A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/JHEP06(2012)117 below:

Reconstructing Higgs boson properties from the LHC and Tevatron data

  • F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].

    Article  ADS  Google Scholar 

  • P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • G. Guralnik, C. Hagen and T. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

    Article  ADS  Google Scholar 

  • F. Gianotti, Update on the standard model Higgs searches in ATLAS, CERN public seminar, December 13, Switzerland (2011).

  • G. Tonelli, Update on the standard model Higgs searches in CMS, CERN public seminar, December 13, Switzerland (2011).

  • ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \(\sqrt {s} = 7\;TeV\) with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  • CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \(\sqrt {s} = 7\;TeV\), Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    Article  ADS  Google Scholar 

  • E. Gabrielli, B. Mele and M. Raidal, Has a fermiophobic Higgs boson been detected at the LHC?, arXiv:1202.1796 [INSPIRE].

  • LHC Higgs Cross Section working group, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [CERN-2012-002] [INSPIRE].

  • LHC Higgs Cross Section working group, Branching ratios and partial-decay widths, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR

  • LHC Higgs Cross Section working group, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [CERN-2011-002] [INSPIRE].

  • LHC Higgs Cross Section working group, Recommended values on SM Higgs XS at 7 TeV, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageAt7TeV.

  • M. Dührssen et al., Extracting Higgs boson couplings from CERN LHC data, Phys. Rev. D 70 (2004)113009 [hep-ph/0406323] [INSPIRE].

    ADS  Google Scholar 

  • R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. Dührssen, Measuring the Higgs sector, JHEP 08 (2009) 009 [arXiv:0904.3866] [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].

    Article  ADS  Google Scholar 

  • D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, arXiv:1202.3144 [INSPIRE].

  • J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Farina et al., Implications of XENON100 and LHC results for Dark Matter models, Nucl. Phys. B 853 (2011) 607 [arXiv:1104.3572] [INSPIRE].

    Article  ADS  Google Scholar 

  • CDF and D0 collaboration, Combined CDF and D0 searches for standard model Higgs boson production, arXiv:1203.3774 [INSPIRE].

  • W. Fisher, New results from the Tevatron experiment, talk given at the Rencontres de Moriond , March 3-10, La Thuile, Italy (2012).

  • CMS collaboration, Search for Higgs boson in VH Production with H to bb, PAS-HIG-11-031 (2011).

  • ATLAS collaboration, Search for the standard model Higgs boson produced in association with a vector boson and decaying to a b-quark pair using up to 4.7 fb −1 of pp collision data at \(\sqrt {s} = 7\;TeV\) with the ATLAS detector at the LHC, ATLAS-CONF-2012-015 (2012).

  • CMS collaboration, Combination of SM, SM4, FP Higgs boson searches, PAS-HIG-12-008 (2012).

  • CMS collaboration, Search for the Higgs boson in the fully leptonic W + W final state, PAS-HIG-11-024 (2011).

  • ATLAS collaboration, Search for the standard model Higgs boson in the HW Wℓνℓν decay mode with 4.7 fb −1 of ATLAS data at \(\sqrt {s} = 7\;TeV\), ATLAS-CONF-2012-012 (2012).

  • S. Kortner, SM scalar boson search with the ATLAS detector, talk given at the Rencontres de Moriond , March 3-10, La Thuile, Italy (2012).

  • CMS Collaboration, Search for a standard model Higgs boson produced in the decay channel H → ZZ  → 4,arXiv:1202.1997 [INSPIRE].

  • CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying into two photons in pp collisions at \(\sqrt {s} = 7\;TeV\), Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].

    Article  ADS  Google Scholar 

  • CMS collaboration, A search using multivariate techniques for a standard model Higgs boson decaying into two photons, CMS-PAS-HIG-12-001 (2012).

  • ATLAS collaboration, G. Aad et al., Search for the standard model Higgs boson in the diphoton decay channel with 4.9 fb −1 of pp collisions at \(\sqrt {s} = 7\;TeV\) with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].

    Article  ADS  Google Scholar 

  • TEVNPH, CDF, D0 collaboration, Combined CDF and D0 search for standard model Higgs boson production with up to 10.0 fb −1 of data, arXiv:1203.3774 [INSPIRE].

  • CMS collaboration, Search for the fermiophobic model Higgs boson decaying into two photons, PAS-HIG-12-002 (2012).

  • S. Dasu, Higgs sector beyond standard model, talk given at the Rencontres de Moriond , March 3-10, La Thuile, Italy (2012).

  • ATLAS collaboration, Search for a fermiophobic Higgs boson in the diphoton decay channel with 4.9 fb −1 of ATLAS data at \(\sqrt {s} = 7\;TeV\), ATLAS-CONF-2012-013 (2012).

  • T. Sjöstrand, S. Mrenna and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  • CMS collaboration, S. Chatrchyan et al., Search for neutral Higgs bosons decaying to τ pairs in pp collisions at \(\sqrt {s} = 7\;TeV\), Phys. Lett. B 713 (2012) 68 [arXiv:1202.4083] [INSPIRE].

    Article  ADS  Google Scholar 

  • ATLAS collaboration, Search for the Standard Model Higgs boson in the H → τ + τ decay mode with 4.7 fb −1 of ATLAS data at 7 TeV, ATLAS-CONF-2012-014 (2012).

  • O.J. Eboli and D. Zeppenfeld, Observing an invisible Higgs boson, Phys. Lett. B 495 (2000) 147 [hep-ph/0009158] [INSPIRE].

    Article  ADS  Google Scholar 

  • R.M. Godbole, M. Guchait, K. Mazumdar, S. Moretti and D.P. Roy, Search forinvisibleHiggs signals at LHC via associated production with gauge bosons, Phys. Lett. B 571 (2003) 184 [hep-ph/0304137] [INSPIRE].

    Article  ADS  Google Scholar 

  • J.F. Kamenik and C. Smith, Could a light Higgs boson illuminate the dark sector?, arXiv:1201.4814 [INSPIRE].

  • M. Raidal and A. Strumia, Hints for a non-standard Higgs boson from the LHC, Phys. Rev. D 84 (2011) 077701 [arXiv:1108.4903] [INSPIRE].

    ADS  Google Scholar 

  • Y. Mambrini, Higgs searches and singlet scalar dark matter: Combined constraints from XENON 100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].

    ADS  Google Scholar 

  • A. Arhrib, R. Benbrik and N. Gaur, H → γγ in inert Higgs doublet model, Phys. Rev. D 85 (2012)095021 [arXiv:1201.2644] [INSPIRE].

    ADS  Google Scholar 

  • X.-G. He, B. Ren and J. Tandean, Hints of standard model Higgs boson at the LHC and light dark matter searches, Phys. Rev. D 85 (2012) 093019 [arXiv:1112.6364] [INSPIRE].

    ADS  Google Scholar 

  • C. Cheung and Y. Nomura, Higgs descendants, arXiv:1112.3043 [INSPIRE].

  • X. Chu, T. Hambye and M.H. Tytgat, The four basic ways of creating dark matter through a portal, JCAP 05 (2012) 034 [arXiv:1112.0493] [INSPIRE].

    Article  ADS  Google Scholar 

  • O. Lebedev, H.M. Lee and Y. Mambrini, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett. B 707 (2012) 570 [arXiv:1111.4482] [INSPIRE].

    Article  ADS  Google Scholar 

  • C. Englert, J. Jaeckel, E. Re and M. Spannowsky, Evasive Higgs maneuvers at the LHC, Phys. Rev. D 85 (2012) 035008 [arXiv:1111.1719] [INSPIRE].

    ADS  Google Scholar 

  • I. Low, P. Schwaller, G. Shaughnessy and C.E. Wagner, The dark side of the Higgs boson, Phys. Rev. D 85 (2012) 015009 [arXiv:1110.4405] [INSPIRE].

    ADS  Google Scholar 

  • M. Pospelov and A. Ritz, Higgs decays to dark matter: beyond the minimal model, Phys. Rev. D 84 (2011) 113001 [arXiv:1109.4872] [INSPIRE].

    ADS  Google Scholar 

  • T. Cohen, J. Kearney, A. Pierce and D. Tucker-Smith, Singlet-doublet dark matter, Phys. Rev. D 85 (2012) 075003 [arXiv:1109.2604] [INSPIRE].

    ADS  Google Scholar 

  • X.-G. He and J. Tandean, Hidden Higgs boson at the LHC and light dark matter searches, Phys. Rev. D 84 (2011) 075018 [arXiv:1109.1277] [INSPIRE].

    ADS  Google Scholar 

  • C.-S. Chen and Y. Tang, Vacuum stability, neutrinos and dark matter, JHEP 04 (2012) 019 [arXiv:1202.5717] [INSPIRE].

    Article  ADS  Google Scholar 

  • V. Barger, M. Ishida and W.-Y. Keung, Total width of 125 GeV Higgs, arXiv:1203.3456 [INSPIRE].

  • J. Cao, Z. Heng, J.M. Yang and J. Zhu, Higgs decay to dark matter in low energy SUSY: is it detectable at the LHC?, arXiv:1203.0694 [INSPIRE].

  • A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].

    Article  ADS  Google Scholar 

  • G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    Article  ADS  Google Scholar 

  • R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].

    Article  ADS  Google Scholar 

  • R. Grober and M. Muhlleitner, Composite Higgs boson pair production at the LHC, JHEP 06 (2011) 020 [arXiv:1012.1562] [INSPIRE].

    Article  ADS  Google Scholar 

  • S. De Curtis, M. Redi and A. Tesi, The 4D composite Higgs, JHEP 04 (2012) 042 [arXiv:1110.1613] [INSPIRE].

    Article  Google Scholar 

  • A. Strumia and F. Vissani, Neutrino masses and mixings and. . . , hep-ph/0606054 [INSPIRE].

  • J. Basdevant, E.L. Berger, D. Dicus, C. Kao and S. Willenbrock, Final state interaction of longitudinal vector bosons, Phys. Lett. B 313 (1993) 402 [hep-ph/9211225] [INSPIRE].

    Article  ADS  Google Scholar 

  • V.D. Barger, N.G. Deshpande, J.L. Hewett and T.G. Rizzo, A separate Higgs?, hep-ph/9211234 [INSPIRE].

  • P. Bamert and Z. Kunszt, Gauge boson masses dominantly generated by Higgs triplet contributions?, Phys. Lett. B 306 (1993) 335 [hep-ph/9303239] [INSPIRE].

    Article  ADS  Google Scholar 

  • H. Pois, T.J. Weiler and T.C. Yuan, Higgs boson decay to four fermions including a single top quark below tt threshold, Phys. Rev. D 47 (1993) 3886 [hep-ph/9303277] [INSPIRE].

    ADS  Google Scholar 

  • A. Stange, W.J. Marciano and S. Willenbrock, Higgs bosons at the Fermilab Tevatron, Phys. Rev. D 49 (1994) 1354 [hep-ph/9309294] [INSPIRE].

    ADS  Google Scholar 

  • M.A. Diaz and T.J. Weiler, Decays of a fermiophobic Higgs, hep-ph/9401259 [INSPIRE].

  • A. Akeroyd, Fermiophobic Higgs bosons at the Tevatron, Phys. Lett. B 368 (1996) 89 [hep-ph/9511347] [INSPIRE].

    Article  ADS  Google Scholar 

  • E. Gabrielli and B. Mele, Testing effective Yukawa couplings in Higgs searches at the Tevatron and LHC, Phys. Rev. D 82 (2010) 113014 [Erratum ibid. D 83 (2011) 079901] [arXiv:1005.2498] [INSPIRE].

    ADS  Google Scholar 

  • E. Gabrielli and B. Mele, Effective Yukawa couplings and flavor-changing Higgs boson decays at linear colliders, Phys. Rev. D 83 (2011) 073009 [arXiv:1102.3361] [INSPIRE].

    ADS  Google Scholar 

  • E. Gabrielli and B. Mele, A radiatively improved fermiophobic Higgs boson scenario, arXiv:1112.5993 [INSPIRE].

  • H. Haber, G.L. Kane and T. Sterling, The fermion mass scale and possible effects of Higgs bosons on experimental observables, Nucl. Phys. B 161 (1979) 493 [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Akeroyd, Fermiophobic and other nonminimal neutral Higgs bosons at the LHC, J. Phys. GG 24(1998)1983 [hep-ph/9803324][INSPIRE].

    Article  ADS  Google Scholar 

  • G.F. Giudice and O. Lebedev, Higgs-dependent Yukawa couplings, Phys. Lett. B 665 (2008) 79 [arXiv:0804.1753] [INSPIRE].

    Article  ADS  Google Scholar 

  • K. Kannike, M. Raidal, D.M. Straub and A. Strumia, Anthropic solution to the magnetic muon anomaly: the charged see-saw, JHEP 02 (2012) 106 [arXiv:1111.2551] [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Falkowski, Pseudo-goldstone Higgs production via gluon fusion, Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [INSPIRE].

    ADS  Google Scholar 

  • I. Low and A. Vichi, On the production of a composite Higgs boson, Phys. Rev. D 84 (2011) 045019 [arXiv:1010.2753] [INSPIRE].

    ADS  Google Scholar 

  • A. Azatov and J. Galloway, Light custodians and Higgs physics in composite models, Phys. Rev. D 85 (2012) 055013 [arXiv:1110.5646] [INSPIRE].

    ADS  Google Scholar 

  • A. Falkowski, S. Rychkov and A. Urbano, What if the Higgs couplings to W and Z bosons are larger than in the standard model?, JHEP 04 (2012) 073 [arXiv:1202.1532] [INSPIRE].

    Article  ADS  Google Scholar 

  • L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012)131 [arXiv:1112.2703] [INSPIRE].

    Article  ADS  Google Scholar 

  • H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].

    ADS  Google Scholar 

  • S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Arbey, M. Battaglia and F. Mahmoudi, Constraints on the MSSM from the Higgs sector: a pMSSM study of Higgs searches, \(B_s^0 \to {\mu^{+} }{\mu^{-} }\) and dark matter direct detection, Eur. Phys. J. C 72 (2012) 1906 [arXiv:1112.3032] [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  • P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].

    ADS  Google Scholar 

  • M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].

    Article  ADS  Google Scholar 

  • O. Buchmueller et al., Higgs and supersymmetry, arXiv:1112.3564 [INSPIRE].

  • J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Arvanitaki and G. Villadoro, A non standard model Higgs at the LHC as a sign of naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].

    Article  ADS  Google Scholar 

  • Z. Kang, J. Li and T. Li, On naturalness of the (N)MSSM, arXiv:1201.5305.

  • K.A. Olive, The impact of XENON100 and the LHC on supersymmetric dark matter, arXiv:1202.2324 [INSPIRE].

  • J. Ellis and K.A. Olive, Revisiting the Higgs mass and dark matter in the CMSSM, Eur. Phys. J. C 72 (2012) 2005 [arXiv:1202.3262] [INSPIRE].

    Article  ADS  Google Scholar 

  • H. Baer, V. Barger and A. Mustafayev, Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar, JHEP 05 (2012) 091 [arXiv:1202.4038] [INSPIRE].

    Article  ADS  Google Scholar 

  • N. Desai, B. Mukhopadhyaya and S. Niyogi, Constraints on invisible Higgs decay in MSSM in the light of diphoton rates from the LHC, arXiv:1202.5190 [INSPIRE].

  • J. Cao, Z. Heng, J.M. Yang, Y. Zhang and J. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].

    Article  ADS  Google Scholar 

  • F. Jegerlehner, Implications of low and high energy measurements on SUSY models, arXiv:1203.0806 [INSPIRE].

  • Z. Kang, T. Li, T. Liu, C. Tong and J.M. Yang, A heavy SM-like higgs and a light stop from Yukawa-deflected gauge mediation, arXiv:1203.2336 [INSPIRE].

  • D. Curtin, P. Jaiswal and P. Meade, Excluding electroweak baryogenesis in the MSSM, arXiv:1203.2932 [INSPIRE].

  • N.D. Christensen, T. Han and S. Su, MSSM Higgs bosons at the LHC, arXiv:1203.3207 [INSPIRE].

  • F. Boudjema and G.D. La Rochelle, BMSSM higgses at 125 GeV, arXiv:1203.3141.

  • T. Moroi, R. Sato and T.T. Yanagida, Extra matters decree the relatively heavy Higgs of mass about 125 GeV in the supersymmetric model, Phys. Lett. B 709 (2012) 218 [arXiv:1112.3142] [INSPIRE].

    Article  ADS  Google Scholar 

  • U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Gozdz, Lightest Higgs boson masses in the R-parity violating supersymmetry, arXiv:1201.0875 [INSPIRE].

  • J.F. Gunion, Y. Jiang and S. Kraml, The constrained NMSSM and Higgs near 125 GeV, Phys. Lett. B 710 (2012) 454 [arXiv:1201.0982] [INSPIRE].

    Article  ADS  Google Scholar 

  • S. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs benchmarks near 125 GeV, Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].

    Article  ADS  Google Scholar 

  • T.G. Rizzo, Gauge kinetic mixing in the E 6 SSM, Phys. Rev. D 85 (2012) 055010 [arXiv:1201.2898] [INSPIRE].

    ADS  Google Scholar 

  • Z. Kang, J. Li and T. Li, On naturalness of the (N)MSSM, arXiv:1201.5305 [INSPIRE].

  • C.-F. Chang, K. Cheung, Y.-C. Lin and T.-C. Yuan, Mimicking the standard model Higgs boson in UMSSM, arXiv:1202.0054 [INSPIRE].

  • D.A. Vasquez et al., The 125 GeV Higgs in the NMSSM in light of LHC results and astrophysics constraints, arXiv:1203.3446 [INSPIRE].

  • A. Djouadi, Squark effects on Higgs boson production and decay at the LHC, Phys. Lett. B 435 (1998) 101 [hep-ph/9806315] [INSPIRE].

    Article  ADS  Google Scholar 

  • ATLAS collaboration, Search for scalar top quark pair production in natural gauge mediated supersymmetry models with the ATLAS detector in pp collisions at \(\sqrt {s} = 7\;TeV\), ATLAS-CONF-2012-036 (2012).

  • ATLAS collaboration, Search for supersymmetry in pp collisions at \(\sqrt {s} = 7\;TeV\) in final states with missing transverse momentum and b-jets with the ATLAS detector, ATLAS-CONF-2012-003 (2012).

  • ATLAS collaboration, Search for gluinos in events with two same-sign leptons, jets and missing transverse momentum with the ATLAS detector in pp collisions at \(\sqrt {s} = 7\;TeV\), ATLAS-CONF-2012-004 (2012).

  • ATLAS collaboration, Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in L = 4.7 fb −1 of \(\sqrt {s} = 7\;TeV\) proton-proton collisions, ATLAS-CONF-2012-037 (2012).

  • CMS collaboration, Search for supersymmetry in all-hadronic events with α T , PAS-SUS-11-003 (2011).

  • ATLAS collaboration, A. Marzin, Searches for third generation SUSY in ATLAS, arXiv:1205.3885 [INSPIRE].

  • K. Blum, R.T. D’Agnolo and J. Fan, Natural SUSY predicts: Higgs couplings, in preparation.

  • B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].

  • J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].

    ADS  Google Scholar 

  • C. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].

    Article  ADS  Google Scholar 

  • D. Larson et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: power spectra and WMAP-derived parameters, Astrophys. J. Suppl. 192 (2011) 16 [arXiv:1001.4635] [INSPIRE].

    Article  ADS  Google Scholar 

  • L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Y. Eshel, S.J. Lee, G. Perez and Y. Soreq, Shining flavor and radion phenomenology in warped extra dimension, JHEP 10 (2011) 015 [arXiv:1106.6218] [INSPIRE].

    Article  ADS  Google Scholar 

  • V. Barger and M. Ishida, Randall-Sundrum reality at the LHC, Phys. Lett. B 709 (2012) 185 [arXiv:1110.6452] [INSPIRE].

    Article  ADS  Google Scholar 

  • K. Cheung and T.-C. Yuan, Could the excess seen at 124-126 GeV be due to the Randall-Sundrum radion?, Phys. Rev. Lett. 108 (2012) 141602 [arXiv:1112.4146] [INSPIRE].

    Article  ADS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4