A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/JHEP05(2010)089 below:

Strong double higgs production at the LHC

  • D.A. Dicus and V.S. Mathur, Upper bounds on the values of masses in unified gauge theories, Phys. Rev. D 7 (1973) 3111 [SPIRES].

    ADS  Google Scholar 

  • C.H. Llewellyn Smith, High-energy behavior and gauge symmetry, Phys. Lett. B 46 (1973) 233 [SPIRES].

    ADS  Google Scholar 

  • J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Uniqueness of spontaneously broken gauge theories, Phys. Rev. Lett. 30 (1973) 1268 [Erratum ibid. 31 (1973) 572] [SPIRES].

    Article  ADS  Google Scholar 

  • J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of gauge invariance from high-energy unitarity bounds on the S matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [SPIRES].

    ADS  Google Scholar 

  • B.W. Lee, C. Quigg and H.B. Thacker, The strength of weak interactions at very high-energies and the higgs boson mass, Phys. Rev. Lett. 38 (1977) 883 [SPIRES].

    Article  ADS  Google Scholar 

  • B.W. Lee, C. Quigg and H.B. Thacker, Weak interactions at very high-energies: the role of the higgs boson mass, Phys. Rev. D 16 (1977) 1519 [SPIRES].

    ADS  Google Scholar 

  • S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (1976) 974 [SPIRES].

    ADS  Google Scholar 

  • L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [SPIRES].

    ADS  Google Scholar 

  • D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [SPIRES].

    ADS  Google Scholar 

  • S. Dimopoulos and J. Preskill, Massless composites with massive constituents, Nucl. Phys. B 199 (1982) 206 [SPIRES].

    Article  ADS  Google Scholar 

  • T. Banks, Constraints on SU(2) × U(1) breaking by vacuum misalignment, Nucl. Phys. B 243 (1984) 125 [SPIRES].

    ADS  Google Scholar 

  • D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [SPIRES].

    ADS  Google Scholar 

  • H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett. B 143 (1984) 152 [SPIRES].

    ADS  Google Scholar 

  • H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [SPIRES].

    ADS  Google Scholar 

  • M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [SPIRES].

    Article  ADS  Google Scholar 

  • K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].

    Article  ADS  Google Scholar 

  • R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [SPIRES].

    ADS  Google Scholar 

  • G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [SPIRES].

    Article  ADS  Google Scholar 

  • E. Halyo, Technidilaton or Higgs?, Mod. Phys. Lett. A 8 (1993) 275 [SPIRES].

    ADS  Google Scholar 

  • W.D. Goldberger, B. Grinstein and W. Skiba, Light scalar at LHC: the Higgs or the dilaton?, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [SPIRES].

    Article  ADS  Google Scholar 

  • M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting W's and Z's, Nucl. Phys. B 261 (1985) 379 [SPIRES].

    Article  ADS  Google Scholar 

  • I. Low, R. Rattazzi and A. Vichi, Theoretical constraints on the Higgs effective couplings, arXiv:0907.5413 [SPIRES].

  • G.F. Giudice, R. Rattazzi and J.D. Wells, Graviscalars from higher-dimensional metrics and curvature-Higgs mixing, Nucl. Phys. B 595 (2001) 250 [hep-ph/0002178] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  • R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [SPIRES].

    ADS  Google Scholar 

  • M.S. Chanowitz, M. Golden and H. Georgi, Universal scattering theorems for strongly interacting W's and Z's, Phys. Rev. Lett. 57 (1986) 2344 [SPIRES].

    Article  ADS  Google Scholar 

  • M.S. Chanowitz, M. Golden and H. Georgi, Low-energy theorems for strongly interacting W's And Z's, Phys. Rev. D 36 (1987) 1490 [SPIRES].

    ADS  Google Scholar 

  • R.N. Cahn and S. Dawson, Production of very massive Higgs bosons, Phys. Lett. B 136 (1984) 196 [Erratum ibid. B 138 (1984) 464] [SPIRES].

    ADS  Google Scholar 

  • S. Dawson, The effective W approximation, Nucl. Phys. B 249 (1985) 42 [SPIRES].

    Article  ADS  Google Scholar 

  • M.S. Chanowitz and M.K. Gaillard, Multiple production of W and Z as a signal of new strong interactions, Phys. Lett. B 142 (1984) 85 [SPIRES].

    ADS  Google Scholar 

  • G.L. Kane, W.W. Repko and W.B. Rolnick, The effective W ±, Z 0 approximation for high-energy collisions, Phys. Lett. B 148 (1984) 367 [SPIRES].

    ADS  Google Scholar 

  • E. Accomando, A. Ballestrero, A. Belhouari and E. Maina, Isolating vector boson scattering at the LHC: Gauge cancellations and the equivalent vector boson approximation vs complete calculations, Phys. Rev. D 74 (2006) 073010 [hep-ph/0608019] [SPIRES].

    ADS  Google Scholar 

  • Z. Kunszt and D.E. Soper, On the validity of the effective W approximation, Nucl. Phys. B 296 (1988) 253 [SPIRES].

    Article  ADS  Google Scholar 

  • J. Bagger et al., The strongly interacting W W system: gold plated modes, Phys. Rev. D 49 (1994) 1246 [hep-ph/9306256] [SPIRES].

    ADS  Google Scholar 

  • J. Bagger et al., CERN LHC analysis of the strongly interacting W W system: gold plated modes, Phys. Rev. D 52 (1995) 3878 [hep-ph/9504426] [SPIRES].

    ADS  Google Scholar 

  • A. Ballestrero, G. Bevilacqua, D.B. Franzosi and E. Maina, How well can the LHC distinguish between the SM light Higgs scenario, a composite Higgs and the Higgsless case using VV scattering channels?, JHEP 11 (2009) 126 [arXiv:0909.3838] [SPIRES].

    Article  ADS  Google Scholar 

  • A. Ballestrero, G. Bevilacqua and E. Maina, A complete parton level analysis of boson-boson scattering and electroweak symmetry breaking in lv+ four jets production at the LHC, JHEP 05 (2009) 015 [arXiv:0812.5084] [SPIRES].

    Article  ADS  Google Scholar 

  • N.Amapane et al., Study of VV-scattering processes as a probe of electroweak symmetry breaking, CMS note CERN-CMS-NOTE-2007-005.

  • E. Accomando, A. Ballestrero, A. Belhouari and E. Maina, Boson fusion and Higgs production at the LHC in six fermion final states with one charged lepton pair, Phys. Rev. D 75 (2007) 113006 [hep-ph/0603167] [SPIRES].

    ADS  Google Scholar 

  • J.M. Butterworth, B.E. Cox and J.R. Forshaw, WW scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [SPIRES].

    ADS  Google Scholar 

  • T. Han, D. Krohn, L.-T. Wang and W. Zhu, New physics signals in longitudinal gauge boson scattering at the LHC, JHEP 03 (2010) 082 [arXiv:0911.3656] [SPIRES].

    Article  Google Scholar 

  • E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [SPIRES].

    Article  ADS  Google Scholar 

  • V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, H + 2 jets via gluon fusion, Phys. Rev. Lett. 87 (2001) 122001 [hep-ph/0105129] [SPIRES].

    Article  ADS  Google Scholar 

  • V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Gluon-fusion contributions to H + 2 jet production, Nucl. Phys. B 616 (2001) 367 [hep-ph/0108030] [SPIRES].

    Article  ADS  Google Scholar 

  • J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].

    Article  ADS  Google Scholar 

  • F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [SPIRES].

    Article  ADS  Google Scholar 

  • T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [SPIRES].

    Article  ADS  Google Scholar 

  • M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].

    Article  ADS  Google Scholar 

  • Y.L. Dokshitzer, S.I. Troian and V.A. Khoze, Collective QCD effects in the structure of final multi-hadron states. (In Russian), in proceedings of the 6th International Conference on Physics in Collisions, M. Derrick eds. (1986), World Scientific, Singapore (1987) pg. 365 Sov. J. Nucl. Phys. 46 (1987) 712 [Yad. Fiz. 46 (1987) 1220] [SPIRES].

  • Y.L. Dokshitzer, V.A. Khoze and T. Sjöstrand, Rapidity gaps in Higgs production, Phys. Lett. B 274 (1992) 116 [SPIRES].

    ADS  Google Scholar 

  • J.D. Bjorken, A Full acceptance detector for SSC physics at low and intermediate mass scales: An Expression of interest to the SSC, Int. J. Mod. Phys. A 7 (1992) 4189 [SPIRES].

    ADS  Google Scholar 

  • J.D. Bjorken, Rapidity gaps and jets as a new physics signature in very high-energy hadron hadron collisions, Phys. Rev. D 47 (1993) 101 [SPIRES].

    ADS  Google Scholar 

  • J.D. Bjorken, Two gauge boson physics at very high-energies, SLAC-PUB-5823 (1992) [SPIRES].

  • R.S. Fletcher and T. Stelzer, Rapidity gap signals in Higgs production at the SSC, Phys. Rev. D 48 (1993) 5162 [hep-ph/9306253] [SPIRES].

    ADS  Google Scholar 

  • T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  • F.E. Paige and S.D. Protopopescu, ISAJET 5.30: a Monte Carlo event generator for pp and ppbar interactions, in Physics of the SSC, R. Donaldson and J. Marx eds., Snowmass, Colorado (1986) pg. 320.

  • CMS collaboration, G.L. Bayatian et al., CMS physics: Technical design report, Volume I: Detector performance and software, February (2006), CERN-LHCC-2006-001 [SPIRES].

  • The ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment - detector, trigger and physics, arXiv:0901.0512 [SPIRES].

  • Z. Sullivan and E.L. Berger, The missing heavy flavor backgrounds to Higgs boson production, Phys. Rev. D 74 (2006) 033008 [hep-ph/0606271] [SPIRES].

    ADS  Google Scholar 

  • Z. Sullivan and E.L. Berger, Trilepton production at the CERN LHC: Standard model sources and beyond, Phys. Rev. D 78 (2008) 034030 [arXiv:0805.3720] [SPIRES].

    ADS  Google Scholar 

  • A. Birkedal, K. Matchev and M. Perelstein, Collider phenomenology of the Higgsless models, Phys. Rev. Lett. 94 (2005) 191803 [hep-ph/0412278] [SPIRES].

    Article  ADS  Google Scholar 

  • H.-J. He et al., LHC signatures of new gauge bosons in minimal Higgsless model, Phys. Rev. D 78 (2008) 031701 [arXiv:0708.2588] [SPIRES].

    ADS  Google Scholar 

  • K. Agashe et al., LHC signals for warped electroweak neutral gauge bosons, Phys. Rev. D 76 (2007) 115015 [arXiv:0709.0007] [SPIRES].

    ADS  Google Scholar 

  • E. Accomando, S. De Curtis, D. Dominici and L. Fedeli, Drell-Yan production at the LHC in a four site Higgsless model, Phys. Rev. D 79 (2009) 055020 [arXiv:0807.5051] [SPIRES].

    ADS  Google Scholar 

  • E. Accomando, S. De Curtis, D. Dominici and L. Fedeli, The four site Higgsless model at the LHC, Nuovo Cim. 123B (2008) 809 [arXiv:0807.2951] [SPIRES].

    ADS  Google Scholar 

  • C. Englert, B. Jager, M. Worek and D. Zeppenfeld, Observing strongly interacting vector boson systems at the CERN large hadron collider, Phys. Rev. D 80 (2009) 035027 [arXiv:0810.4861] [SPIRES].

    ADS  Google Scholar 

  • R. Barbieri, G. Isidori, V.S. Rychkov and E. Trincherini, Heavy vectors in Higgs-less models, Phys. Rev. D 78 (2008) 036012 [arXiv:0806.1624] [SPIRES].

    ADS  Google Scholar 

  • A. Belyaev et al., Technicolor walks at the LHC, Phys. Rev. D 79 (2009) 035006 [arXiv:0809.0793] [SPIRES].

    ADS  Google Scholar 

  • K. Agashe, S. Gopalakrishna, T. Han, G.-Y. Huang and A. Soni, LHC signals for warped electroweak charged gauge bosons, Phys. Rev. D 80 (2009) 075007 [arXiv:0810.1497] [SPIRES].

    ADS  Google Scholar 

  • O. Catà, G. Isidori and J.F. Kamenik, Drell-Yan production of heavy vectors in Higgsless models, Nucl. Phys. B 822 (2009) 230 [arXiv:0905.0490] [SPIRES].

    Article  ADS  Google Scholar 

  • K. Agashe et al., LHC signals for coset electroweak gauge bosons in warped/composite PGB higgs models, arXiv:0911.0059 [SPIRES].

  • J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [SPIRES].

    Article  ADS  Google Scholar 

  • T. Plehn, G.P. Salam and M. Spannowsky, Fat jets for a light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [SPIRES].

    Article  ADS  Google Scholar 

  • T. Han, D. Krohn, L.-T. Wang and W. Zhu, New physics signals in longitudinal gauge boson scattering at the LHC, JHEP 03 (2010) 082 [arXiv:0911.3656] [SPIRES].

    Article  Google Scholar 

  • G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering the Higgs boson in new physics events using jet substructure, arXiv:0912.4731 [SPIRES].


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4