A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/JHEP04(2021)055 below:

Theoretical uncertainties for cosmological first-order phase transitions

  • D. J. Weir, Gravitational waves from a first order electroweak phase transition: a brief review, Phil. Trans. Roy. Soc. Land. A 376 (2018) 20170126 [arXiv:1705.01783] [INSPIRE].

    MATH  ADS  Google Scholar 

  • C. Caprini and D. G. Figueroa, Cosmological backgrounds of gravitational waves, Class. Quant. Grav. 35 (2018) 163001 [arXiv:1801.04268] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  • A. Mazumdar and G. White, Review of cosmic phase transitions: their significance and experimental signatures, Rept. Frog. Phys. 82 (2019) 076901 [arXiv:1811.01948] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • E. Senaha, Symmetry restoration and breaking at finite temperature: an introductory review, Symmetry 12 (2020) 733 [INSPIRE].

    Article  Google Scholar 

  • C. Caprini et al., Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE]

    Google Scholar 

  • C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with LISA: an update, JCAP 03 (2020) 024 [arXiv:1910.13125] [INSPIRE].

    Article  Google Scholar 

  • D. E. Morrissey and M. J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].

    Article  Google Scholar 

  • G. A. White, A pedagogical introduction to electroweak baryogenesis, IOP, Bristol, U.K. (2016) [INSPIRE].

    Book  Google Scholar 

  • K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov, The electroweak phase transition: a nonperturbative analysis, Nucl. Phys. B 466 (1996) 189 [hep-lat/9510020] [INSPIRE].

    Article  Google Scholar 

  • K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov, Is there a hot electroweak phase transition at mH larger or equal to mW?, Phys. Rev. Lett. 77 (1996) 2887 [hep-ph/9605288] [INSPIRE].

    Article  Google Scholar 

  • K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov, A nonperturbative analysis of the finite T phase transition in SU(2) × U(1) electroweak theory, Nucl. Phys. B 493 (1997) 413 [hep-lat/9612006] [INSPIRE].

    Article  Google Scholar 

  • F. Csikor, Z. Fodor and J. Heitger, Endpoint of the hot electroweak phase transition, Phys. Rev. Lett. 82 (1999) 21 [hep-ph/9809291] [INSPIRE].

    Article  MATH  Google Scholar 

  • M. D’Onofrio and K. Rummukainen, Standard model cross-over on the lattice, Phys. Rev. D 93 (2016) 025003 [arXiv:1508.07161] [INSPIRE].

    Article  Google Scholar 

  • G. Gil, P. Chankowski and M. Krawczyk, Inert dark matter and strong electroweak phase transition, Phys. Lett. B 717 (2012) 396 [arXiv:1207.0084] [INSPIRE].

    Article  Google Scholar 

  • M. Carena, G. Nardini, M. Quirós and C. E. M. Wagner, MSSM electroweak baryogenesis and LHC data, JHEP 02 (2013) 001 [arXiv:1207.6330] [INSPIRE].

    Article  Google Scholar 

  • S. Profumo, M. J. Ramsey-Musolf, C. L. Wainwright and P. Winslow, Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies, Phys. Rev. D 91 (2015) 035018 [arXiv:1407.5342] [INSPIRE].

    Article  Google Scholar 

  • J. Kozaczuk, S. Profumo, L. S. Haskins and C. L. Wainwright, Cosmological phase transitions and their properties in the NMSSM, JHEP 01 (2015) 144 [arXiv:1407.4134] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  • V. Vaskonen, Electroweak baryogenesis and gravitational waves from a real scalar singlet, Phys. Rev. D 95 (2017) 123515 [arXiv:1611.02073] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • G. C. Dorsch, S. J. Huber, T. Konstandin and J. M. No, A second Higgs doublet in the early universe: baryogenesis and gravitational waves, JCAP 05 (2017) 052 [arXiv:1611.05874] [INSPIRE].

    Article  Google Scholar 

  • C.-W. Chiang, M. J. Ramsey-Musolf and E. Senaha, Standard model with a complex scalar singlet: cosmological implications and theoretical considerations, Phys. Rev. D 97 (2018) 015005 [arXiv:1707.09960] [INSPIRE].

    Article  Google Scholar 

  • A. Beniwal, M. Lewicki, M. White and A. G. Williams, Gravitational waves and electroweak baryogenesis in a global study of the extended scalar singlet model, JHEP 02 (2019) 183 [arXiv:1810.02380] [INSPIRE].

    Article  Google Scholar 

  • S. Bruggisser, B. Von Harling, O. Matsedonskyi and G. Servant, Electroweak phase transition and baryogenesis in composite Higgs models, JHEP 12 (2018) 099 [arXiv:1804.07314] [INSPIRE].

    Article  Google Scholar 

  • P. Athron, C. Balázs, A. Fowlie, G. Pozzo, G. White and Y. Zhang, Strong first-order phase transitions in the NMSSM — a comprehensive survey, JHEP 11 (2019) 151 [arXiv:1908.11847] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • K. Kainulainen, V. Keus, L. Niemi, K. Rummukainen, T. V. I. Tenkanen and V. Vaskonen, On the validity of perturbative studies of the electroweak phase transition in the two Higgs doublet model, JHEP 06 (2019) 075 [arXiv:1904.01329] [INSPIRE].

    Article  Google Scholar 

  • C. Grojean, G. Servant and J. D. Wells, First-order electroweak phase transition in the standard model with a low cutoff, Phys. Rev. D 71 (2005) 036001 [hep-ph/0407019] [INSPIRE].

    Article  Google Scholar 

  • C. Delaunay, C. Grojean and J. D. Wells, Dynamics of non-renormalizable electroweak symmetry breaking, JHEP 04 (2008) 029 [arXiv:0711.2511] [INSPIRE].

    Article  Google Scholar 

  • M. Chala, C. Krause and G. Nardini, Signals of the electroweak phase transition at colliders and gravitational wave observatories, JHEP 07 (2018) 062 [arXiv:1802.02168] [INSPIRE].

    Article  Google Scholar 

  • H. H. Patel and M. J. Ramsey-Musolf, Stepping into electroweak symmetry breaking: phase transitions and Higgs phenomenology, Phys. Rev. D 88 (2013) 035013 [arXiv:1212.5652] [INSPIRE].

    Article  Google Scholar 

  • H. H. Patel, M. J. Ramsey-Musolf and M. B. Wise, Color breaking in the early universe, Phys. Rev. D 88 (2013) 015003 [arXiv:1303.1140] [INSPIRE].

    Article  Google Scholar 

  • N. Blinov, J. Kozaczuk, D. E. Morrissey and C. Tamarit, Electroweak baryogenesis from exotic electroweak symmetry breaking, Phys. Rev. D 92 (2015) 035012 [arXiv:1504.05195] [INSPIRE].

    Article  Google Scholar 

  • S. ArunaSalam and A. Kobakhidze, Electroweak monopoles and the electroweak phase transition, Eur. Phys. J. C 77 (2017) 444 [arXiv:1702.04068] [INSPIRE].

    Article  Google Scholar 

  • I. Baldes, T. Konstandin and G. Servant, A first-order electroweak phase transition from varying Yukawas, Phys. Lett. B 786 (2018) 373 [arXiv:1604.04526] [INSPIRE].

    Article  Google Scholar 

  • S. A. R. Ellis, S. Ipek and G. White, Electroweak baryogenesis from temperature-varying couplings, JHEP 08 (2019) 002 [arXiv:1905.11994] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • B. von Harling and G. Servant, QCD-induced electroweak phase transition, JHEP 01 (2018) 159 [arXiv:1711.11554] [INSPIRE].

    Article  MATH  Google Scholar 

  • S. Ipek and T. M. P. Tait, Early cosmological period of QCD confinement, Phys. Rev. Lett. 122 (2019) 112001 [arXiv:1811.00559] [INSPIRE].

    Article  Google Scholar 

  • D. Croon, J. N. Howard, S. Ipek and T. M. P. Tait, QCD baryogenesis, Phys. Rev. D 101 (2020) 055042 [arXiv:1911.01432] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • A. Angelescu and P. Huang, Multiste p strongly first order phase transitions from new fermions at the TeV scale, Phys. Rev. D 99 (2019) 055023 [arXiv:1812.08293] [INSPIRE].

    Article  Google Scholar 

  • P. Schwaller, Gravitational waves from a dark phase transition, Phys. Rev. Lett. 115 (2015) 181101 [arXiv:1504.07263] [INSPIRE].

    Article  Google Scholar 

  • D. Croon, V. Sanz and G. White, Model discrimination in gravitational wave spectra from dark phase transitions, JHEP 08 (2018) 203 [arXiv:1806.02332] [INSPIRE].

    Article  Google Scholar 

  • D. Croon, T.E. Gonzalo and G. White, Gravitational waves from a Pati-Salam phase transition, JHEP 02 (2019) 083 [arXiv:1812.02747] [INSPIRE].

    Article  Google Scholar 

  • E. Hall, T. Konstandin, R. McGehee, H. Murayama and G. Servant , Baryogenesis from a dark first-order phase transition, JHEP 04 (2020) 042 [arXiv:1910.08068] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • D. Croon, A. Kusenko, A. Mazumdar and G. White, Solitosynthesis and gravitational waves, Phys. Rev. D 101 (2020) 085010 [arXiv:1910.09562] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • D. Croon, R. Houtz and V. Sanz, Dynamical axions and gravitational waves, JHEP 07 (2019) 146 [arXiv:1904.10967] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • D. Curtin, P. Meade and C.-T. Yu, Testing electroweak baryogenesis with future colliders, JHEP 11 (2014) 127 [arXiv:1409.0005] [INSPIRE].

    Article  Google Scholar 

  • A. V. Kotwal, M. J. Ramsey-Musolf, J. M. No and P. Winslow, Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier, Phys. Rev. D 94 (2016) 035022 [arXiv:1605.06123] [INSPIRE].

    Article  Google Scholar 

  • M. J. Ramsey-Musolf, The electroweak phase transition: a collider target, JHEP 09 (2020) 179 [arXiv:1912.07189] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • K. Assamagan et al., The Higgs portal and cosmology, arXiv:1604.05324 [INSPIRE].

  • I. Baldes and C. Garcia-Cely, Strong gravitational radiation from a simple dark matter model, JHEP 05 (2019) 190 [arXiv:1809.01198] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • A. D. Linde, Infrared problem in thermodynamics of the Yang-Mills gas, Phys. Lett. B 96 (1980) 289 [INSPIRE].

    Article  Google Scholar 

  • L. Dolan and R. Jackiw, Symmetry behavior at finite temperature, Phys. Rev. D 9 (1974) 3320 [INSPIRE].

    Article  Google Scholar 

  • D. A. Kirzhnits and A. D. Linde, Symmetry behavior in gauge theories, Annals Phys. 101 (1976) 195 [INSPIRE].

    Article  Google Scholar 

  • R. R. Parwani, Resummation in a hot scalar field theory, Phys. Rev. D 45 (1992) 4695 [Erratum ibid. 48 (1993) 5965] [hep-ph/9204216] [INSPIRE].

  • P. B. Arnold and O. Espinosa, The effective potential and first order phase transitions: beyond leading-order, Phys. Rev. D 47 (1993) 3546 [Erratum ibid. 50 (1994) 6662] [ hep-ph/9212235] [INSPIRE].

  • J. M. Cline, K. Kainulainen and M. Trott, Electroweak baryogenesis in two Higgs doublet models and B meson anomalies, JHEP 11 (2011) 089 [arXiv:1107.3559] [INSPIRE].

    Article  MATH  Google Scholar 

  • M. Laine, M. Meyer and G. Nardini, Thermal phase transition with full 2-loop effective potential, Nucl. Phys. B 920 (2017) 565 [arXiv:1702.07479] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  • D. Curtin, P. Meade and H. Ramani, Thermal resummation and phase transitions, Eur. Phys. J. C 78 (2018) 787 [arXiv:1612.00466] [INSPIRE].

    Article  Google Scholar 

  • E. Braaten and R. D. Pisarski, Simple effective Lagrangian for hard thermal loops, Phys. Rev. D 45 (1992) R1827 [INSPIRE].

    Article  Google Scholar 

  • P. H. Ginsparg, First order and second order phase transitions in gauge theories at finite temperature, Nu cl. Phys. B 170 (1980) 388 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • T. Appelquist and R. D. Pisarski, High-temperature Yang-Mills theories and three-dimensional quantum chromodynamics, Phys. Rev. D 23 (1981) 2305 [INSPIRE].

    Article  Google Scholar 

  • S. Nadkarni, Dimensional reduction in hot QCD, Phys. Rev. D 27 (1983) 917 [INSPIRE].

    Article  Google Scholar 

  • N. P. Landsman, Limitations to dimensional reduction at high temperature, Nucl. Phys. B 322 (1989) 498 [INSPIRE].

    Article  Google Scholar 

  • K. Farakos, K. Kajantie, K. Rummukainen and M. E. Shaposhnikov, 3D physics and the electroweak phase transition: perturbation theory, Nucl. Phys. B 425 (1994) 67 [hep-ph/9404201] [INSPIRE].

    Article  Google Scholar 

  • E. Braaten and A. Nieto, Effective field theory approach to high temperature thermodynamics, Phys. Rev. D 51 (1995) 6990 [hep-ph/9501375] [INSPIRE].

    Article  Google Scholar 

  • E. Braaten and A. Nieto, Free energy of QCD at high temperature, Phys. Rev. D 53 (1996) 3421 [hep-ph/9510408] [INSPIRE].

    Article  Google Scholar 

  • K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov, Generic rules for high temperature dimensional reduction and their application to the standard model, Nucl. Phys. B 458 (1996) 90 [hep-ph/9508379] [INSPIRE].

    Article  Google Scholar 

  • K. Farakos, K. Kajantie, K. Rummukainen and M. E. Shaposhnikov, 3D physics and the electroweak phase transition: a framework for lattice Monte Carlo analysis, Nucl. Phys. B 442 (1995) 317 [hep-lat/9412091] [INSPIRE].

    Article  Google Scholar 

  • W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    Article  Google Scholar 

  • B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  MATH  Google Scholar 

  • P. H. Damgaard, A. Haarr, D. O’Connell and A. Tranberg, Effective field theory and electroweak baryogenesis in the singlet-extended standard model, JHEP 02 (2016) 107 [arXiv:1512.01963] [INSPIRE].

    Article  Google Scholar 

  • J. de Vries, M. Postma, J. van de Vis and G. White, Electroweak baryogenesis and the standard model effective field theory, JHEP 01 (2018) 089 [arXiv:1710.04061] [INSPIRE].

    Article  MATH  Google Scholar 

  • C. Balázs, G. White and J. Yue, Effective field theory, electric dipole moments and electroweak baryogenesis, JHEP 03 (2017) 030 [arXiv: 1612. 01270] [INSPIRE].

    Article  Google Scholar 

  • J. De Vries, M. Postma and J. van de Vis, The role of leptons in electroweak baryogenesis, JHEP 04 (2019) 024 [arXiv:1811.11104] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • V. Q. Phong, P. H. Khiem, N. P. D. Loc and H. N. Long, Sphaleron in the first-order electroweak phase transition with the dimension-six Higgs field operator, Phys. Rev. D 101 (2020) 116010 [arXiv:2003.09625] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • J. de Blas, M. Chala, M. Pérez-Victoria and J. Santiago, Observable effects of general new scalar particles, JHEP 04 (2015) 078 [arXiv:1412.8480] [INSPIRE].

    Article  Google Scholar 

  • D. Marzocca et al., BSM benchmarks for effective field theories in Higgs and electroweak physics, arXiv:2009.01249 [INSPIRE].

  • D. Bödeker, L. Fromme, S. J. Huber and M. Seniuch, The baryon asymmetry in the standard model with a low cut-off, JHEP 02 (2005) 026 [hep-ph/0412366] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • R.-G. Cai, M. Sasaki and S.-J. Wang, The gravitational waves from the first-order phase transition with a dimension-six operator, JCAP 08 (2017) 004 [arXiv:1707.03001] [INSPIRE].

    Article  Google Scholar 

  • S. J. Huber and T. Konstandin, Production of gravitational waves in the NMSSM, JCAP 05 (2008) 017 [arXiv:0709.2091] [INSPIRE].

    Article  Google Scholar 

  • H. H. Patel and M. J. Ramsey-Musolf, Baryon washout, electroweak phase transition, and perturbation theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].

    Article  MATH  Google Scholar 

  • C. Wainwright, S. Profumo and M. J. Ramsey-Musolf, Gravity waves from a cosmological phase transition: gauge artifacts and daisy resummations, Phys. Rev. D 84 (2011) 023521 [arXiv:1104.5487] [INSPIRE].

    Article  Google Scholar 

  • C. L. Wainwright, S. Profumo and M. J. Ramsey-Musolf , Phase transitions and gauge artifacts in an Abelian Higgs plus singlet model, Phys. Rev. D 86 (2012) 083537 [arXiv:1204.5464] [INSPIRE].

    Article  Google Scholar 

  • C.-W. Chiang and E. Senaha, On gauge dependence of gravitational waves from a first-order phase transition in classical scale-invariant U(1)′ models, Phys. Lett. B 774 (2017) 489 [arXiv:1707.06765] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  • B. Jain, S. J. Lee and M. Son, Validity of the effective potential and the precision of Higgs field self-couplings, Phys. Rev. D 98 (2018) 075002 [arXiv:1709.03232] [INSPIRE].

    Article  Google Scholar 

  • C.-W. Chiang, Y.-T. Li and E. Senaha, Revisiting electroweak phase transition in the standard model with a real singlet scalar, Phys. Lett. B 789 (2019) 154 [arXiv:1808.01098] [INSPIRE].

    Article  Google Scholar 

  • T. Prokopec, J. Rezacek and B. Świezewska, Gravitational waves from conformal symmetry breaking, JCAP 02 (2019) 009 [arXiv:1809.11129] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • O. Gould, J. Kozaczuk, L. Niemi, M. J. Ramsey-Musolf, T. V. I. Tenkanen and D. J. Weir, Nonperturbative analysis of the gravitational waves from a first-order electroweak phase transition, Phys. Rev. D 100 (2019) 115024 [arXiv:1903.11604] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • M. Carena, Z. Liu and Y. Wang, Electroweak phase transition with spontaneous Z2-breaking, JHEP 08 (2020) 107 [arXiv:1911.10206] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • J. M. Cline and K. Kainulainen, Supersymmetric electroweak phase transition: dimensional reduction versus effective potential, Nucl. Phys. B 510 (1998) 88 [hep-ph/9705201] [INSPIRE].

    Article  Google Scholar 

  • I. Affieck, Quantum statistical metastability, Phys. Rev. Lett. 46 (1981) 388 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • A. D. Linde, Decay of the false vacuum at finite temperature, Nucl. Phys. B 216 (1983) 421 [Erratum ibid. 223 (1983) 544] [INSPIRE].

  • J. S. Langer, Theory of the condensation point, Annals Phys. 41 (1967) 108 [Annals Phys. 281 (2000) 941] [INSPIRE].

  • J. S. Langer, Statistical theory of the decay of metastable states, Annals Phys. 54 (1969) 258 [INSPIRE].

    Article  Google Scholar 

  • K. Enqvist, J. Ignatius, K. Kajantie and K. Rummukainen, Nucleation and bubble growth in a first order cosmological electroweak phase transition, Phys. Rev. D 45 (1992) 3415 [INSPIRE].

    Article  Google Scholar 

  • R. Jinno, S. Lee, H. Seong and M. Takimoto, Gravitational waves from first-order phase transitions: towards model separation by bubble nucleation rate, JCAP 11 (2017) 050 [arXiv:1708.01253] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • M. Hindmarsh and M. Hijazi, Gravitational waves from first order cosmological phase transitions in the sound shell model, JCAP 12 (2019) 062 [arXiv:1909.10040] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • J. R. Espinosa, T. Konstandin, J. M. No and G. Servant, Energy budget of cosmological first-order phase transitions, JCAP 06 (2010) 028 [arXiv:1004.4187] [INSPIRE].

    Article  Google Scholar 

  • M. Hindmarsh, S. J. Huber, K. Rummukainen and D. J. Weir, Shape of the acoustic gravitational wave power spectrum from a first order phase transition, Phys. Rev. D 96 (2017) 103520 [Erratum ibid. 101 (2020) 089902] [arXiv:1704.05871] [INSPIRE].

  • F. Giese, T. Konstandin and J. van de Vis, Model-independent energy budget of cosmological first-order phase transitionsa sound argument to go beyond the bag model, JCAP 07 (2020) 057 [arXiv:2004.06995] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • T. Brauner, T. V. I. Tenkanen, A. Tranberg, A. Vuorinen and D. J. Weir, Dimensional reduction of the standard model coupled to a new singlet scalar field, JHEP 03 (2017) 007 [arXiv:1609.06230] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  • F. Karsch, A. Patkos and P. Petreczky, Screened perturbation theory, Phys. Lett. B 401 (1997) 69 [hep-ph/9702376] [INSPIRE].

    Article  Google Scholar 

  • J. O. Andersen and L. Kyllingstad, Four-loop screened perturbation theory, Phys. Rev. D 78 (2008) 076008 [arXiv:0805.4478] [INSPIRE].

    Article  Google Scholar 

  • P. M. Stevenson, Optimized perturbation theory, Phys. Rev. D 23 (1981) 2916 [INSPIRE].

    Article  Google Scholar 

  • E. J. Weinberg and A.-Q. Wu, Understanding complex perturbative effective potentials, Phys. Rev. D 36 (1987) 2474 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • A. Masoumi, K. D. Olum and B. Shlaer, Efficient numerical solution to vacuum decay with many fields, JCAP 01 (2017) 051 [arXiv:1610.06594] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • P. Athron, C. Balázs, M. Bardsley, A. Fowlie, D. Harries and G. White, BubbleProfiler: finding the field profile and action for cosmological phase transitions, Comput. Phys. Commun. 244 (2019) 448 [arXiv:1901.03714] [INSPIRE].

    Article  Google Scholar 

  • L. P. Csernai and J. I. Kapusta, Nucleation of relativistic first order phase transitions, Phys. Rev. D 46 (1992) 1379 [INSPIRE].

    Article  Google Scholar 

  • M. E. Carrington and J. I. Kapusta, Dynamics of the electroweak phase transition, Phys. Rev. D 47 (1993) 5304 [INSPIRE].

    Article  Google Scholar 

  • I. Ghişoiu, J. Möller and Y. Schröder, Debye screening mass of hot Yang-Mills theory to three-loop order, JHEP 11 (2015) 121 [arXiv:1509.08727] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  • M. Laine, P. Schicho and Y. Schroder, Soft thermal contributions to 3-loop gauge coupling, JHEP 05 (2018) 037 [arXiv:1803.08689] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • M. Laine and A. Vuorinen, Basics of thermal field theory, Lect. Notes Phys. 925 (2016) 1 [arXiv:1701.01554] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  • J. Ghiglieri, A. Kurkela, M. Strickland and A. Vuorinen, Perturbative thermal QCD: formalism and applications, Phys. Rept. 880 (2020) 1 [arXiv:2002.10188] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • A. Gynther and M. Vepsäläinen, Pressure of the standard model at high temperatures, JHEP 01 (2006) 060 [hep-ph/0510375] [INSPIRE].

    Article  Google Scholar 

  • A. Gynther and M. Vepsiiliiinen, Pressure of the standard model near the electroweak phase transition, JHEP 03 (2006) 011 [hep-ph/0512177] [INSPIRE].

    Article  Google Scholar 

  • M. Losada, High temperature dimensional reduction of the MSSM and other multiscalar models, Phys. Rev. D 56 (1997) 2893 [hep-ph/9605266] [INSPIRE].

    Article  Google Scholar 

  • M. Losada, The two loop finite temperature effective potential of the MSSM and baryogenesis, Nucl. Phys. B 537 (1999) 3 [hep-ph/9806519] [INSPIRE].

  • M. Laine and K. Rummukainen, The MSSM electroweak phase transition on the lattice, Nucl. Phys. B 535 (1998) 423 [hep-lat/9804019] [INSPIRE].

    Article  Google Scholar 

  • M. Laine, G. Nardini and K. Rummukainen, Lattice study of an electroweak phase transition at mh ~ 126 GeV, JCAP 01 (2013) 011 [arXiv:1211.7344] [INSPIRE].

    Article  Google Scholar 

  • J. O. Andersen, Dimensional reduction of the two Higgs doublet model at high temperature, Eur. Phys. J. C 11 (1999) 563 [hep-ph/9804280] [INSPIRE].

    Article  Google Scholar 

  • L. Niemi, H. H. Patel, M. J. Ramsey-Musolf, T. V. I. Tenkanen and D. J. Weir, Electroweak phase transition in the real triplet extension of the SM: dimensional reduction, Phys. Rev. D 100 (2019) 035002 [arXiv:1802.10500] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • L. Niemi, M. Ramsey-Musolf, T. V. I. Tenkanen and D. J. Weir, Thermodynamics of a two-step electroweak phase transition, arXiv:2005.11332 [INSPIRE].

  • J. O. Andersen et al., Nonperturbative analysis of the electroweak phase transition in the two Higgs doublet model, Phys. Rev. Lett. 121 (2018) 191802 [arXiv:1711.09849] [INSPIRE].

    Article  Google Scholar 

  • T. Gorda, A. Helset, L. Niemi, T. V. I. Tenkanen and D. J. Weir, Three-dimensional effective theories for the two Higgs doublet model at high temperature, JHEP 02 (2019) 081 [arXiv:1802.05056] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • A. D. Linde, Fate of the false vacuum at finite temperature: theory and applications, Phys. Lett. B 100 (1981) 37 [INSPIRE].

    Article  Google Scholar 

  • J. Garriga, Instantons for vacuum decay at finite temperature in the thin wall limit, Phys. Rev. D 49 (1994) 5497 [hep-th/9401020] [INSPIRE].

    Article  Google Scholar 

  • M. Laine, Exact relation of lattice and continuum parameters in three-dimensional SU(2) + Higgs theories, Nucl. Phys. B 451 (1995) 484 [hep-lat/9504001] [INSPIRE].

    Article  Google Scholar 

  • M. Laine and A. Rajantie, Lattice continuum relations for 3D SU(N) + Higgs theories, Nucl. Phys. B 513 (1998) 471 [hep-lat/9705003] [INSPIRE].

    Article  Google Scholar 

  • C.-X. Zhai and B. M. Kastening, The free energy of hot gauge theories with fermions through g5, Phys. Rev. D 52 (1995) 7232 [hep-ph/9507380] [INSPIRE].

    Article  Google Scholar 

  • M. Laine, P. Schicho and Y. Schröder, A QCD Debye mass in a broad temperature range, Phys. Rev. D 101 (2020) 023532 [arXiv:1911.09123] [INSPIRE].

    Article  Google Scholar 

  • M. Laine, The two loop effective potential of the 3D SU(2) Higgs model in a general covariant gauge, Phys. Lett. B 335 (1994) 173 [hep-ph/9406268] [INSPIRE].

    Article  Google Scholar 

  • J. Kripfganz, A. Laser and M. G. Schmidt, The high temperature two loop effective potential of the electroweak theory in a general ‘t Hooft background gauge, Phys. Lett. B 351 (1995) 266 [hep-ph/9501317] [INSPIRE].

    Article  Google Scholar 

  • E. J. Weinberg, Vacuum decay in theories with symmetry breaking by radiative corrections, Phys. Rev. D 47 (1993) 4614 [hep-ph/9211314] [INSPIRE].

    Article  Google Scholar 

  • W. Buchmüller, Z. Fodor, T. Helbig and D. Walliser, The weak electroweak phase transition, Annals Phys. 234 (1994) 260 [hep-ph/9303251] [INSPIRE].

    Article  Google Scholar 

  • M. Karjalainen and J. Peisa, Dimensionally reduced U(1) + Higgs theory in the broken phase, Z. Phys. C 76 (1997) 319 [hep-lat/9607023] [INSPIRE].

    Article  Google Scholar 

  • K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov, 3D SU(N) + adjoint Higgs theory and finite temperature QCD, Nucl. Phys. B 503 (1997) 357 [hep-ph/9704416] [INSPIRE].

    Article  Google Scholar 

  • G. D. Moore and K. Rummukainen, Electroweak bubble nucleation, nonperturbatively, Phys. Rev. D 63 (2001) 045002 [hep-ph/0009132] [INSPIRE].

    Article  Google Scholar 

  • M. Garny and T. Konstandin, On the gauge dependence of vacuum transitions at finite temperature, JHEP 07 (2012) 189 [arXiv:1205.3392] [INSPIRE].

    Article  Google Scholar 

  • M. Laine, Gauge dependence of the high temperature two loop effective potential for the Higgs field, Phys. Rev. D 51 (1995) 4525 [ hep-ph/9411252] [INSPIRE].

  • J. R. Espinosa, M. Garny and T. Konstandin, Interplay of infrared divergences and gauge-dependence of the effective potential, Phys. Rev. D 94 (2016) 055026 [arXiv:1607.08432] [INSPIRE].

    Article  Google Scholar 

  • N. K. Nielsen, On the gauge dependence of spontaneous symmetry breaking in gauge theories, Nucl. Phys. B 101 (1975) 173 [INSPIRE].

    Article  Google Scholar 

  • R. Fukuda and T. Kugo, Gauge invariance in the effective action and potential, Phys. Rev. D 13 (1976) 3469 [INSPIRE].

    Article  Google Scholar 

  • S. R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. 16 (1977) 1248] [INSPIRE].

  • A. Andreassen, D. Farhi, W. Frost and M. D. Schwartz, Direct approach to quantum tunneling, Phys. Rev. Lett. 117 (2016) 231601 [arXiv:1602.01102] [INSPIRE].

    Article  Google Scholar 

  • J. R. Espinosa, A fresh look at the calculation of tunneling actions, JCAP 07 (2018) 036 [arXiv:1805.03680] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • J. R. Espinosa and T. Konstandin, A fresh look at the calculation of tunneling actions in multi-field potentials, JCAP 01 (2019) 051 [arXiv:1811.09185] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • C. L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].

    Article  Google Scholar 

  • C. G. Callan, Jr. and S. R. Coleman, The fate of the false vacuum. 2. First quantum corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].

    Article  Google Scholar 

  • J. Baacke and G. Lavrelashvili, One loop corrections to the metastable vacuum decay, Phys. Rev. D 69 (2004) 025009 [hep-th/0307202] [INSPIRE].

    Article  Google Scholar 

  • G. V. Dunne and H. Min, Beyond the thin-wall approximation: precise numerical computation of prefactors in false vacuum decay, Phys. Rev. D 72 (2005) 125004 [hep-th/0511156] [INSPIRE].

    Article  Google Scholar 

  • H.-K. Guo, K. Sinha, D. Vagie and G. White, Phase transitions in an expanding universe: stochastic gravitational waves in standard and non-standard histories, JCAP 01 (2021) 001 [arXiv:2007.08537] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  • J. Ellis, M. Lewicki, J. M. No and V. Vaskonen, Gravitational wave energy budget in strongly supercooled phase transitions, JCAP 06 (2019) 024 [arXiv:1903.09642] [INSPIRE].

    Article  Google Scholar 

  • T. Appelquist and J. Carazzone, Infrared singularities and massive fields, Phys. Rev. D 11 (1975) 2856 [INSPIRE].

    Article  Google Scholar 

  • M. Laine and M. Losada, Two loop dimensional reduction and effective potential without temperature expansions, Nucl. Phys. B 582 (2000) 277 [hep-ph/0003111] [INSPIRE].

    Article  Google Scholar 

  • J. P. Blaizot, E. Iancu and A. Rebhan, On the apparent convergence of perturbative QCD at high temperature, Phys. Rev. D 68 (2003) 025011 [hep-ph/0303045] [INSPIRE].

    Article  Google Scholar 

  • M. Laine and Y. Schröder, Quark mass thresholds in QCD thermodynamics, Phys. Rev. D 73 (2006) 085009 [hep-ph/0603048] [INSPIRE].

    Article  Google Scholar 

  • M. Laine and K. Rummukainen, Higgs sector CP-violation at the electroweak phase transition, Nucl. Phys. B 545 (1999) 141 [hep-ph/9811369] [INSPIRE].

    Article  Google Scholar 

  • M. Laine and K. Rummukainen, Two Higgs doublet dynamics at the electroweak phase transition: a nonperturbative study, Nucl. Phys. B 597 (2001) 23 [hep-lat/0009025] [INSPIRE].

    Article  Google Scholar 

  • J. Langer, Metastable states, Physica 73 (1974) 61.

    Article  Google Scholar 

  • W. Buchmüller, T. Helbig and D. Walliser, First order phase transitions in scalar electrodynamics, Nucl. Phys. B 407 (1993) 387 [INSPIRE].

    Article  Google Scholar 

  • M. Gleiser, G. C. Marques and R. O. Ramos, On the evaluation of thermal corrections to false vacuum decay rates, Phys. Rev. D 48 (1993) 1571 [hep-ph/9304234] [INSPIRE].

    Article  Google Scholar 

  • M. G. Alford and J. March-Russell, Radiatively induced first order phase transitions: the necessity of the renormalization group, Nucl. Phys. B 417 (1994) 527 [hep-ph/9308364] [INSPIRE].

    Article  Google Scholar 

  • D. Bödeker, W. Buchmiiller, Z. Fodor and T. Helbig, Aspects of the cosmological electroweak phase transition, Nucl. Phys. B 423 (1994) 171 [hep-ph/9311346] [INSPIRE].

    Article  Google Scholar 

  • J. Berges, N. Tetradis and C. Wetterich, Coarse graining and first order phase transitions, Phys. Lett. B 393 (1997) 387 [hep-ph/9610354] [INSPIRE].

    Article  Google Scholar 

  • A. Surig, Selfconsistent treatment of bubble nucleation at the electroweak phase transition, Phys. Rev. D 57 (1998) 5049 [hep-ph/9706259] [INSPIRE].

    Article  Google Scholar 

  • A. Strumia and N. Tetradis, A consistent calculation of bubble nucleation rates, Nucl. Phys. B 542 (1999) 719 [hep-ph/9806453] [INSPIRE].

    Article  Google Scholar 

  • B. Garbrecht and P. Millington, Self-consistent solitons for vacuum decay in radiatively generated potentials, Phys. Rev. D 92 (2015) 125022 [arXiv:1509.08480] [INSPIRE].

    Article  Google Scholar 

  • A. Andreassen, W. Frost and M. D. Schwartz, Scale invariant instantons and the complete lifetime of the standard model, Phys. Rev. D 97 (2018) 056006 [arXiv:1707.08124] [INSPIRE].

    Article  Google Scholar 

  • G. D. Moore, K. Rummukainen and A. Tranberg, Nonperturbative computation of the bubble nucleation rate in the cubic anisotropy model, JHEP 04 (2001) 017 [hep-lat/0103036] [INSPIRE].

    Article  Google Scholar 

  • D. Croon, E. Hall and H. Muruyama, Non-perturbative methods for false vacuum decay, to appear.

  • D. Metaxas and E. J. Weinberg, Gauge independence of the bubble nucleation rate in theories with radiative symmetry breaking, Phys. Rev. D 53 (1996) 836 [hep-ph/9507381] [INSPIRE].

    Article  Google Scholar 

  • D. Metaxas, Derivative expansion and gauge independence of the false vacuum decay rate in various gauges, Phys. Rev. D 63 (2001) 085009 [hep-ph/0011015] [INSPIRE].

    Article  Google Scholar 

  • A. D. Plascencia and C. Tamarit , Convexity, gauge-dependence and tunneling rates, JHEP 10 (2016) 099 [arXiv:1510.07613] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  • J. S. Langer and L. A. Turski, Hydrodynamic model of the condensation of a vapor near its critical point, Phys. Rev. A 8 (1973) 3230.

    Article  Google Scholar 

  • M. E. Shaposhnikov, On nonperturbative effects at the high temperature electroweak phase transition, Phys. Lett. B 316 (1993) 112 [hep-ph/9306296] [INSPIRE].

    Article  Google Scholar 

  • K. Kajantie and M. Shaposhnikov, 3D physics and the electroweak phase transition: perturbation theory and lattice Monte Carlo analysis, in 1st International Conference on Strong and Electroweak Matter, (1994), pg. 1.

  • E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators I: formalism and λ dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  • E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].

    Article  Google Scholar 

  • R. Alonso, E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

    Article  Google Scholar 

  • P. B. Arnold, Phase transition temperatures at next-to-leading order, Phys. Rev. D 46 (1992) 2628 [hep-ph/9204228] [INSPIRE].

    Article  Google Scholar 

  • A. Andreassen, Gauge dependence of the quantum field theory effective potential, master’s thesis, Norwegian U. Sci. Tech., Trondheim, Norway (2013).

  • A. J. Andreassen, Precision tunneling rate calculations in quantum field theory and the ultimate fate of our universe, Ph.D. thesis, Harvard University, Cambridge, MA, U.S.A. (2018).

  • M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273 [INSPIRE].

    Article  Google Scholar 

  • P. Schicho, Multi-loop investigations of strong interactions at high temperatures, Ph.D. thesis, U. Bern, Bern, Switzerland (2020).

  • A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

    Article  Google Scholar 

  • M. Vepsäläinen, Applications of dimensional reduction to electroweak and QCD matter, Ph.D. thesis, Helsinki U., Helsinki, Finland (2007) [arXiv:0709.2773] [INSPIRE].

  • P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279.

    Article  MathSciNet  MATH  Google Scholar 

  • B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, arXiv:1707.06453 [INSPIRE].

  • M. Nishimura and Y. Schröder, IBP methods at finite temperature, JHEP 09 (2012) 051 [arXiv:1207.4042] [INSPIRE].

    Article  Google Scholar 

  • S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • P. B. Arnold and C.-X. Zhai, The three loop free energy for high temperature QED and QCD with fermions, Phys. Rev. D 51 (1995) 1906 [hep-ph/9410360] [INSPIRE].

    Article  Google Scholar 

  • A. Ekstedt and J. Löfgren, The high-temperature expansion of the thermal sunset, arXiv:2006.02179 [INSPIRE].

  • J. Österman, Evaluation of master integrals in thermal field theory, master’s thesis, University of Helsinki, Helsinki, Finland (2019).

  • I. Ghisoiu and Y. Schröder, A new method for taming tensor sum-integrals, JHEP 11 (2012) 010 [arXiv:1208.0284] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • P. B. Arnold and C.-X. Zhai, The three loop free energy for pure gauge QCD, Phys. Rev. D 50 (1994) 7603 [hep-ph/9408276] [INSPIRE].

    Article  Google Scholar 

  • J. O. Andersen, E. Braaten and M. Strickland, The massive thermal basketball diagram, Phys. Rev. D 62 (2000) 045004 [hep-ph/0002048] [INSPIRE].

    Article  Google Scholar 

  • A. Vuorinen, The pressure of QCD at finite temperatures and chemical potentials, Phys. Rev. D 68 (2003) 054017 [hep-ph/0305183] [INSPIRE].

    Article  Google Scholar 

  • A. Gynther, M. Laine, Y. Schröder, C. Torrero and A. Vuorinen, Four-loop pressure of massless O(N) scalar field theory, JHEP 04 (2007) 094 [hep-ph/0703307] [INSPIRE].

    Article  Google Scholar 

  • J. O. Andersen, L. Kyllingstad and L. E. Leganger, Pressure to order g8 log g of massless ϕ4 theory at weak coupling, JHEP 08 (2009) 066 [arXiv:0903.4596] [INSPIRE].

    Article  Google Scholar 

  • Y. Schröder, A fresh look on three-loop sum-integrals, JHEP 08 (2012) 095 [arXiv:1207.5666] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  • J. Möller and Y. Schröder, Three-loop matching coefficients for hot QCD: reduction and gauge independence, JHEP 08 (2012) 025 [arXiv:1207.1309] [INSPIRE].

    Article  Google Scholar 

  • I. Ghisoiu and Y. Schröder, A new three-loop sum-integral of mass dimension two, JHEP 09 (2012) 016 [arXiv:1207.6214] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  • J. Zinn-Justin, Quantum field theory and critical phenomena, Int. Ser. Monogr. Phys. 113 (2002) 1.

    Google Scholar 

  • B. S. DeWitt, The global approach to quantum field theory. Volume 1, 2, Int. Ser. Monogr. Phys. 114 (2003) 1.

  • P. B. Arnold and L. D. McLerran, Sphalerons, small fluctuations and baryon number violation in electroweak theory, Phys. Rev. D 36 (1987) 581 [INSPIRE].

    Article  Google Scholar 

  • A. Berera, J. Mabillard, B. W. Mintz and R. O. Ramos, Formulating the Kramers problem in field theory, Phys. Rev. D 100 (2019) 076005 [arXiv:1906.08684] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • P. B. Arnold, D. Son and L. G. Yaffe, The hot baryon violation rate is \( O\left({\alpha}_W^5{T}^4\right) \), Phys. Rev. D 55 (1997) 6264 [hep-ph/9609481] [INSPIRE].

    Article  Google Scholar 

  • D. Bödeker, On the effective dynamics of soft non-Abelian gauge fields at finite temperature, Phys. Lett. B 426 (1998) 351 [hep-ph/9801430] [INSPIRE].

    Article  Google Scholar 

  • K. Kawasaki, Growth rate of critical nuclei near the critical point of a fluid, J. Statist. Phys. 12 (1975) 365.

    Article  Google Scholar 

  • J. Baacke and V. G. Kiselev, One loop corrections to the bubble nucleation rate at finite temperature, Phys. Rev. D 48 (1993) 5648 [hep-ph/9308273] [INSPIRE].

    Article  Google Scholar 

  • D. E. Brahm and C. L. Y. Lee, The exact critical bubble free energy and the effectiveness of effective potential approximations, Phys. Rev. D 49 (1994) 4094 [hep-ph/9311353] [INSPIRE].

    Article  Google Scholar 

  • L. Carson, X. Li, L. D. McLerran and R.-T. Wang, Exact computation of the small fluctuation determinant around a sphaleron, Phys. Rev. D 42 (1990) 2127 [INSPIRE].

    Article  Google Scholar 

  • J. Baacke and S. Junker, Quantum fluctuations around the electroweak sphaleron, Phys. Rev. D 49 (1994) 2055 [hep-ph/9308310] [INSPIRE].

    Article  Google Scholar 

  • J. Baacke and S. Junker, Quantum fluctuations of the electroweak sphaleron: erratum and addendum, Phys. Rev. D 50 (1994) 4227 [hep-th/9402078] [INSPIRE].

    Article  Google Scholar 

  • S. Chigusa, T. Moroi and Y. Shoji, State-of-the-art calculation of the decay rate of electroweak vacuum in the standard model, Phys. Rev. Lett. 119 (2017) 211801 [arXiv:1707.09301] [INSPIRE].

    Article  Google Scholar 

  • J. Kripfganz, A. Laser and M. G. Schmidt, Critical bubbles and fluctuations at the electroweak phase transition, Nucl. Phys. B 433 (1995) 467 [hep-ph/9405225] [INSPIRE].

    Article  Google Scholar 

  • A. I. Vainshtein, V. I. Zakharov, V. A. Novikov and M. A. Shifman, ABC’s of instantons, Sov. Phys. Usp. 25 (1982) 195 [Usp. Fiz. Nauk 136 (1982) 553] [INSPIRE].

  • G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].

    Article  MATH  Google Scholar 

  • N. J. Günther, D. A. Nicole and D. J. Wallace, Goldstone modes in vacuum decay and first order phase transitions, J. Phys. A 13 (1980) 1755 [INSPIRE].

    Article  Google Scholar 

  • J. Garriga, Nucleation rates in fiat and curved space, Phys. Rev. D 49 (1994) 6327 [hep-ph/9308280] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • G. Münster and S. Rotsch, Analytical calculation of the nucleation rate for first order phase transitions beyond the thin wall approximation, Eur. Phys. J. C 12 (2000) 161 [cond-mat/9908246] [INSPIRE].

    Article  Google Scholar 

  • W. Buchmüller and T. Helbig, On the kinetics of the electroweak phase transition, in 15th International Warsaw Meeting on Elementary Particle Physics: quest for links to new physics, (1992), pg. 341.

  • M. E. Shaposhnikov, Baryon asymmetry of the universe in standard electroweak theory, Nucl. Phys. B 287 (1987) 757 [INSPIRE].

    Article  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4