scholar 

  • K. Desch, S. Fleischmann, P. Wienemann, H.K. Dreiner and S. Grab, Stau as the Lightest Supersymmetric Particle in R-Parity Violating SUSY Models: Discovery Potential with Early LHC Data, Phys. Rev. D 83 (2011) 015013 [arXiv:1008.1580] [SPIRES].

    ADS  Google Scholar 

  • S. Ambrosanio, G.D. Kribs and S.P. Martin, Signals for gauge-mediated supersymmetry breaking models at the CERN LEP2 collider, Phys. Rev. D 56 (1997) 1761 [hep-ph/9703211] [SPIRES].

    ADS  Google Scholar 

  • J.L. Feng and T. Moroi, Tevatron signatures of longlived charged sleptons in gauge mediated supersymmetry breaking models, Phys. Rev. D 58 (1998) 035001 [hep-ph/9712499] [SPIRES].

    ADS  Google Scholar 

  • S.P. Martin and J.D. Wells, Cornering gauge-mediated supersymmetry breaking with quasi-stable sleptons at the Tevatron, Phys. Rev. D 59 (1999) 035008, [hep-ph/9805289] [SPIRES].

    ADS  Google Scholar 

  • S. Ambrosanio, B. Mele, S. Petrarca, G. Polesello and A. Rimoldi, Measuring the SUSY breaking scale at the LHC in the slepton NLSP scenario of GMSB models, JHEP 01 (2001) 014 [hep-ph/0010081].

    Article  ADS  Google Scholar 

  • W. Buchmüller, K. Hamaguchi, M. Ratz and T. Yanagida, Supergravity at colliders, Phys. Lett. B 588 (2004) 90 [hep-ph/0402179] [SPIRES].

    ADS  Google Scholar 

  • F.D. Steffen, Gravitino dark matter and cosmological constraints, JCAP 09 (2006) 001 [hep-ph/0605306] [SPIRES].

    ADS  Google Scholar 

  • J.R. Ellis, A.R. Raklev and O.K. Oye, Gravitino dark matter scenarios with massive metastable charged sparticles at the LHC, JHEP 10 (2006) 061 [hep-ph/0607261] [SPIRES].

    Article  ADS  Google Scholar 

  • L. Covi, L. Roszkowski, R. Ruiz de Austri and M. Small, Axino dark matter and the CMSSM, JHEP 06 (2004) 003 [hep-ph/0402240] [SPIRES].

    Article  ADS  Google Scholar 

  • A. Brandenburg, L. Covi, K. Hamaguchi, L. Roszkowski and F.D. Steffen, Signatures of axinos and gravitinos at colliders, Phys. Lett. B 617 (2005) 99 [hep-ph/0501287] [SPIRES].

    ADS  Google Scholar 

  • A. Freitas, F.D. Steffen, N. Tajuddin and D. Wyler, Axinos in Cosmology and at Colliders, JHEP 06 (2011) 036 [arXiv:1105.1113] [SPIRES].

    Article  ADS  Google Scholar 

  • K. Hamaguchi, Y. Kuno, T. Nakaya and M.M. Nojiri, A study of late decaying charged particles at future colliders, Phys. Rev. D 70 (2004) 115007 [hep-ph/0409248] [SPIRES].

    ADS  Google Scholar 

  • K. Ishiwata, T. Ito and T. Moroi, Long-Lived Unstable Superparticles at the LHC, Phys. Lett. B 669 (2008) 28 [arXiv:0807.0975] [SPIRES].

    ADS  Google Scholar 

  • S. Biswas and B. Mukhopadhyaya, Chargino reconstruction in supersymmetry with long-lived staus, Phys. Rev. D 81 (2010) 015003 [arXiv:0910.3446] [SPIRES].

    ADS  Google Scholar 

  • J.L. Feng et al., Measuring Slepton Masses and Mixings at the LHC, JHEP 01 (2010) 047 [arXiv:0910.1618] [SPIRES].

    Article  ADS  Google Scholar 

  • T. Ito, R. Kitano and T. Moroi, Measurement of the Superparticle Mass Spectrum in the Long-Lived Stau Scenario at the LHC, JHEP 04 (2010) 017 [arXiv:0910.5853] [SPIRES].

    Article  ADS  Google Scholar 

  • J.J. Heckman, J. Shao and C. Vafa, F-theory and the LHC: Stau Search, JHEP 09 (2010) 020 [arXiv:1001.4084] [SPIRES].

    Article  ADS  Google Scholar 

  • R. Kitano and M. Nakamura, Tau polarization measurements at the LHC in supersymmetric models with a long-lived stau, Phys. Rev. D 82 (2010) 035007 [arXiv:1006.2904] [SPIRES].

    ADS  Google Scholar 

  • T. Ito and T. Moroi, Spin and Chirality Determination of Superparticles with Long-Lived Stau at the LHC, Phys. Lett. B 694 (2011) 349 [arXiv:1007.3060] [SPIRES].

    ADS  Google Scholar 

  • T. Ito, Squark Mass Measurement in the Long-lived Stau Scenario at the LHC, Phys. Lett. B 699 (2011) 151 [arXiv:1012.1318] [SPIRES].

    ADS  Google Scholar 

  • S. Asai, Y. Azuma, M. Endo, K. Hamaguchi and S. Iwamoto, Stau Kinks at the LHC, arXiv:1103.1881 [SPIRES].

  • H.U. Martyn, Detecting metastable staus and gravitinos at the ILC, Eur. Phys. J. C 48 (2006) 15 [hep-ph/0605257] [SPIRES].

    Article  ADS  Google Scholar 

  • S. Asai, K. Hamaguchi and S. Shirai, Measuring lifetimes of long-lived charged massive particles stopped in LHC detectors, Phys. Rev. Lett. 103 (2009) 141803 [arXiv:0902.3754] [SPIRES].

    Article  ADS  Google Scholar 

  • J. Pinfold and L. Sibley, Measuring the Lifetime of Trapped Sleptons Using the General Purpose LHC Detectors, Phys. Rev. D 83 (2011) 035021 [arXiv:1006.3293] [SPIRES].

    ADS  Google Scholar 

  • J.L. Goity, W.J. Kossler and M. Sher, Production, collection and utilization of very longlived heavy charged leptons, Phys. Rev. D 48 (1993) 5437 [hep-ph/9305244] [SPIRES].

    ADS  Google Scholar 

  • J.L. Feng and B.T. Smith, Slepton trapping at the Large Hadron and International Linear Colliders, Phys. Rev. D 71 (2005) 015004 [hep-ph/0409278] [SPIRES].

    ADS  Google Scholar 

  • K. Hamaguchi, M.M. Nojiri and A. de Roeck, Prospects to study a long-lived charged next lightest supersymmetric particle at the LHC, JHEP 03 (2007) 046 [hep-ph/0612060] [SPIRES].

    Article  ADS  Google Scholar 

  • R.H. Cyburt, J.R. Ellis, B.D. Fields and K.A. Olive, Updated nucleosynthesis constraints on unstable relic particles, Phys. Rev. D 67 (2003) 103521 [astro-ph/0211258] [SPIRES].

    ADS  Google Scholar 

  • M. Kawasaki, K. Kohri and T. Moroi, Big-bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [SPIRES].

    ADS  Google Scholar 

  • K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [SPIRES].

    ADS  Google Scholar 

  • M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang Nucleosynthesis and Gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [SPIRES].

    ADS  Google Scholar 

  • M. Pospelov, Particle physics catalysis of thermal big bang nucleosynthesis, Phys. Rev. Lett. 98 (2007) 231301 [hep-ph/0605215] [SPIRES].

    Article  ADS  Google Scholar 

  • R.H. Cyburt, J.R. Ellis, B.D. Fields, K.A. Olive and V.C. Spanos, Bound-state effects on light-element abundances in gravitino dark matter scenarios, JCAP 11 (2006) 014 [astro-ph/0608562] [SPIRES].

    ADS  Google Scholar 

  • K. Hamaguchi, T. Hatsuda, M. Kamimura, Y. Kino and T.T. Yanagida, Stau-catalyzed Li-6 production in big-bang nucleosynthesis, Phys. Lett. B 650 (2007) 268 [hep-ph/0702274] [SPIRES].

    ADS  Google Scholar 

  • J. Pradler and F.D. Steffen, Implications of Catalyzed BBN in the CMSSM with Gravitino Dark Matter, Phys. Lett. B 666 (2008) 181 [arXiv:0710.2213] [SPIRES].

    ADS  Google Scholar 

  • M. Pospelov, Bridging the primordial A = 8 divide with Catalyzed Big Bang Nucleosynthesis, arXiv:0712.0647 [SPIRES].

  • M. Pospelov, J. Pradler and F.D. Steffen, Constraints on Supersymmetric Models from Catalytic Primordial Nucleosynthesis of Beryllium, JCAP 11 (2008) 020 [arXiv:0807.4287] [SPIRES].

    ADS  Google Scholar 

  • F.D. Steffen, Constraints on Gravitino Dark Matter Scenarios with Long-Lived Charged Sleptons, AIP Conf. Proc. 903 (2007) 595 [hep-ph/0611027] [SPIRES].

    Article  ADS  Google Scholar 

  • J. Pradler and F.D. Steffen, Constraints on the reheating temperature in gravitino dark matter scenarios, Phys. Lett. B 648 (2007) 224 [hep-ph/0612291] [SPIRES].

    ADS  Google Scholar 

  • J. Kersten and K. Schmidt-Hoberg, The Gravitino-Stau Scenario after Catalyzed BBN, JCAP 01 (2008) 011 [arXiv:0710.4528] [SPIRES].

    ADS  Google Scholar 

  • J. Pradler and F.D. Steffen, CBBN in the CMSSM, Eur. Phys. J. C 56 (2008) 287 [arXiv:0710.4548] [SPIRES].

    Article  ADS  Google Scholar 

  • S. Bailly, K. Jedamzik and G. Moultaka, Gravitino Dark Matter and the Cosmic Lithium Abundances, Phys. Rev. D 80 (2009) 063509 [arXiv:0812.0788] [SPIRES].

    ADS  Google Scholar 

  • A. Freitas, F.D. Steffen, N. Tajuddin and D. Wyler, Upper Limits on the Peccei-Quinn Scale and on the Reheating Temperature in Axino Dark Matter Scenarios, Phys. Lett. B 679 (2009) 270 [arXiv:0904.3218] [SPIRES].

    ADS  Google Scholar 

  • M. Bolz, A. Brandenburg and W. Buchmüller, Thermal Production of Gravitinos, Nucl. Phys. B 606 (2001) 518 [Erratum ibid B 790 (2008) 336] [hep-ph/0012052] [SPIRES].

    Article  ADS  Google Scholar 

  • A. Brandenburg and F.D. Steffen, Axino dark matter from thermal production, JCAP 08 (2004) 008 [hep-ph/0405158] [SPIRES].

    ADS  Google Scholar 

  • J. Pradler and F.D. Steffen, Thermal Gravitino Production and Collider Tests of Leptogenesis, Phys. Rev. D 75 (2007) 023509 [hep-ph/0608344] [SPIRES].

    ADS  Google Scholar 

  • V.S. Rychkov and A. Strumia, Thermal production of gravitinos, Phys. Rev. D 75 (2007) 075011 [hep-ph/0701104] [SPIRES].

    ADS  Google Scholar 

  • A. Strumia, Thermal production of axino Dark Matter, JHEP 06 (2010) 036 [arXiv:1003.5847] [SPIRES].

    Article  ADS  Google Scholar 

  • K.J. Bae, K. Choi and S.H. Im, Effective interactions of axion supermultiplet and thermal production of axino dark matter, arXiv:1106.2452 [SPIRES].

  • M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [SPIRES].

    ADS  Google Scholar 

  • S. Davidson and A. Ibarra, A lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [SPIRES].

    ADS  Google Scholar 

  • W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Ann. Phys. 315 (2005) 305 [hep-ph/0401240] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  • S. Blanchet and P. Di Bari, Flavor effects on leptogenesis predictions, JCAP 03 (2007) 018 [hep-ph/0607330] [SPIRES].

    ADS  Google Scholar 

  • S. Antusch and A.M. Teixeira, Towards constraints on the SUSY seesaw from flavour-dependent leptogenesis, JCAP 02 (2007) 024 [hep-ph/0611232] [SPIRES].

    ADS  Google Scholar 

  • M. Ratz, K. Schmidt-Hoberg and M.W. Winkler, A note on the primordial abundance of stau NLSPs, JCAP 10 (2008) 026 [arXiv:0808.0829] [SPIRES].

    ADS  Google Scholar 

  • J. Pradler and F.D. Steffen, Thermal relic abundances of long-lived staus, Nucl. Phys. B 809 (2009) 318 [arXiv:0808.2462] [SPIRES].

    Article  ADS  Google Scholar 

  • E. Eichten, I. Hinchliffe, K.D. Lane and C. Quigg, Super Collider Physics, Rev. Mod. Phys. 56 (1984) 579 [SPIRES].

    Article  ADS  Google Scholar 

  • H. Baer, B.W. Harris and M.H. Reno, Next-to-leading order slepton pair production at hadron colliders, Phys. Rev. D 57 (1998) 5871 [hep-ph/9712315] [SPIRES].

    ADS  Google Scholar 

  • W. Beenakker et al., The Production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [hep-ph/9906298] [SPIRES].

    Article  ADS  Google Scholar 

  • G. Bozzi, B. Fuks and M. Klasen, Transverse-momentum resummation for slepton-pair production at the LHC, Phys. Rev. D 74 (2006) 015001 [hep-ph/0603074] [SPIRES].

    ADS  Google Scholar 

  • G. Bozzi, B. Fuks and M. Klasen, Threshold Resummation for Slepton-Pair Production at Hadron Colliders, Nucl. Phys. B 777 (2007) 157 [hep-ph/0701202] [SPIRES].

    Article  ADS  Google Scholar 

  • G. Bozzi, B. Fuks and M. Klasen, Joint resummation for slepton pair production at hadron colliders, Nucl. Phys. B 794 (2008) 46 [arXiv:0709.3057] [SPIRES].

    Article  ADS  Google Scholar 

  • http://www.thphys.uni-heidelberg.de/∼plehn/prospino/ or http://people.web.psi.ch/spira/prospino/.

  • F. del Aguila and L. Ametller, On the detectability of sleptons at large hadron colliders, Phys. Lett. B 261 (1991) 326 [SPIRES].

    ADS  Google Scholar 

  • M. Bisset, S. Raychaudhuri and P. Roy, Higgs-mediated Slepton Pair-production at the Large Hadron Collider, hep-ph/9602430 [SPIRES].

  • F. Borzumati and K. Hagiwara, Testing supersymmetry at the LHC through gluon-fusion production of a slepton pair, JHEP 03 (2011) 103 [arXiv:0912.0454] [SPIRES].

    Article  ADS  Google Scholar 

  • T. Sjöstrand et al., High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun. 135 (2001) 238 [hep-ph/0010017] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  • G. Corcella et al., HERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [SPIRES].

    Article  ADS  Google Scholar 

  • N. Tajuddin, Axinos in the Sky and on Earth, Ph.D. Thesis, University of Zürich, Zürich Switzerland (2010).

  • H. Baer, S. Kraml, A. Lessa and S. Sekmen, Thermal leptogenesis and the gravitino problem in the Asaka-Yanagida axion/axino dark matter scenario, JCAP 04 (2011) 039 [arXiv:1012.3769] [SPIRES].

    ADS  Google Scholar 

  • C. Cheung, G. Elor and L.J. Hall, The Cosmological Axino Problem, arXiv:1104.0692 [SPIRES].

  • G.G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys. 741 (2008) 51 [hep-ph/0611350] [SPIRES].

    Article  ADS  Google Scholar 

  • M. Drees and X. Tata, Signals for heavy exotics at hadron colliders and supercolliders, Phys. Lett. B 252 (1990) 695 [SPIRES].

    ADS  Google Scholar 

  • A. Nisati, S. Petrarca and G. Salvini, On the possible detection of massive stable exotic particles at the LHC, Mod. Phys. Lett. A 12 (1997) 2213 [hep-ph/9707376] [SPIRES].

    ADS  Google Scholar 

  • M. Fairbairn et al., Stable massive particles at colliders, Phys. Rept. 438 (2007) 1 [hep-ph/0611040] [SPIRES].

    Article  ADS  Google Scholar 

  • J.L. Feng, M. Kamionkowski and S.K. Lee, Light Gravitinos at Colliders and Implications for Cosmology, Phys. Rev. D 82 (2010) 015012 [arXiv:1004.4213] [SPIRES].

    ADS  Google Scholar 

  • LEP2 SUSY Working Group collaboration, Combined LEP GMSB Stau/Smuon/Selectron Results, 189–208 GeV, http://lepsusy.web.cern.ch/lepsusy/www/gmsb_summer02/lepgmsb.html.

  • D0 collaboration, V.M. Abazov et al., Search for Long-Lived Charged Massive Particles with the D0 Detector, Phys. Rev. Lett. 102 (2009) 161802 [arXiv:0809.4472] [SPIRES].

    Article  ADS  Google Scholar 

  • CDF collaboration, T. Aaltonen et al., Search for Long-Lived Massive Charged Particles in 1.96 TeV \( p\bar{p} \) Collisions, Phys. Rev. Lett. 103 (2009) 021802 [arXiv:0902.1266] [SPIRES].

    Article  ADS  Google Scholar 

  • G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: A program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103 [hep-ph/0112278] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  • G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  • T. Asaka, K. Hamaguchi and K. Suzuki, Cosmological gravitino problem in gauge mediated supersymmetry breaking models, Phys. Lett. B 490 (2000) 136 [hep-ph/0005136] [SPIRES].

    ADS  Google Scholar 

  • M. Fujii, M. Ibe and T. Yanagida, Upper bound on gluino mass from thermal leptogenesis, Phys. Lett. B 579 (2004) 6 [hep-ph/0310142] [SPIRES].

    ADS  Google Scholar 

  • C.F. Berger, L. Covi, S. Kraml and F. Palorini, The number density of a charged relic, JCAP 10 (2008) 005 [arXiv:0807.0211] [SPIRES].

    ADS  Google Scholar 

  • A. Freitas, F.D. Steffen, N. Tajuddin and D. Wyler, Late Energy Injection and Cosmological Constraints in Axino Dark Matter Scenarios, Phys. Lett. B 682 (2009) 193 [arXiv:0909.3293] [SPIRES].

    ADS  Google Scholar 

  • J. Hasenkamp and J. Kersten, Leptogenesis, Gravitino Dark Matter and Entropy Production, Phys. Rev. D 82 (2010) 115029 [arXiv:1008.1740] [SPIRES].

    ADS  Google Scholar 

  • J.F. Gunion and H.E. Haber, The CP-conserving two-Higgs-doublet model: The approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [SPIRES].

    ADS  Google Scholar 

  • M. Endo, K. Hamaguchi and K. Nakaji, Probing High Reheating Temperature Scenarios at the LHC with Long-Lived Staus, JHEP 11 (2010) 004 [arXiv:1008.2307] [SPIRES].

    Article  ADS  Google Scholar 

  • J. Hisano and S. Sugiyama, Charge-breaking constraints on left-right mixing of stau’s, Phys. Lett. B 696 (2011) 92 [arXiv:1011.0260] [SPIRES].

    ADS  Google Scholar 

  • A.D. Linde, Decay of the False Vacuum at Finite Temperature, Nucl. Phys. B 216 (1983) 421 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  • J.R. Espinosa, Dominant Two-Loop Corrections to the MSSM Finite Temperature Effective Potential, Nucl. Phys. B 475 (1996) 273 [hep-ph/9604320] [SPIRES].

    Article  ADS  Google Scholar 

  • M. Endo, K. Hamaguchi and K. Nakaji, LHC signature with long-lived stau in high reheating temperature scenario, arXiv:1105.3823 [SPIRES].

  • Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and tau-lepton Properties, arXiv:1010.1589 [SPIRES].

  • M. Schumacher and f.t.A. collaboration, Higgs Boson Searches with ATLAS based on 2010 Data, arXiv:1106.2496 [SPIRES].

  • CMS collaboration, S. Chatrchyan et al., Search for Neutral MSSM Higgs Bosons Decaying to Tau Pairs in pp Collisions at \( \sqrt {s} = 7 \) TeV, Phys. Rev. Lett. 106 (2011) 231801 [arXiv:1104.1619] [SPIRES].

    Article  ADS  Google Scholar 

  • T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  • T. Hahn and M. Pérez-Victoria, Automatized one-loop calculations in four and D dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [SPIRES].

    Article  ADS  Google Scholar 

  • M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [SPIRES].

    Article  ADS  Google Scholar 

  • LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [SPIRES].

  • L.J. Hall, R. Rattazzi and U. Sarid, The Top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [SPIRES].

    ADS  Google Scholar 

  • R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys. Rev. D 49 (1994) 6168 [SPIRES].

    ADS  Google Scholar 

  • M.S. Carena, M. Olechowski, S. Pokorski and C.E.M. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [SPIRES].

    Article  ADS  Google Scholar 

  • D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [SPIRES].

    Article  ADS  Google Scholar 

  • M.S. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the \( \bar{t}b{H^{+} } \) interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [SPIRES].

    Article  ADS  Google Scholar 

  • S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the MSSM Higgs sector at O(α b α s ), Eur. Phys. J. C 39 (2005) 465 [hep-ph/0411114] [SPIRES].

    Article  ADS  Google Scholar 

  • A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [SPIRES].

    Article  ADS  Google Scholar 

  • A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].

    Article  ADS  Google Scholar 

  • A.R. Raklev, Massive Metastable Charged (S)Particles at the LHC, Mod. Phys. Lett. A 24 (2009) 1955 [arXiv:0908.0315] [SPIRES].

    ADS  Google Scholar 

  • CMS collaboration, Search for heavy stable charged particles with 100 inverse picobarns and 1 inverse femtobarn in the cms experiment, CMS report, CMS-PAS-EXO-08-003.

  • A. De Roeck et al., Supersymmetric benchmarks with non-universal scalar masses or gravitino dark matter, Eur. Phys. J. C 49 (2007) 1041 [hep-ph/0508198] [SPIRES].

    Article  ADS  Google Scholar 

  • ATLAS collaboration, G. Aad et al., Search for stable hadronising squarks and gluinos with the ATLAS experiment at the LHC, Phys. Lett. B 701 (2011) 1 [arXiv:1103.1984] [SPIRES].

    ADS  Google Scholar 

  • CMS collaboration, V. Khachatryan et al., Search for Heavy Stable Charged Particles in pp collisions at \( \sqrt {s} = 7 \) TeV, JHEP 03 (2011) 024 [arXiv:1101.1645] [SPIRES].

    Article  ADS  Google Scholar 

  • J. Heisig and J. Kersten, Production of long-lived staus in the Drell-Yan process, arXiv:1106.0764 [SPIRES].

  • W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [SPIRES].

    Article  ADS  Google Scholar 

  • A. Arbey and F. Mahmoudi, SuperIso Relic v3.0: A program for calculating relic density and flavour physics observables: Extension to NMSSM, Comput. Phys. Commun. 182 (2011) 1582 [SPIRES].

    Article  ADS  Google Scholar 

  • M. Drees and S.P. Martin, Implications of SUSY model building, hep-ph/9504324 [SPIRES].

  • CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: Physics performance, J. Phys. G 34 (2007) 995 [SPIRES].

    ADS  Google Scholar 

  • the LHCb collaboration, R. Aaij et al., Search for the rare decays Bs → mumu and Bd → mumu, Phys. Lett. B 699 (2011) 330 [arXiv:1103.2465] [SPIRES].

    ADS  Google Scholar 

  • H.E. Haber, Higgs boson masses and couplings in the minimal supersymmetric model, hep-ph/9707213 [SPIRES].

  • J. Germer, W. Hollik and E. Mirabella, Hadronic production of bottom-squark pairs with electroweak contributions, JHEP 05 (2011) 068 [arXiv:1103.1258] [SPIRES].

    Article  ADS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4