A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/JHEP03(2011)125 below:

Non-resonant new physics in top pair production at hadron colliders

  • M. Beneke et al., Top quark physics, hep-ph/0003033 [SPIRES].

  • W. Bernreuther, Top quark physics at the LHC, J. Phys. G 35 (2008) 083001 [arXiv:0805.1333] [SPIRES].

    ADS  Google Scholar 

  • T. Han, The ’Top Priority’ at the LHC, Int. J. Mod. Phys. A 23 (2008) 4107 [arXiv:0804.3178] [SPIRES].

    ADS  Google Scholar 

  • R. Frederix, Top quark phenomenology, arXiv:1009.6199 [SPIRES].

  • CMS collaboration, T. Christiansen, Top quark study at CMS, talk presented at ICHEP2010, Paris France (2010).

  • ATLAS collaboration, A. Lucotte, Top quark studies with ATLAS, talk presented at ICHEP2010, Paris France (2010).

  • CMS collaboration, F.P. Schilling, First top results (CMS), talk presented at ICHEP2010, Paris France (2010).

  • ATLAS collaboration, G. Cortiana, First top results (ATLAS), talk presented at HCP2010, Toronto Canada (2010).

  • V. Barger, T. Han and D.G.E. Walker, Top quark pairs at high invariant mass: a model-independent discriminator of new physics at the LHC, Phys. Rev. Lett. 100 (2008) 031801 [hep-ph/0612016] [SPIRES].

    Article  ADS  Google Scholar 

  • D. Choudhury, R.M. Godbole, R.K. Singh and K. Wagh, Top production at the Tevatron/LHC and nonstandard, strongly interacting spin one particles, Phys. Lett. B 657 (2007) 69 [arXiv:0705.1499] [SPIRES].

    ADS  Google Scholar 

  • R. Frederix and F. Maltoni, Top pair invariant mass distribution: a window on new physics, JHEP 01 (2009) 047 [arXiv:0712.2355] [SPIRES].

    Article  ADS  Google Scholar 

  • ALEPH collaboration, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [SPIRES].

    ADS  Google Scholar 

  • C.T. Hill and S.J. Parke, Top production: Sensitivity to new physics, Phys. Rev. D 49 (1994) 4454 [hep-ph/9312324] [SPIRES].

    ADS  Google Scholar 

  • D. Atwood, A. Kagan and T.G. Rizzo, Constraining anomalous top quark couplings at the Tevatron, Phys. Rev. D 52 (1995) 6264 [hep-ph/9407408] [SPIRES].

    ADS  Google Scholar 

  • K.-m. Cheung, Probing the chromoelectric and chromomagnetic dipole moments of the top quark at hadronic colliders, Phys. Rev. D 53 (1996) 3604 [hep-ph/9511260] [SPIRES].

    ADS  Google Scholar 

  • K. Whisnant, J.-M. Yang, B.-L. Young and X. Zhang, Dimension-six CP conserving operators of the third family quarks and their effects on collider observables, Phys. Rev. D 56 (1997) 467 [hep-ph/9702305] [SPIRES].

    ADS  Google Scholar 

  • K.-i. Hikasa, K. Whisnant, J.M. Yang and B.-L. Young, Probing anomalous top quark interactions at the Fermilab Tevatron collider, Phys. Rev. D 58 (1998) 114003 [hep-ph/9806401] [SPIRES].

    ADS  Google Scholar 

  • B. Lillie, J. Shu and T.M.P. Tait, Top compositeness at the Tevatron and LHC, JHEP 04 (2008) 087 [arXiv:0712.3057] [SPIRES].

    Article  ADS  Google Scholar 

  • K. Kumar, T.M.P. Tait and R. Vega-Morales, Manifestations of top compositeness at colliders, JHEP 05 (2009) 022 [arXiv:0901.3808] [SPIRES].

    Article  ADS  Google Scholar 

  • D.-W. Jung, P. Ko, J.S. Lee and S.-h. Nam, Model independent analysis of the forward-backward asymmetry of top quark production at the Tevatron, Phys. Lett. B 691 (2010) 238 [arXiv:0912.1105] [SPIRES].

    ADS  Google Scholar 

  • Z. Hioki and K. Ohkuma, Search for anomalous top-gluon couplings at LHC revisited, Eur. Phys. J. C 65 (2010) 127 [arXiv:0910.3049] [SPIRES].

    Article  ADS  Google Scholar 

  • D. Choudhury and P. Saha, Probing top anomalous couplings at the Tevatron and the Large Hadron Collider, arXiv:0911.5016 [SPIRES].

  • C. Zhang and S. Willenbrock, Effective field theory for top quark physics, arXiv:1008.3155 [SPIRES].

  • C. Zhang and S. Willenbrock, Effective-field-theory approach to top-quark production and decay, Phys. Rev. D 83 (2011) 034006 [arXiv:1008.3869] [SPIRES].

    ADS  Google Scholar 

  • J.A. Aguilar-Saavedra, Effective four-fermion operators in top physics: a roadmap, Nucl. Phys. B 843 (2011) 638 [arXiv:1008.3562] [SPIRES].

    Article  ADS  Google Scholar 

  • B. Grzadkowski, Z. Hioki, K. Ohkuma and J. Wudka, Probing anomalous top quark couplings induced by dimension-six operators at photon colliders, Nucl. Phys. B 689 (2004) 108 [hep-ph/0310159] [SPIRES].

    Article  ADS  Google Scholar 

  • B. Grzadkowski and M. Misiak, Anomalous Wtb coupling effects in the weak radiative B-meson decay, Phys. rev. D 78 (2008) 077501 [arXiv:0802.1413] [SPIRES].

    ADS  Google Scholar 

  • J.A. Aguilar-Saavedra, A minimal set of top anomalous couplings, Nucl. Phys. B 812 (2009) 181 [arXiv:0811.3842] [SPIRES].

    Article  ADS  Google Scholar 

  • J.A. Aguilar-Saavedra, A minimal set of top-Higgs anomalous couplings, Nucl. Phys. B 821 (2009) 215 [arXiv:0904.2387] [SPIRES].

    Article  ADS  Google Scholar 

  • J.A. Aguilar-Saavedra and J. Bernabeu, W polarisation beyond helicity fractions in top quark decays, Nucl. Phys. B 840 (2010) 349 [arXiv:1005.5382] [SPIRES].

    Article  ADS  Google Scholar 

  • CDF collaboration, N. Goldschmidt, Search for \( t\bar{t} \) resonances at the Tevatron, in the proceeding of the ICHEP2010, Paris France (2010), to be published.

  • A. Pomarol and J. Serra, Top quark compositeness: feasibility and implications, Phys. Rev. D 78 (2008) 074026 [arXiv:0806.3247] [SPIRES].

    ADS  Google Scholar 

  • W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [SPIRES].

    Article  ADS  Google Scholar 

  • B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [SPIRES].

    Article  ADS  Google Scholar 

  • P.L. Cho and E.H. Simmons, Looking for gluon substructure at the Tevatron, Phys. Lett. B 323 (1994) 401 [hep-ph/9307345] [SPIRES].

    ADS  Google Scholar 

  • P.L. Cho and E.H. Simmons, Searching for G3 in \( t\bar{t} \) production, Phys. Rev. D 51 (1995) 2360 [hep-ph/9408206] [SPIRES].

    ADS  Google Scholar 

  • E.H. Simmons and P.L. Cho, Anomalous gluon selfinteractions and \( t\bar{t} \) production, hep-ph/9504401 [SPIRES].

  • J. Drobnak, S. Fajfer and J.F. Kamenik, New physics in tbW decay at next-to-leading order in QCD, Phys. Rev. D 82 (2010) 114008 [arXiv:1010.2402] [SPIRES].

    ADS  Google Scholar 

  • B. Grzadkowski, B. Lampe and K.J. Abraham, CP violation, top quarks and the Tevatron upgrade, Phys. Lett. B 415 (1997) 193 [hep-ph/9706489] [SPIRES].

    ADS  Google Scholar 

  • UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [SPIRES].

    Article  ADS  Google Scholar 

  • K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\bar{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [SPIRES].

    ADS  Google Scholar 

  • H. Georgi, L. Kaplan, D. Morin and A. Schenk, Effects of top compositeness, Phys. Rev. D 51 (1995) 3888 [hep-ph/9410307] [SPIRES].

    ADS  Google Scholar 

  • R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [SPIRES].

    Article  ADS  Google Scholar 

  • G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [SPIRES].

    Article  ADS  Google Scholar 

  • H. Georgi, Generalized dimensional analysis, Phys. Lett. B 298 (1993) 187 [hep-ph/9207278] [SPIRES].

    ADS  Google Scholar 

  • A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys. B 234 (1984) 189 [SPIRES].

    Article  ADS  Google Scholar 

  • J.M. Gerard and S. Trine, QCD anomalies in hadronic weak decays, Phys. Rev. D 69 (2004) 113005 [hep-ph/0402158] [SPIRES].

    ADS  Google Scholar 

  • R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [SPIRES].

    ADS  Google Scholar 

  • R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign dilepton final states, JHEP 06 (2008) 026 [arXiv:0801.1679] [SPIRES].

    Article  ADS  Google Scholar 

  • J. Mrazek and A. Wulzer, A strong sector at the LHC: top partners in same-sign dileptons, Phys. Rev. D 81 (2010) 075006 [arXiv:0909.3977] [SPIRES].

    ADS  Google Scholar 

  • Q.-H. Cao, D. McKeen, J.L. Rosner, G. Shaughnessy and C.E.M. Wagner, Forward-backward asymmetry of top quark pair production, Phys. Rev. D 81 (2010) 114004 [arXiv:1003.3461] [SPIRES].

    ADS  Google Scholar 

  • P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [SPIRES].

    ADS  Google Scholar 

  • J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].

    Article  ADS  Google Scholar 

  • M. Cacciari, S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC, JHEP 09 (2008) 127 [arXiv:0804.2800] [SPIRES].

    Article  ADS  Google Scholar 

  • CDF collaboration, L. Cerrito, Top quark and electroweak measurements at the Tevatron, J. Phys. Conf. Ser. 259 (2010) 012019 [arXiv:1010.1735] [SPIRES].

    Article  ADS  Google Scholar 

  • CDF collaboration, T. Aaltonen et al., First measurement of the \( t\bar{t} \) differential cross section \( {{{d\sigma }} \left/ {{d{M_{t\bar{t}}}}} \right.} \) in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 102 (2009) 222003 [arXiv:0903.2850] [SPIRES].

    Article  ADS  Google Scholar 

  • O. Antunano, J.H. Kuhn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev. D 77 (2008) 014003 [arXiv:0709.1652] [SPIRES].

    ADS  Google Scholar 

  • T.A. Schwarz, Measurement of the front back asymmetry in top-antitop quark pairs produced in proton-antiproton collisions at center of mass energy = 1.96 TeV, FERMILAB-THESIS-2006-51 (2007).

  • D0 collaboration, V.M. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [SPIRES].

    Article  ADS  Google Scholar 

  • CDF collaboration, T. Aaltonen et al., Forward-backward asymmetry in top quark production in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472] [SPIRES].

    Article  ADS  Google Scholar 

  • CDF collaboration, Measurement of the inclusive forward-backward asymmetry and its rapidity dependence A fb y) in \( t\bar{t} \) production in 5.3 fb −1 of Tevatron data, CDF note http://www-cdf.fnal.gov/publications/cdf10185_ttbarAfbDeltay.pdf (2010).

  • A. Djouadi, G. Moreau, F. Richard and R.K. Singh, The forward-backward asymmetry of top quark production at the Tevatron in warped extra dimensional models, Phys. Rev. D 82 (2010) 071702 [arXiv:0906.0604] [SPIRES].

    ADS  Google Scholar 

  • S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D 81 (2010) 015004 [arXiv:0907.4112] [SPIRES].

    ADS  Google Scholar 

  • K. Cheung, W.-Y. Keung and T.-C. Yuan, Top quark forward-backward asymmetry, Phys. Lett. B 682 (2009) 287 [arXiv:0908.2589] [SPIRES].

    ADS  Google Scholar 

  • P.H. Frampton, J. Shu and K. Wang, A xigluon as possible explanation for \( p\bar{p} \to t\bar{t} \) forward-backward asymmetry, Phys. Lett. B 683 (2010) 294 [arXiv:0911.2955] [SPIRES].

    ADS  Google Scholar 

  • J. Shu, T.M.P. Tait and K. Wang, Explorations of the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 81 (2010) 034012 [arXiv:0911.3237] [SPIRES].

    ADS  Google Scholar 

  • A. Arhrib, R. Benbrik and C.-H. Chen, Forward-backward asymmetry of top quark in diquark models, Phys. Rev. D 82 (2010) 034034 [arXiv:0911.4875] [SPIRES].

    ADS  Google Scholar 

  • I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalars from grand unification and the forward-backward asymmetry in top quark pair production, Phys. Rev. D 81 (2010) 055009 [arXiv:0912.0972] [SPIRES].

    ADS  Google Scholar 

  • J. Cao, Z. Heng, L. Wu and J.M. Yang, Top quark forward-backward asymmetry at the Tevatron: a comparative study in different new physics models, Phys. Rev. D 81 (2010) 014016 [arXiv:0912.1447] [SPIRES].

    ADS  Google Scholar 

  • V. Barger, W.-Y. Keung and C.-T. Yu, Asymmetric left-right model and the top pair forward-backward asymmetry, Phys. Rev. D 81 (2010) 113009 [arXiv:1002.1048] [SPIRES].

    ADS  Google Scholar 

  • R.S. Chivukula, E.H. Simmons and C.P. Yuan, Axigluons cannot explain the observed top quark forward-backward asymmetry, Phys. Rev. D 82 (2010) 094009 [arXiv:1007.0260] [SPIRES].

    ADS  Google Scholar 

  • M. Bauer, F. Goertz, U. Haisch, T. Pfoh and S. Westhoff, Top-quark forward-backward asymmetry in Randall-Sundrum models beyond the leading order, JHEP 11 (2010) 039 [arXiv:1008.0742] [SPIRES].

    Article  ADS  Google Scholar 

  • P. Ferrario and G. Rodrigo, Constraining heavy colored resonances from top-antitop quark events, Phys. Rev. D 80 (2009) 051701 [arXiv:0906.5541] [SPIRES].

    ADS  Google Scholar 

  • R.M. Godbole, K. Rao, S.D. Rindani and R.K. Singh, On measurement of top polarization as a probe of \( t\bar{t} \) production mechanisms at the LHC, JHEP 11 (2010) 144 [arXiv:1010.1458] [SPIRES].

    Article  ADS  Google Scholar 

  • B. Grzadkowski and Z. Hioki, New hints for testing anomalous top quark interactions at future linear colliders, Phys. Lett. B 476 (2000) 87 [hep-ph/9911505] [SPIRES].

    ADS  Google Scholar 

  • B. Grzadkowski and Z. Hioki, Decoupling of anomalous top-decay vertices in angular distribution of secondary particles, Phys. Lett. B 557 (2003) 55 [hep-ph/0208079] [SPIRES].

    ADS  Google Scholar 

  • G. Mahlon and S.J. Parke, Angular correlations in top quark pair production and decay at hadron colliders, Phys. Rev. D 53 (1996) 4886 [hep-ph/9512264] [SPIRES].

    ADS  Google Scholar 

  • W. Bernreuther, A. Brandenburg, Z.G. Si and P. Uwer, Top quark pair production and decay at hadron colliders, Nucl. Phys. B 690 (2004) 81 [hep-ph/0403035] [SPIRES].

    Article  ADS  Google Scholar 

  • D0 collaboration, S. Jabeen, Top quark properties measurement with the D0 detector, arXiv:0910.4220 [SPIRES].

  • CMS collaboration, G.L. Bayatian, CMS physics: Technical design report, CERN-LHCC-2006-001 (2006).

  • ATLAS collaboration, ATLAS detector and physics performance. Technical design report. Vol. 2, CERN-LHCC-99-15 (1999).

  • L. Gauthier and G. Servant, Four-top events at the Large Hadron Collider, in preparation.

  • New Physics Working Group collaboration, G. Brooijmans et al., New Physics at the LHC. A Les Houches Report: Physics at TeV Colliders 2009 — New Physics Working Group, arXiv:1005.1229 [SPIRES].


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4