A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/JHEP05(2020)042 below:

An inflationary probe of cosmic Higgs switching

Abstract

A scalar Higgs field can be repeatedly switched on and off when it couples to a classically oscillating scalar modulus field. The modulus flips the Higgs mass term between stable and tachyonic values. We study a cosmological scenario in which such repeated phase transitions occur during inflation. An irrelevant operator coupling the Higgs field to the inflaton can then imprint the pattern of phase transitions in the correlation functions of the inflaton. Using both numerical and analytic studies, we show that the inflaton 2-point function carries characteristic imprints of the modulus oscillation and its effect on the Higgs boson. We briefly remark on the potential observability of such patterns and how they might be distinguished from other dynamics in the early universe.

Similar content being viewed by others MSSM-inspired multifield inflation

Article Open access 07 December 2017

A cosmological Higgs collider

Article Open access 03 February 2020

Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. M.A. Amin, J. Fan, K.D. Lozanov and M. Reece, Cosmological dynamics of Higgs potential fine tuning, Phys. Rev. D 99 (2019) 035008 [arXiv:1802.00444] [INSPIRE].

    ADS  Google Scholar 

  2. P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological Relaxation of the Electroweak Scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  3. X. Chen, Primordial Features as Evidence for Inflation, JCAP 01 (2012) 038 [arXiv:1104.1323] [INSPIRE].

    Article  MATH  Google Scholar 

  4. G. Shiu and J. Xu, Effective Field Theory and Decoupling in Multi-field Inflation: An Illustrative Case Study, Phys. Rev. D 84 (2011) 103509 [arXiv:1108.0981] [INSPIRE].

    ADS  MATH  Google Scholar 

  5. R. Saito, M. Nakashima, Y.-i. Takamizu and J. Yokoyama, Resonant Signatures of Heavy Scalar Fields in the Cosmic Microwave Background, JCAP 11 (2012) 036 [arXiv:1206.2164] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  6. X. Gao, D. Langlois and S. Mizuno, Oscillatory features in the curvature power spectrum after a sudden turn of the inflationary trajectory, JCAP 10 (2013) 023 [arXiv:1306.5680] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  7. T. Noumi and M. Yamaguchi, Primordial spectra from sudden turning trajectory, JCAP 12 (2013) 038 [arXiv:1307.7110] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  8. X. Chen, R. Easther and E.A. Lim, Generation and Characterization of Large Non-Gaussianities in Single Field Inflation, JCAP 04 (2008) 010 [arXiv:0801.3295] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  9. R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, Oscillations in the CMB from Axion Monodromy Inflation, JCAP 06 (2010) 009 [arXiv:0907.2916] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  10. R. Flauger and E. Pajer, Resonant Non-Gaussianity, JCAP 01 (2011) 017 [arXiv:1002.0833] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  11. X. Chen, Folded Resonant Non-Gaussianity in General Single Field Inflation, JCAP 12 (2010) 003 [arXiv:1008.2485] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  12. C.P. Burgess, J.M. Cline, F. Lemieux and R. Holman, Are inflationary predictions sensitive to very high-energy physics?, JHEP 02 (2003) 048 [hep-th/0210233] [INSPIRE].

    Article  ADS  Google Scholar 

  13. X. Chen and C. Ringeval, Searching for Standard Clocks in the Primordial Universe, JCAP 08 (2012) 014 [arXiv:1205.6085] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  14. X. Chen and M.H. Namjoo, Standard Clock in Primordial Density Perturbations and Cosmic Microwave Background, Phys. Lett. B 739 (2014) 285 [arXiv:1404.1536] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  15. X. Chen, M.H. Namjoo and Y. Wang, Models of the Primordial Standard Clock, JCAP 02 (2015) 027 [arXiv:1411.2349] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  16. Q.-G. Huang and S. Pi, Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential, JCAP 04 (2018) 001 [arXiv:1610.00115] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  17. X. Chen and Y. Wang, Large non-Gaussianities with Intermediate Shapes from Quasi-Single Field Inflation, Phys. Rev. D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].

    ADS  MATH  Google Scholar 

  18. X. Chen and Y. Wang, Quasi-Single Field Inflation and Non-Gaussianities, JCAP 04 (2010) 027 [arXiv:0911.3380] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  19. D. Baumann and D. Green, Signatures of Supersymmetry from the Early Universe, Phys. Rev. D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].

    ADS  MATH  Google Scholar 

  20. N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].

  21. X. Chen, M.H. Namjoo and Y. Wang, Quantum Primordial Standard Clocks, JCAP 02 (2016) 013 [arXiv:1509.03930] [INSPIRE].

    ADS  MATH  Google Scholar 

  22. M. Li and Y. Wang, Multi-Stream Inflation, JCAP 07 (2009) 033 [arXiv:0903.2123] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  23. S. Li, Y. Liu and Y.-S. Piao, Inflation in Web, Phys. Rev. D 80 (2009) 123535 [arXiv:0906.3608] [INSPIRE].

    ADS  MATH  Google Scholar 

  24. A.A. Abolhasani, H. Firouzjahi and M. Sasaki, Curvature perturbation and waterfall dynamics in hybrid inflation, JCAP 10 (2011) 015 [arXiv:1106.6315] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  25. X. Gao, D. Langlois and S. Mizuno, Influence of heavy modes on perturbations in multiple field inflation, JCAP 10 (2012) 040 [arXiv:1205.5275] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  26. M. He, A.A. Starobinsky and J. Yokoyama, Inflation in the mixed Higgs-R2 model, JCAP 05 (2018) 064 [arXiv:1804.00409] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  27. M. He, Inflation in the mixed Higgs-R2 model, MSc Thesis, University of Tokyo (2018).

    MATH  Google Scholar 

  28. J. Lesgourgues, The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview, arXiv:1104.2932 [INSPIRE].

  29. Planck collaboration, Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211 [INSPIRE].

  30. CMB-S4 collaboration, CMB-S4 Science Book, First Edition, arXiv:1610.02743 [INSPIRE].

  31. A. Slosar et al., Scratches from the Past: Inflationary Archaeology through Features in the Power Spectrum of Primordial Fluctuations, arXiv:1903.09883 [INSPIRE].

  32. C.L. Bennett et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies?, Astrophys. J. Suppl. 192 (2011) 17 [arXiv:1001.4758] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  33. D.J. Schwarz, C.J. Copi, D. Huterer and G.D. Starkman, CMB Anomalies after Planck, Class. Quant. Grav. 33 (2016) 184001 [arXiv:1510.07929] [INSPIRE].

    Article  ADS  Google Scholar 

  34. R. Flauger, L. McAllister, E. Silverstein and A. Westphal, Drifting Oscillations in Axion Monodromy, JCAP 10 (2017) 055 [arXiv:1412.1814] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  35. Planck collaboration, Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys. 594 (2016) A17 [arXiv:1502.01592] [INSPIRE].

  36. O. Doré et al., Cosmology with the SPHEREX All-Sky Spectral Survey, arXiv:1412.4872 [INSPIRE].

  37. H. Jiang and Y. Wang, Towards the physical vacuum of cosmic inflation, Phys. Lett. B 760 (2016) 202 [arXiv:1507.05193] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  38. H. Jiang, Y. Wang and S. Zhou, On the initial condition of inflationary fluctuations, JCAP 04 (2016) 041 [arXiv:1601.01179] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. X. Chen, Y. Wang and Z.-Z. Xianyu, Loop Corrections to Standard Model Fields in Inflation, JHEP 08 (2016) 051 [arXiv:1604.07841] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model Background of the Cosmological Collider, Phys. Rev. Lett. 118 (2017) 261302 [arXiv:1610.06597] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  41. X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model Mass Spectrum in Inflationary Universe, JHEP 04 (2017) 058 [arXiv:1612.08122] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. S. Kumar and R. Sundrum, Heavy-Lifting of Gauge Theories By Cosmic Inflation, JHEP 05 (2018) 011 [arXiv:1711.03988] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. X. Chen, G.A. Palma, W. Riquelme, B. Scheihing Hitschfeld and S. Sypsas, Landscape tomography through primordial non-Gaussianity, Phys. Rev. D 98 (2018) 083528 [arXiv:1804.07315] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  44. X. Chen, G.A. Palma, B. Scheihing Hitschfeld and S. Sypsas, Reconstructing the Inflationary Landscape with Cosmological Data, Phys. Rev. Lett. 121 (2018) 161302 [arXiv:1806.05202] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information Authors and Affiliations
  1. Department of Physics, Brown University, Providence, RI, 02912, USA

    JiJi Fan

  2. Department of Physics, Harvard University, Cambridge, MA, 02138, USA

    Matthew Reece

  3. Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China

    Yi Wang

  4. Jockey Club Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China

    Yi Wang

Authors
  1. JiJi Fan
  2. Matthew Reece
  3. Yi Wang
Corresponding author

Correspondence to Matthew Reece.

Additional information

ArXiv ePrint: 1905.05764

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article Cite this article

Fan, J., Reece, M. & Wang, Y. An inflationary probe of cosmic Higgs switching. J. High Energ. Phys. 2020, 42 (2020). https://doi.org/10.1007/JHEP05(2020)042

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4