A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/JHEP06(2011)127 below:

Higgs friends and counterfeits at hadron colliders

Abstract

We consider the possibility of “Higgs counterfeits” - scalars that can be produced with cross sections comparable to the SM Higgs, and which decay with identical relative observable branching ratios, but which are nonetheless not responsible for electroweak symmetry breaking. We also consider a related scenario involving “Higgs friends,” fields similarly produced through gg fusion processes, which would be discovered through diboson channels WW, ZZ, γγ, or even γZ, potentially with larger cross sections times branching ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs counterfeit, rather than directly pointing towards the origin of the weak scale, would indicate the presence of new colored fields necessary for the sizable production cross section (and possibly new colorless but electroweakly charged states as well, in the case of the diboson decays of a Higgs friend). These particles could easily be confused for an ordinary Higgs, perhaps with an additional generation to explain the different cross section, and we emphasize the importance of vector boson fusion as a channel to distinguish a Higgs counterfeit from a true Higgs. Such fields would naturally be expected in scenarios with “effective Z′s,” where heavy states charged under the SM produce effective charges for SM fields under a new gauge force. We discuss the prospects for discovery of Higgs counterfeits, Higgs friends, and associated charged fields at the LHC.

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. W.D. Goldberger and M.B. Wise, Phenomenology of a stabilized modulus, Phys. Lett. B 475 (2000) 275 [hep-ph/9911457] [SPIRES].

    ADS  Google Scholar 

  2. G.F. Giudice, R. Rattazzi and J.D. Wells, Graviscalars from higher-dimensional metrics and curvature-Higgs mixing, Nucl. Phys. B 595 (2001) 250 [hep-ph/0002178] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev. D 63 (2001) 065002 [hep-th/0008151] [SPIRES].

    ADS  Google Scholar 

  4. W.D. Goldberger, B. Grinstein and W. Skiba, Light scalar at LHC: the Higgs or the dilaton?, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [SPIRES].

    Article  ADS  Google Scholar 

  5. A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [SPIRES].

    ADS  Google Scholar 

  6. I. Low and J. Lykken, Revealing the electroweak properties of a new scalar resonance, JHEP 10 (2010) 053 [arXiv:1005.0872] [SPIRES].

    Article  ADS  Google Scholar 

  7. H. Davoudiasl, T. McElmurry and A. Soni, Promising Diphoton Signals of the Little Radion at Hadron Colliders, Phys. Rev. D 82 (2010) 115028 [arXiv:1009.0764] [SPIRES].

    ADS  Google Scholar 

  8. A. Djouadi, J. Kalinowski and M. Spira, HDECAY : A program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  9. F. Wilczek, Decays of Heavy Vector Mesons Into Higgs Particles, Phys. Rev. Lett. 39 (1977) 1304 [SPIRES].

    Article  ADS  Google Scholar 

  10. J.R. Ellis, M.K. Gaillard, D.V. Nanopoulos and C.T. Sachrajda, Is the Mass of the Higgs Boson About 10-GeV?, Phys. Lett. B 83 (1979) 339 [SPIRES].

    ADS  Google Scholar 

  11. T.G. Rizzo, Decays of heavy Higgs bosons, Phys. Rev. D 22 (1980) 722 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs Bosons from Two Gluon Annihilation in Proton Proton Collisions, Phys. Rev. Lett. 40 (1978) 692 [SPIRES].

    Article  ADS  Google Scholar 

  13. A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [SPIRES].

    Article  ADS  Google Scholar 

  14. A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [SPIRES].

    Article  ADS  Google Scholar 

  15. CDF and D0 collaboration, T. Aaltonen et al., Combined CDF and D0 Upper Limits on Standard Model Higgs Boson Production with up to 8.2 fb-1 of Data, arXiv:1103.3233 [SPIRES].

  16. ATLAS collaboration, ATLAS Sensitivity Prospects for 1 Higgs Boson Production at the LHC Running at 7, 8 or 9 TeV, ATLAS Report ATL-PHYS-PUB-2010-015.

  17. CMS collaboration, Projected sensitivity for Standard Model Higgs boson searches at 7 and 8TeV, and 1-10 fb −1, https://twiki.cern.ch/twiki/bin/view/CMSPublic//PhysicsResultsHIGStandardModelProjections, to be included in CMS-NOTE 2010-008.

  18. The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics, arXiv:0901.0512 [SPIRES].

  19. The ATLAS collaboration, ATLAS Sensitivity to the Standard Model Higgs in the HW and HZ Channels at High Transverse Momenta, ATLAS Report, ATL-PHYS-PUB-2009-088.

  20. CMS collaboration, Summary of the CMS potential for the Higgs boson discovery, CMS Note CMS-NOTE-2003-033.

  21. CMS collaboration, CMS Physics Technical Design Report. Vol. II: Physics Performance, J. Phys. G 34 (2007) 995.

    ADS  Google Scholar 

  22. F. Gianotti and M. Pepe-Altarelli, Precision physics at the LHC, Nucl. Phys. Proc. Suppl. 89 (2000) 177 [hep-ex/0006016] [SPIRES].

    Article  ADS  Google Scholar 

  23. C. Balázs, E.L. Berger, P.M. Nadolsky and C.P. Yuan, Calculation of prompt diphoton production cross sections at Tevatron and LHC energies, Phys. Rev. D 76 (2007) 013009 [arXiv:0704.0001] [SPIRES].

    ADS  Google Scholar 

  24. P.J. Fox, J. Liu, D. Tucker-Smith and N. Weiner, An Effective Z’, arXiv:1104.4127 [SPIRES].

  25. ATLAS collaboration, G. Aad et al., Search for stable hadronising squarks and gluinos with the ATLAS experiment at the LHC, arXiv:1103.1984 [SPIRES].

  26. A. Arvanitaki, C. Davis, P.W. Graham, A. Pierce and J.G. Wacker, Limits on split supersymmetry from gluino cosmology, Phys. Rev. D 72 (2005) 075011 [hep-ph/0504210] [SPIRES].

    ADS  Google Scholar 

  27. M. Kawasaki, K. Kohri and T. Moroi, Big-bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [SPIRES].

    ADS  Google Scholar 

  28. G.D. Kribs and I.Z. Rothstein, Bounds on long-lived relics from diffuse gamma ray observations, Phys. Rev. D 55 (1997) 4435 [hep-ph/9610468] [SPIRES].

    ADS  Google Scholar 

  29. W. Hu and J. Silk, Thermalization constraints and spectral distortions for massive unstable relic particles, Phys. Rev. Lett. 70 (1993) 2661 [SPIRES].

    Article  ADS  Google Scholar 

  30. J.L. Feng, A. Rajaraman and F. Takayama, SuperW IMP Dark Matter Signals from the Early Universe, Phys. Rev. D 68 (2003) 063504 [hep-ph/0306024] [SPIRES].

    ADS  Google Scholar 

  31. P.F. Smith et al., A Search For Anomalous Hydrogen In Enriched D-2 O, Using A Time-Of-Flight Spectrometer, Nucl. Phys. B 206 (1982) 333 [SPIRES].

    Article  ADS  Google Scholar 

  32. T.K. Hemmick et al., A Search For Anomalously Heavy Isotopes Of Low Z Nuclei, Phys. Rev. D 41 (1990) 2074 [SPIRES].

    ADS  Google Scholar 

  33. J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker, Searching for Directly Decaying Gluinos at the Tevatron, Phys. Lett. B 666 (2008) 34 [arXiv:0803.0019] [SPIRES].

    ADS  Google Scholar 

  34. D.S.M. Alves, E. Izaguirre and J.G. Wacker, It’s On: Early Interpretations of ATLAS Results in Jets and Missing Energy Searches, arXiv:1008.0407 [SPIRES].

  35. ATLAS collaboration, J.B.G. da Costa et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7 \) TeV proton-proton collisions, arXiv:1102.5290 [SPIRES].

  36. CMS collaboration, S. Chatrchyan et al., Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC, arXiv:1104.3168 [SPIRES].

  37. D0 collaboration, V.M. Abazov et al., Search for pair production of first-generation leptoquarks in p pbar collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Lett. B 681 (2009) 224 [arXiv:0907.1048] [SPIRES].

    ADS  Google Scholar 

  38. CDF collaboration, A. Lister, Search for Heavy Top-like Quarks t′ → Wq Using Lepton Plus Jets Events in 1.96 TeV \( p\bar{p} \) Collisions, arXiv:0810.3349 [SPIRES].

  39. CDF collaboration, T. Aaltonen et al., Search for New Bottomlike Quark Pair Decays \( Q\bar{Q} \to \left( {t{W^\mp }} \right)\left( {\bar{t}{W^\pm }} \right) \) in Same-Charge Dilepton Events, Phys. Rev. Lett. 104 (2010) 091801 [arXiv:0912.1057] [SPIRES].

    Article  ADS  Google Scholar 

  40. C.J. Flacco, D. Whiteson, T.M.P. Tait and S. Bar-Shalom, Direct Mass Limits for Chiral Fourth-Generation Quarks in All Mixing Scenarios, Phys. Rev. Lett. 105 (2010) 111801 [arXiv:1005.1077] [SPIRES].

    Article  ADS  Google Scholar 

  41. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys. B 106 (1976) 292 [SPIRES].

    ADS  Google Scholar 

  42. M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711 [SPIRES].

    Google Scholar 

  43. M.B. Gavela, G. Girardi, C. Malleville and P. Sorba, A non-linear R ζ gauge condition for the electroweak SU(2) × U(1) model, Nucl. Phys. B 193 (1981) 257 [SPIRES].

    Article  ADS  Google Scholar 

  44. R.N. Cahn, M.S. Chanowitz and N. Fleishon, Higgs Particle Production by Z → , Phys. Lett. B 82 (1979) 113 [SPIRES].

    ADS  Google Scholar 

  45. L. Bergstrom and G. Hulth, Induced Higgs couplings to neutral bosons in e + e collisions, Nucl. Phys. B 259 (1985) 137 [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information Authors and Affiliations
  1. Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, Illinois, U.S.A.

    Patrick J. Fox

  2. Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY, U.S.A.

    David Tucker-Smith

  3. Department of Physics, Williams College, Williamstown, MA, 01267, U.S.A.

    David Tucker-Smith

  4. School of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, NJ, 08540, U.S.A.

    David Tucker-Smith & Neal Weiner

Authors
  1. Patrick J. Fox
  2. David Tucker-Smith
  3. Neal Weiner
Corresponding author

Correspondence to David Tucker-Smith.

Additional information

ArXiv ePrint: 1104.5450

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article Cite this article

Fox, P.J., Tucker-Smith, D. & Weiner, N. Higgs friends and counterfeits at hadron colliders. J. High Energ. Phys. 2011, 127 (2011). https://doi.org/10.1007/JHEP06(2011)127

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4