A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/JHEP01(2021)097 below:

New sensitivity curves for gravitational-wave signals from cosmological phase transitions

  • K. Schmitz, New sensitivity curves for gravitational-wave experiments, Zenodo.

  • T. Alanne, T. Hugle, M. Platscher and K. Schmitz, A fresh look at the gravitational-wave signal from cosmological phase transitions, JHEP 03 (2020) 004 [arXiv:1909.11356] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • LIGO Scientific, Virgo collaboration, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].

  • LIGO Scientific collaboration, Advanced LIGO: the next generation of gravitational wave detectors, Class. Quant. Grav. 27 (2010) 084006 [INSPIRE].

  • LIGO Scientific collaboration, Advanced LIGO, Class. Quant. Grav. 32 (2015) 074001 [arXiv:1411.4547] [INSPIRE].

  • VIRGO collaboration, Advanced Virgo: a second-generation interferometric gravitational wave detector, Class. Quant. Grav. 32 (2015) 024001 [arXiv:1408.3978] [INSPIRE].

  • LIGO Scientific, Virgo collaboration, GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, Phys. Rev. X 9 (2019) 031040 [arXiv:1811.12907] [INSPIRE].

    Google Scholar 

  • LIGO Scientific, Virgo collaboration, GW190425: observation of a compact binary coalescence with total mass ∼ 3.4M, Astrophys. J. Lett. 892 (2020) L3 [arXiv:2001.01761] [INSPIRE].

  • LIGO Scientific, Virgo collaboration, Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo, arXiv:1912.11716 [INSPIRE].

  • LIGO Scientific, Virgo collaboration, GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].

  • LIGO Scientific, Virgo collaboration, GW151226: observation of gravitational waves from a 22 solar-mass binary black hole coalescence, Phys. Rev. Lett. 116 (2016) 241103 [arXiv:1606.04855] [INSPIRE].

  • LIGO Scientific, VIRGO collaboration, GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2, Phys. Rev. Lett. 118 (2017) 221101 [Erratum ibid. 121 (2018) 129901] [arXiv:1706.01812] [INSPIRE].

  • LIGO Scientific, Virgo collaboration, GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence, Phys. Rev. Lett. 119 (2017) 141101 [arXiv:1709.09660] [INSPIRE].

  • LIGO Scientific, Virgo collaboration, GW170608: observation of a 19-solar-mass binary black hole coalescence, Astrophys. J. 851 (2017) L35 [arXiv:1711.05578] [INSPIRE].

  • M. Maggiore, Gravitational wave experiments and early universe cosmology, Phys. Rept. 331 (2000) 283 [gr-qc/9909001] [INSPIRE].

  • LIGO Scientific, Virgo collaboration, Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run, Phys. Rev. D 100 (2019) 061101 [arXiv:1903.02886] [INSPIRE].

  • C. Caprini and D.G. Figueroa, Cosmological backgrounds of gravitational waves, Class. Quant. Grav. 35 (2018) 163001 [arXiv:1801.04268] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • N. Christensen, Stochastic gravitational wave backgrounds, Rept. Prog. Phys. 82 (2019) 016903 [arXiv:1811.08797] [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Mazumdar and G. White, Review of cosmic phase transitions: their significance and experimental signatures, Rept. Prog. Phys. 82 (2019) 076901 [arXiv:1811.01948] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • M.B. Hindmarsh, M. Lüben, J. Lumma and M. Pauly, Phase transitions in the early universe, arXiv:2008.09136 [INSPIRE].

  • D.J. Weir, Gravitational waves from a first order electroweak phase transition: a brief review, Phil. Trans. Roy. Soc. Lond. A 376 (2018) 20170126 [arXiv:1705.01783] [INSPIRE].

    MATH  ADS  Google Scholar 

  • LISA collaboration, Laser Interferometer Space Antenna, arXiv:1702.00786 [INSPIRE].

  • J. Baker et al., The Laser Interferometer Space Antenna: unveiling the millihertz gravitational wave sky, arXiv:1907.06482 [INSPIRE].

  • C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE].

  • C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with LISA: an update, JCAP 03 (2020) 024 [arXiv:1910.13125] [INSPIRE].

    Article  ADS  Google Scholar 

  • P.S.B. Dev and A. Mazumdar, Probing the scale of new physics by advanced LIGO/Virgo, Phys. Rev. D 93 (2016) 104001 [arXiv:1602.04203] [INSPIRE].

    Article  ADS  Google Scholar 

  • F.P. Huang, Z. Qian and M. Zhang, Exploring dynamical CP-violation induced baryogenesis by gravitational waves and colliders, Phys. Rev. D 98 (2018) 015014 [arXiv:1804.06813] [INSPIRE].

    Article  ADS  Google Scholar 

  • D. Croon, V. Sanz and G. White, Model discrimination in gravitational wave spectra from dark phase transitions, JHEP 08 (2018) 203 [arXiv:1806.02332] [INSPIRE].

    Article  ADS  Google Scholar 

  • N. Okada and O. Seto, Probing the seesaw scale with gravitational waves, Phys. Rev. D 98 (2018) 063532 [arXiv:1807.00336] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • I. Baldes and G. Servant, High scale electroweak phase transition: baryogenesis & symmetry non-restoration, JHEP 10 (2018) 053 [arXiv:1807.08770] [INSPIRE].

    Article  ADS  Google Scholar 

  • C.-W. Chiang, Y.-T. Li and E. Senaha, Revisiting electroweak phase transition in the standard model with a real singlet scalar, Phys. Lett. B 789 (2019) 154 [arXiv:1808.01098] [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Alves, T. Ghosh, H.-K. Guo and K. Sinha, Resonant di-Higgs production at gravitational wave benchmarks: a collider study using machine learning, JHEP 12 (2018) 070 [arXiv:1808.08974] [INSPIRE].

    Article  ADS  Google Scholar 

  • I. Baldes and C. Garcia-Cely, Strong gravitational radiation from a simple dark matter model, JHEP 05 (2019) 190 [arXiv:1809.01198] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • J. Ellis, M. Lewicki and J.M. No, On the maximal strength of a first-order electroweak phase transition and its gravitational wave signal, JCAP 04 (2019) 003 [arXiv:1809.08242] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • E. Madge and P. Schwaller, Leptophilic dark matter from gauged lepton number: Phenomenology and gravitational wave signatures, JHEP 02 (2019) 048 [arXiv:1809.09110] [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Ahriche, K. Hashino, S. Kanemura and S. Nasri, Gravitational waves from phase transitions in models with charged singlets, Phys. Lett. B 789 (2019) 119 [arXiv:1809.09883] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • T. Prokopec, J. Rezacek and B. Świeżewska, Gravitational waves from conformal symmetry breaking, JCAP 02 (2019) 009 [arXiv:1809.11129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • K. Fujikura, K. Kamada, Y. Nakai and M. Yamaguchi, Phase transitions in twin Higgs models, JHEP 12 (2018) 018 [arXiv:1810.00574] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  • A. Beniwal, M. Lewicki, M. White and A.G. Williams, Gravitational waves and electroweak baryogenesis in a global study of the extended scalar singlet model, JHEP 02 (2019) 183 [arXiv:1810.02380] [INSPIRE].

    Article  ADS  Google Scholar 

  • V. Brdar, A.J. Helmboldt and J. Kubo, Gravitational waves from first-order phase transitions: LIGO as a window to unexplored seesaw scales, JCAP 02 (2019) 021 [arXiv:1810.12306] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • K. Miura, H. Ohki, S. Otani and K. Yamawaki, Gravitational Waves from Walking Technicolor, JHEP 10 (2019) 194 [arXiv:1811.05670] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • A. Addazi, A. Marcianò and R. Pasechnik, Probing Trans-electroweak First Order Phase Transitions from Gravitational Waves, MDPI Physics 1 (2019) 92 [arXiv:1811.09074] [INSPIRE].

    Article  ADS  Google Scholar 

  • V.R. Shajiee and A. Tofighi, Electroweak phase transition, gravitational waves and dark matter in two scalar singlet extension of the standard model, Eur. Phys. J. C 79 (2019) 360 [arXiv:1811.09807] [INSPIRE].

    Article  ADS  Google Scholar 

  • C. Marzo, L. Marzola and V. Vaskonen, Phase transition and vacuum stability in the classically conformal B-L model, Eur. Phys. J. C 79 (2019) 601 [arXiv:1811.11169] [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Breitbach, J. Kopp, E. Madge, T. Opferkuch and P. Schwaller, Dark, cold, and noisy: constraining secluded hidden sectors with gravitational waves, JCAP 07 (2019) 007 [arXiv:1811.11175] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • A. Angelescu and P. Huang, Multistep strongly first order phase transitions from new fermions at the TeV scale, Phys. Rev. D 99 (2019) 055023 [arXiv:1812.08293] [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Alves, T. Ghosh, H.-K. Guo, K. Sinha and D. Vagie, Collider and Gravitational Wave Complementarity in Exploring the Singlet Extension of the Standard Model, JHEP 04 (2019) 052 [arXiv:1812.09333] [INSPIRE].

    Article  ADS  Google Scholar 

  • K. Kannike and M. Raidal, Phase transitions and gravitational wave tests of pseudo-Goldstone dark matter in the softly broken U(1) scalar singlet model, Phys. Rev. D 99 (2019) 115010 [arXiv:1901.03333] [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Fairbairn, E. Hardy and A. Wickens, Hearing without seeing: gravitational waves from hot and cold hidden sectors, JHEP 07 (2019) 044 [arXiv:1901.11038] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  • T. Hasegawa, N. Okada and O. Seto, Gravitational waves from the minimal gauged U(1)B−L model, Phys. Rev. D 99 (2019) 095039 [arXiv:1904.03020] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • A.J. Helmboldt, J. Kubo and S. van der Woude, Observational prospects for gravitational waves from hidden or dark chiral phase transitions, Phys. Rev. D 100 (2019) 055025 [arXiv:1904.07891] [INSPIRE].

    Article  ADS  Google Scholar 

  • P.S.B. Dev, F. Ferrer, Y. Zhang and Y. Zhang, Gravitational waves from first-order phase transition in a simple axion-like particle model, JCAP 11 (2019) 006 [arXiv:1905.00891] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • F.P. Huang and E. Senaha, Enhanced Z boson decays as a new probe of first-order electroweak phase transition at future lepton colliders, Phys. Rev. D 100 (2019) 035014 [arXiv:1905.10283] [INSPIRE].

    Article  ADS  Google Scholar 

  • L. Bian, H.-K. Guo, Y. Wu and R. Zhou, Gravitational wave and collider searches for electroweak symmetry breaking patterns, Phys. Rev. D 101 (2020) 035011 [arXiv:1906.11664] [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Mohamadnejad, Gravitational waves from scale-invariant vector dark matter model: probing below the neutrino-floor, Eur. Phys. J. C 80 (2020) 197 [arXiv:1907.08899] [INSPIRE].

    Article  ADS  Google Scholar 

  • K. Kannike, K. Loos and M. Raidal, Gravitational wave signals of pseudo-Goldstone dark matter in the3 complex singlet model, Phys. Rev. D 101 (2020) 035001 [arXiv:1907.13136] [INSPIRE].

    Article  ADS  Google Scholar 

  • L. Bian, W. Cheng, H.-K. Guo and Y. Zhang, Gravitational waves triggered by B – L charged hidden scalar and leptogenesis, arXiv:1907.13589 [INSPIRE].

  • A. Paul, B. Banerjee and D. Majumdar, Gravitational wave signatures from an extended inert doublet dark matter model, JCAP 10 (2019) 062 [arXiv:1908.00829] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • D. Dunsky, L.J. Hall and K. Harigaya, Dark matter, dark radiation and gravitational waves from mirror Higgs parity, JHEP 02 (2020) 078 [arXiv:1908.02756] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • P. Athron, C. Balázs, A. Fowlie, G. Pozzo, G. White and Y. Zhang, Strong first-order phase transitions in the NMSSM — A comprehensive survey, JHEP 11 (2019) 151 [arXiv:1908.11847] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • L. Bian, Y. Wu and K.-P. Xie, Electroweak phase transition with composite Higgs models: calculability, gravitational waves and collider searches, JHEP 12 (2019) 028 [arXiv:1909.02014] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • V. Brdar, L. Graf, A.J. Helmboldt and X.-J. Xu, Gravitational waves as a probe of left-right symmetry breaking, JCAP 12 (2019) 027 [arXiv:1909.02018] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • X. Wang, F.P. Huang and X. Zhang, Gravitational wave and collider signals in complex two-Higgs doublet model with dynamical CP-violation at finite temperature, Phys. Rev. D 101 (2020) 015015 [arXiv:1909.02978] [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Alves, D. Gonçalves, T. Ghosh, H.-K. Guo and K. Sinha, Di-Higgs production in the 4b channel and gravitational wave complementarity, JHEP 03 (2020) 053 [arXiv:1909.05268] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • S. De Curtis, L. Delle Rose and G. Panico, Composite dynamics in the early universe, JHEP 12 (2019) 149 [arXiv:1909.07894] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • A. Addazi et al., Gravitational footprints of massive neutrinos and lepton number breaking, Phys. Lett. B 807 (2020) 135577 [arXiv:1909.09740] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • A. Greljo, T. Opferkuch and B.A. Stefanek, Gravitational imprints of flavor hierarchies, Phys. Rev. Lett. 124 (2020) 171802 [arXiv:1910.02014] [INSPIRE].

    Article  ADS  Google Scholar 

  • P. Archer-Smith, D. Linthorne and D. Stolarski, Gravitational wave signals from multiple hidden sectors, Phys. Rev. D 101 (2020) 095016 [arXiv:1910.02083] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • M. Aoki and J. Kubo, Gravitational waves from chiral phase transition in a conformally extended standard model, JCAP 04 (2020) 001 [arXiv:1910.05025] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  • E. Hall, T. Konstandin, R. McGehee, H. Murayama and G. Servant, Baryogenesis from a dark first-order phase transition, JHEP 04 (2020) 042 [arXiv:1910.08068] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • V. Brdar, A.J. Helmboldt and M. Lindner, Strong supercooling as a consequence of renormalization group consistency, JHEP 12 (2019) 158 [arXiv:1910.13460] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • N. Haba and T. Yamada, Gravitational waves from phase transition in minimal SUSY U(1)B−L model, Phys. Rev. D 101 (2020) 075027 [arXiv:1911.01292] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • M. Carena, Z. Liu and Y. Wang, Electroweak phase transition with spontaneous Z2-breaking, JHEP 08 (2020) 107 [arXiv:1911.10206] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • E. Hall, T. Konstandin, R. McGehee and H. Murayama, Asymmetric matters from a dark first-order phase transition, arXiv:1911.12342 [INSPIRE].

  • L. Heurtier and H. Partouche, Spontaneous freeze out of dark matter from an early thermal phase transition, Phys. Rev. D 101 (2020) 043527 [arXiv:1912.02828] [INSPIRE].

    Article  ADS  Google Scholar 

  • M.J. Baker, J. Kopp and A.J. Long, Filtered dark matter at a first order phase transition, Phys. Rev. Lett. 125 (2020) 151102 [arXiv:1912.02830] [INSPIRE].

    Article  ADS  Google Scholar 

  • D. Chway, T.H. Jung and C.S. Shin, Dark matter filtering-out effect during a first-order phase transition, Phys. Rev. D 101 (2020) 095019 [arXiv:1912.04238] [INSPIRE].

    Article  ADS  Google Scholar 

  • L. Delle Rose, G. Panico, M. Redi and A. Tesi, Gravitational waves from supercool axions, JHEP 04 (2020) 025 [arXiv:1912.06139] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • B. Von Harling, A. Pomarol, O. Pujolàs and F. Rompineve, Peccei-Quinn phase transition at LIGO, JHEP 04 (2020) 195 [arXiv:1912.07587] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • C.-W. Chiang and B.-Q. Lu, First-order electroweak phase transition in a complex singlet model with3 symmetry, JHEP 07 (2020) 082 [arXiv:1912.12634] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • R. Zhou, J. Yang and L. Bian, Gravitational waves from first-order phase transition and domain wall, JHEP 04 (2020) 071 [arXiv:2001.04741] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • P. Di Bari, D. Marfatia and Y.-L. Zhou, Gravitational waves from neutrino mass and dark matter genesis, Phys. Rev. D 102 (2020) 095017 [arXiv:2001.07637] [INSPIRE].

    Article  ADS  Google Scholar 

  • B. Allen, The Stochastic gravity wave background: sources and detection, in the proceedings of the Les Houches School of Physics: Astrophysical Sources of Gravitational Radiation, September 26–October 6, Les Houches, France (1996), gr-qc/9604033 [INSPIRE].

  • B. Allen and J.D. Romano, Detecting a stochastic background of gravitational radiation: signal processing strategies and sensitivities, Phys. Rev. D 59 (1999) 102001 [gr-qc/9710117] [INSPIRE].

  • E. Thrane and J.D. Romano, Sensitivity curves for searches for gravitational-wave backgrounds, Phys. Rev. D 88 (2013) 124032 [arXiv:1310.5300] [INSPIRE].

    Article  ADS  Google Scholar 

  • K. Schmitz, LISA sensitivity to gravitational waves from sound waves, Symmetry 12 (2020) 1477 [arXiv:2005.10789] [INSPIRE].

    Article  Google Scholar 

  • K. Hashino, R. Jinno, M. Kakizaki, S. Kanemura, T. Takahashi and M. Takimoto, Selecting models of first-order phase transitions using the synergy between collider and gravitational-wave experiments, Phys. Rev. D 99 (2019) 075011 [arXiv:1809.04994] [INSPIRE].

    Article  ADS  Google Scholar 

  • N. Seto, S. Kawamura and T. Nakamura, Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space, Phys. Rev. Lett. 87 (2001) 221103 [astro-ph/0108011] [INSPIRE].

  • S. Kawamura et al., The Japanese space gravitational wave antenna DECIGO, Class. Quant. Grav. 23 (2006) S125 [INSPIRE].

    Article  Google Scholar 

  • K. Yagi and N. Seto, Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries, Phys. Rev. D 83 (2011) 044011 [Erratum ibid. 95 (2017) 109901] [arXiv:1101.3940] [INSPIRE].

  • S. Isoyama, H. Nakano and T. Nakamura, Multiband gravitational-wave astronomy: observing binary inspirals with a decihertz detector, B-DECIGO, PTEP 2018 (2018) 073E01 [arXiv:1802.06977] [INSPIRE].

  • J. Crowder and N.J. Cornish, Beyond LISA: exploring future gravitational wave missions, Phys. Rev. D 72 (2005) 083005 [gr-qc/0506015] [INSPIRE].

  • V. Corbin and N.J. Cornish, Detecting the cosmic gravitational wave background with the big bang observer, Class. Quant. Grav. 23 (2006) 2435 [gr-qc/0512039] [INSPIRE].

  • G.M. Harry, P. Fritschel, D.A. Shaddock, W. Folkner and E.S. Phinney, Laser interferometry for the big bang observer, Class. Quant. Grav. 23 (2006) 4887 [Erratum ibid. 23 (2006) 7361] [INSPIRE].

  • KAGRA collaboration, Detector configuration of KAGRA: the Japanese cryogenic gravitational-wave detector, Class. Quant. Grav. 29 (2012) 124007 [arXiv:1111.7185] [INSPIRE].

  • KAGRA collaboration, Interferometer design of the KAGRA gravitational wave detector, Phys. Rev. D 88 (2013) 043007 [arXiv:1306.6747] [INSPIRE].

  • KAGRA collaboration, KAGRA: 2.5 generation interferometric gravitational wave detector, Nature Astron. 3 (2019) 35 [arXiv:1811.08079] [INSPIRE].

  • KAGRA collaboration, First cryogenic test operation of underground KM-scale gravitational-wave observatory KAGRA, Class. Quant. Grav. 36 (2019) 165008 [arXiv:1901.03569] [INSPIRE].

  • Y. Michimura et al., Prospects for improving the sensitivity of KAGRA gravitational wave detector, in the proceedings of the 15th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, July 1–7, Rome, Italy (2018), arXiv:1906.02866 [INSPIRE].

  • LIGO Scientific collaboration, Exploring the sensitivity of next generation gravitational wave detectors, Class. Quant. Grav. 34 (2017) 044001 [arXiv:1607.08697] [INSPIRE].

  • D. Reitze et al., Cosmic explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO, Bull. Am. Astron. Soc. 51 (2019) 035 [arXiv:1907.04833] [INSPIRE].

  • M. Punturo et al., The Einstein Telescope: a third-generation gravitational wave observatory, Class. Quant. Grav. 27 (2010) 194002 [INSPIRE].

    Article  ADS  Google Scholar 

  • S. Hild et al., Sensitivity studies for third-generation gravitational wave observatories, Class. Quant. Grav. 28 (2011) 094013 [arXiv:1012.0908] [INSPIRE].

    Article  ADS  Google Scholar 

  • B. Sathyaprakash et al., Scientific objectives of Einstein telescope, Class. Quant. Grav. 29 (2012) 124013 [Erratum ibid. 30 (2013) 079501] [arXiv:1206.0331] [INSPIRE].

  • M. Maggiore et al., Science case for the Einstein telescope, JCAP 03 (2020) 050 [arXiv:1912.02622] [INSPIRE].

    Article  ADS  Google Scholar 

  • S. Burke-Spolaor et al., The astrophysics of nanohertz gravitational waves, Astron. Astrophys. Rev. 27 (2019) 5 [arXiv:1811.08826] [INSPIRE].

    Article  ADS  Google Scholar 

  • M.A. McLaughlin, The North American Nanohertz Observatory for gravitational waves, Class. Quant. Grav. 30 (2013) 224008 [arXiv:1310.0758] [INSPIRE].

    Article  ADS  Google Scholar 

  • NANOGRAV collaboration, The NANOGrav 11-year data set: pulsar-timing constraints on the stochastic gravitational-wave background, Astrophys. J. 859 (2018) 47 [arXiv:1801.02617] [INSPIRE].

  • K. Aggarwal et al., The NANOGrav 11-year data set: limits on gravitational waves from individual supermassive black hole binaries, Astrophys. J. 880 (2019) 2 [arXiv:1812.11585] [INSPIRE].

    Article  Google Scholar 

  • A. Brazier et al., The NANOGrav program for gravitational waves and fundamental physics, arXiv:1908.05356 [INSPIRE].

  • R.N. Manchester et al., The Parkes pulsar timing array project, Publ. Astron. Soc. Austral. 30 (2013) 17 [arXiv:1210.6130] [INSPIRE].

    Article  ADS  Google Scholar 

  • R.M. Shannon et al., Gravitational waves from binary supermassive black holes missing in pulsar observations, Science 349 (2015) 1522 [arXiv:1509.07320] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • M. Krämer and D.J. Champion, The European Pulsar Timing array and the large european array for pulsars, Class. Quant. Grav. 30 (2013) 224009 [INSPIRE].

    Article  ADS  Google Scholar 

  • L. Lentati et al., European Pulsar Timing Array limits on an isotropic stochastic gravitational-wave background, Mon. Not. Roy. Astron. Soc. 453 (2015) 2576 [arXiv:1504.03692] [INSPIRE].

    Article  ADS  Google Scholar 

  • S. Babak et al., European Pulsar Timing Array limits on continuous gravitational waves from individual supermassive black hole binaries, Mon. Not. Roy. Astron. Soc. 455 (2016) 1665 [arXiv:1509.02165] [INSPIRE].

    Article  ADS  Google Scholar 

  • G. Hobbs et al., The International Pulsar Timing Array project: using pulsars as a gravitational wave detector, Class. Quant. Grav. 27 (2010) 084013 [arXiv:0911.5206] [INSPIRE].

    Article  ADS  Google Scholar 

  • R.N. Manchester, The International Pulsar Timing Array, Class. Quant. Grav. 30 (2013) 224010 [arXiv:1309.7392] [INSPIRE].

    Article  ADS  Google Scholar 

  • J.P.W. Verbiest et al., The International Pulsar Timing Array: first data release, Mon. Not. Roy. Astron. Soc. 458 (2016) 1267 [arXiv:1602.03640] [INSPIRE].

    Article  ADS  Google Scholar 

  • J.S. Hazboun, C.M.F. Mingarelli and K. Lee, The second International Pulsar Timing Array mock data challenge, arXiv:1810.10527 [INSPIRE].

  • C.L. Carilli and S. Rawlings, Science with the Square Kilometer Array: motivation, key science projects, standards and assumptions, New Astron. Rev. 48 (2004) 979 [astro-ph/0409274] [INSPIRE].

  • G. Janssen et al., Gravitational wave astronomy with the SKA, PoS(AASKA14)037 [arXiv:1501.00127] [INSPIRE].

  • A. Weltman et al., Fundamental physics with the Square Kilometre Array, Publ. Astron. Soc. Austral. 37 (2020) e002 [arXiv:1810.02680] [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Kosowsky, M.S. Turner and R. Watkins, Gravitational radiation from colliding vacuum bubbles, Phys. Rev. D 45 (1992) 4514 [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Kosowsky, M.S. Turner and R. Watkins, Gravitational waves from first order cosmological phase transitions, Phys. Rev. Lett. 69 (1992) 2026 [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Kosowsky and M.S. Turner, Gravitational radiation from colliding vacuum bubbles: envelope approximation to many bubble collisions, Phys. Rev. D 47 (1993) 4372 [astro-ph/9211004] [INSPIRE].

  • M. Kamionkowski, A. Kosowsky and M.S. Turner, Gravitational radiation from first order phase transitions, Phys. Rev. D 49 (1994) 2837 [astro-ph/9310044] [INSPIRE].

  • C. Caprini, R. Durrer and G. Servant, Gravitational wave generation from bubble collisions in first-order phase transitions: an analytic approach, Phys. Rev. D 77 (2008) 124015 [arXiv:0711.2593] [INSPIRE].

    Article  ADS  Google Scholar 

  • S.J. Huber and T. Konstandin, Gravitational wave production by collisions: more bubbles, JCAP 09 (2008) 022 [arXiv:0806.1828] [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Gravitational waves from the sound of a first order phase transition, Phys. Rev. Lett. 112 (2014) 041301 [arXiv:1304.2433] [INSPIRE].

    Article  ADS  Google Scholar 

  • J. Giblin, John T. and J.B. Mertens, Vacuum bubbles in the presence of a relativistic fluid, JHEP 12 (2013) 042 [arXiv:1310.2948] [INSPIRE].

  • J.T. Giblin and J.B. Mertens, Gravitional radiation from first-order phase transitions in the presence of a fluid, Phys. Rev. D 90 (2014) 023532 [arXiv:1405.4005] [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Numerical simulations of acoustically generated gravitational waves at a first order phase transition, Phys. Rev. D 92 (2015) 123009 [arXiv:1504.03291] [INSPIRE].

    Article  ADS  Google Scholar 

  • C. Caprini and R. Durrer, Gravitational waves from stochastic relativistic sources: Primordial turbulence and magnetic fields, Phys. Rev. D 74 (2006) 063521 [astro-ph/0603476] [INSPIRE].

  • T. Kahniashvili, A. Kosowsky, G. Gogoberidze and Y. Maravin, Detectability of gravitational waves from phase transitions, Phys. Rev. D 78 (2008) 043003 [arXiv:0806.0293] [INSPIRE].

    Article  ADS  Google Scholar 

  • T. Kahniashvili, L. Campanelli, G. Gogoberidze, Y. Maravin and B. Ratra, Gravitational radiation from primordial helical inverse cascade MHD turbulence, Phys. Rev. D 78 (2008) 123006 [Erratum ibid. 79 (2009) 109901] [arXiv:0809.1899] [INSPIRE].

  • T. Kahniashvili, L. Kisslinger and T. Stevens, Gravitational radiation generated by magnetic fields in cosmological phase transitions, Phys. Rev. D 81 (2010) 023004 [arXiv:0905.0643] [INSPIRE].

    Article  ADS  Google Scholar 

  • C. Caprini, R. Durrer and G. Servant, The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition, JCAP 12 (2009) 024 [arXiv:0909.0622] [INSPIRE].

    Article  ADS  Google Scholar 

  • L. Kisslinger and T. Kahniashvili, Polarized gravitational waves from cosmological phase transitions, Phys. Rev. D 92 (2015) 043006 [arXiv:1505.03680] [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Hindmarsh, Sound shell model for acoustic gravitational wave production at a first-order phase transition in the early Universe, Phys. Rev. Lett. 120 (2018) 071301 [arXiv:1608.04735] [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Megevand and S. Ramirez, Bubble nucleation and growth in very strong cosmological phase transitions, Nucl. Phys. B 919 (2017) 74 [arXiv:1611.05853] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  • D. Bödeker and G.D. Moore, Electroweak bubble wall speed limit, JCAP 05 (2017) 025 [arXiv:1703.08215] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Shape of the acoustic gravitational wave power spectrum from a first order phase transition, Phys. Rev. D 96 (2017) 103520 [Erratum ibid. 101 (2020) 089902] [arXiv:1704.05871] [INSPIRE].

  • R. Jinno and M. Takimoto, Gravitational waves from bubble dynamics: Beyond the Envelope, JCAP 01 (2019) 060 [arXiv:1707.03111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • T. Konstandin, Gravitational radiation from a bulk flow model, JCAP 03 (2018) 047 [arXiv:1712.06869] [INSPIRE].

    Article  ADS  Google Scholar 

  • D. Cutting, M. Hindmarsh and D.J. Weir, Gravitational waves from vacuum first-order phase transitions: from the envelope to the lattice, Phys. Rev. D 97 (2018) 123513 [arXiv:1802.05712] [INSPIRE].

    Article  ADS  Google Scholar 

  • P. Niksa, M. Schlederer and G. Sigl, Gravitational waves produced by compressible MHD turbulence from cosmological phase transitions, Class. Quant. Grav. 35 (2018) 144001 [arXiv:1803.02271] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • G.C. Dorsch, S.J. Huber and T. Konstandin, Bubble wall velocities in the Standard Model and beyond, JCAP 12 (2018) 034 [arXiv:1809.04907] [INSPIRE].

    Article  ADS  Google Scholar 

  • J. Ellis, M. Lewicki, J.M. No and V. Vaskonen, Gravitational wave energy budget in strongly supercooled phase transitions, JCAP 06 (2019) 024 [arXiv:1903.09642] [INSPIRE].

    Article  ADS  Google Scholar 

  • D. Cutting, M. Hindmarsh and D.J. Weir, Vorticity, kinetic energy, and suppressed gravitational wave production in strong first order phase transitions, Phys. Rev. Lett. 125 (2020) 021302 [arXiv:1906.00480] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • O. Gould et al., Nonperturbative analysis of the gravitational waves from a first-order electroweak phase transition, Phys. Rev. D 100 (2019) 115024 [arXiv:1903.11604] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • K. Kainulainen et al., On the validity of perturbative studies of the electroweak phase transition in the Two Higgs Doublet model, JHEP 06 (2019) 075 [arXiv:1904.01329] [INSPIRE].

    Article  ADS  Google Scholar 

  • R. Jinno, H. Seong, M. Takimoto and C.M. Um, Gravitational waves from first-order phase transitions: Ultra-supercooled transitions and the fate of relativistic shocks, JCAP 10 (2019) 033 [arXiv:1905.00899] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • R. Jinno, T. Konstandin and M. Takimoto, Relativistic bubble collisions — A closer look, JCAP 09 (2019) 035 [arXiv:1906.02588] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • A. Roper Pol, S. Mandal, A. Brandenburg, T. Kahniashvili and A. Kosowsky, Numerical simulations of gravitational waves from early-universe turbulence, Phys. Rev. D 102 (2020) 083512 [arXiv:1903.08585] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • M. Hindmarsh and M. Hijazi, Gravitational waves from first order cosmological phase transitions in the Sound Shell Model, JCAP 12 (2019) 062 [arXiv:1909.10040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • J.R. Espinosa, T. Konstandin, J.M. No and G. Servant, Energy budget of cosmological first-order phase transitions, JCAP 06 (2010) 028 [arXiv:1004.4187] [INSPIRE].

    Article  ADS  Google Scholar 

  • F. Giese, T. Konstandin and J. van de Vis, Model-independent energy budget of cosmological first-order phase transitions — A sound argument to go beyond the bag model, JCAP 07 (2020) 057 [arXiv:2004.06995] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • F. Giese, T. Konstandin, K. Schmitz and J. Van De Vis, Model-independent energy budget for LISA, arXiv:2010.09744 [INSPIRE].

  • M. Fitz Axen, S. Banagiri, A. Matas, C. Caprini and V. Mandic, Multiwavelength observations of cosmological phase transitions using LISA and Cosmic Explorer, Phys. Rev. D 98 (2018) 103508 [arXiv:1806.02500] [INSPIRE].

    Article  ADS  Google Scholar 

  • J. Ellis, M. Lewicki and V. Vaskonen, Updated predictions for gravitational waves produced in a strongly supercooled phase transition, JCAP 11 (2020) 020 [arXiv:2007.15586] [INSPIRE].

    Article  ADS  Google Scholar 

  • S. Höche, J. Kozaczuk, A.J. Long, J. Turner and Y. Wang, Towards an all-orders calculation of the electroweak bubble wall velocity, arXiv:2007.10343 [INSPIRE].

  • K. Saikawa and S. Shirai, Primordial gravitational waves, precisely: the role of thermodynamics in the standard model, JCAP 05 (2018) 035 [arXiv:1803.01038] [INSPIRE].

    Article  ADS  Google Scholar 

  • C. Cutler, Angular resolution of the LISA gravitational wave detector, Phys. Rev. D 57 (1998) 7089 [gr-qc/9703068] [INSPIRE].

  • J.R. Espinosa, T. Konstandin and F. Riva, Strong electroweak phase transitions in the standard model with a singlet, Nucl. Phys. B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  • LIGO Scientific and Virgo collaborations, Updated Advanced LIGO sensitivity design curve, https://dcc.ligo.org/LIGO-T1800044/public.

  • LIGO Scientific and Virgo collaborations, Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA, https://dcc.ligo.org/LIGO-P1200087-v47/public.

  • LIGO Scientific and Virgo collaborations, H1 calibrated sensitivity spectra jun 10 2017 (representative best of O2–C02, with cleaning/subtraction), https://dcc.ligo.org/LIGO-G1801950/public.

  • LIGO Scientific and Virgo collaborations, L1 calibrated sensitivity spectra aug 06 2017 (representative best of O2–C02, with cleaning/subtraction), https://dcc.ligo.org/LIGO-G1801952/public.

  • LIGO Scientific and Virgo collaborations, GWTC-1: fig. 1, https://dcc.ligo.org/LIGO-P1800374/public.

  • M. Kakizaki, S. Kanemura and T. Matsui, Gravitational waves as a probe of extended scalar sectors with the first order electroweak phase transition, Phys. Rev. D 92 (2015) 115007 [arXiv:1509.08394] [INSPIRE].

    Article  ADS  Google Scholar 

  • G.C. Dorsch, S.J. Huber, K. Mimasu and J.M. No, Hierarchical versus degenerate 2HDM: the LHC run 1 legacy at the onset of run 2, Phys. Rev. D 93 (2016) 115033 [arXiv:1601.04545] [INSPIRE].

    Article  ADS  Google Scholar 

  • S.J. Huber, T. Konstandin, G. Nardini and I. Rues, Detectable gravitational waves from very strong phase transitions in the general NMSSM, JCAP 03 (2016) 036 [arXiv:1512.06357] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • S.J. Huber and T. Konstandin, Production of gravitational waves in the NMSSM, JCAP 05 (2008) 017 [arXiv:0709.2091] [INSPIRE].

    Article  ADS  Google Scholar 

  • J.M. Cornell, S. Profumo and W. Shepherd, Kinetic decoupling and small-scale structure in effective theories of dark matter, Phys. Rev. D 88 (2013) 015027 [arXiv:1305.4676] [INSPIRE].

    Article  ADS  Google Scholar 

  • K.K. Boddy, J.L. Feng, M. Kaplinghat and T.M.P. Tait, Self-interacting dark matter from a non-Abelian hidden sector, Phys. Rev. D 89 (2014) 115017 [arXiv:1402.3629] [INSPIRE].

    Article  ADS  Google Scholar 

  • G. Nardini, M. Quirós and A. Wulzer, A confining strong first-order electroweak phase transition, JHEP 09 (2007) 077 [arXiv:0706.3388] [INSPIRE].

    Article  ADS  Google Scholar 

  • T. Konstandin and G. Servant, Cosmological consequences of nearly conformal dynamics at the TeV scale, JCAP 12 (2011) 009 [arXiv:1104.4791] [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Azatov and M. Vanvlasselaer, Bubble wall velocity: heavy physics effects, arXiv:2010.02590 [INSPIRE].

  • S. Balaji, M. Spannowsky and C. Tamarit, Cosmological bubble friction in local equilibrium, arXiv:2010.08013 [INSPIRE].

  • J. Ellis, M. Lewicki and J.M. No, Gravitational waves from first-order cosmological phase transitions: lifetime of the sound wave source, JCAP 07 (2020) 050 [arXiv:2003.07360] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • H.-K. Guo, K. Sinha, D. Vagie and G. White, Phase transitions in an expanding universe: stochastic gravitational waves in standard and non-standard histories, arXiv:2007.08537 [INSPIRE].

  • AEDGE collaboration, AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in space, EPJ Quant. Technol. 7 (2020) 6 [arXiv:1908.00802] [INSPIRE].

  • D. Gao, J. Wang and M. Zhan, Atomic Interferometric Gravitational-wave Space Observatory (AIGSO), Commun. Theor. Phys. 69 (2018) 37 [arXiv:1711.03690] [INSPIRE].

    Article  ADS  Google Scholar 

  • G. Wang, D. Gao, W.-T. Ni, J. Wang and M. Zhan, Orbit design for space atom-interferometer AIGSO, Int. J. Mod. Phys. D 29 (2020) 1940004 [arXiv:1905.00600] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • L. Badurina et al., AION: an Atom Interferometer Observatory and Network, JCAP 05 (2020) 011 [arXiv:1911.11755] [INSPIRE].

    Article  ADS  Google Scholar 

  • W.-T. Ni, G. Wang and A.-M. Wu, Astrodynamical middle-frequency interferometric gravitational wave observatory AMIGO: mission concept and orbit design, Int. J. Mod. Phys. D 29 (2020) 1940007 [arXiv:1909.04995] [INSPIRE].

    Article  ADS  Google Scholar 

  • W.-R. Hu and Y.-L. Wu, The Taiji program in space for gravitational wave physics and the nature of gravity, Natl. Sci. Rev. 4 (2017) 685 [INSPIRE].

    Article  Google Scholar 

  • K.A. Kuns, H. Yu, Y. Chen and R.X. Adhikari, Astrophysics and cosmology with a decihertz gravitational-wave detector: TianGO, Phys. Rev. D 102 (2020) 043001 [arXiv:1908.06004] [INSPIRE].

    Article  ADS  Google Scholar 

  • TianQin collaboration, TianQin: a space-borne gravitational wave detector, Class. Quant. Grav. 33 (2016) 035010 [arXiv:1512.02076] [INSPIRE].

  • X.-C. Hu et al., Fundamentals of the orbit and response for TianQin, Class. Quant. Grav. 35 (2018) 095008 [arXiv:1803.03368] [INSPIRE].

    Article  ADS  Google Scholar 

  • J.D. Romano and N.J. Cornish, Detection methods for stochastic gravitational-wave backgrounds: a unified treatment, Living Rev. Rel. 20 (2017) 2 [arXiv:1608.06889] [INSPIRE].

    Article  Google Scholar 

  • A. Blaut, Angular and frequency response of the gravitational wave interferometers in the metric theories of gravity, Phys. Rev. D 85 (2012) 043005 [arXiv:1901.11268] [INSPIRE].

    Article  ADS  Google Scholar 

  • D. Liang, Y. Gong, A.J. WEinstein, C. Zhang and C. Zhang, Frequency response of space-based interferometric gravitational-wave detectors, Phys. Rev. D 99 (2019) 104027 [arXiv:1901.09624] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • C. Zhang, Q. Gao, Y. Gong, D. Liang, A.J. WEinstein and C. Zhang, Frequency response of time-delay interferometry for space-based gravitational wave antenna, Phys. Rev. D 100 (2019) 064033 [arXiv:1906.10901] [INSPIRE].

    Article  ADS  Google Scholar 

  • S.L. Larson, W.A. Hiscock and R.W. Hellings, Sensitivity curves for spaceborne gravitational wave interferometers, Phys. Rev. D 62 (2000) 062001 [gr-qc/9909080] [INSPIRE].

  • T. Robson, N.J. Cornish and C. Liu, The construction and use of LISA sensitivity curves, Class. Quant. Grav. 36 (2019) 105011 [arXiv:1803.01944] [INSPIRE].

    Article  ADS  Google Scholar 

  • A. Nishizawa, A. Taruya, K. Hayama, S. Kawamura and M.-a. Sakagami, Probing non-tensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers, Phys. Rev. D 79 (2009) 082002 [arXiv:0903.0528] [INSPIRE].

    Article  ADS  Google Scholar 

  • Y. Himemoto and A. Taruya, Impact of correlated magnetic noise on the detection of stochastic gravitational waves: Estimation based on a simple analytical model, Phys. Rev. D 96 (2017) 022004 [arXiv:1704.07084] [INSPIRE].

    Article  ADS  Google Scholar 

  • T. Regimbau et al., A mock data challenge for the Einstein gravitational-wave telescope, Phys. Rev. D 86 (2012) 122001 [arXiv:1201.3563] [INSPIRE].

    Article  ADS  Google Scholar 

  • S. Kuroyanagi, K. Nakayama and J. Yokoyama, Prospects of determination of reheating temperature after inflation by DECIGO, PTEP 2015 (2015) 013E02 [arXiv:1410.6618] [INSPIRE].

  • H. Kudoh, A. Taruya, T. Hiramatsu and Y. Himemoto, Detecting a gravitational-wave background with next-generation space interferometers, Phys. Rev. D 73 (2006) 064006 [gr-qc/0511145] [INSPIRE].

  • J. Romano and E. Thrane, Sensitivity curves for searches for gravitational-wave backgrounds, https://dcc.ligo.org/LIGO-P1300115/public.

  • C.J. Moore, S.R. Taylor and J.R. Gair, Estimating the sensitivity of pulsar timing arrays, Class. Quant. Grav. 32 (2015) 055004 [arXiv:1406.5199] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  • J.S. Hazboun, J.D. Romano and T.L. Smith, Realistic sensitivity curves for pulsar timing arrays, Phys. Rev. D 100 (2019) 104028 [arXiv:1907.04341] [INSPIRE].

    Article  ADS  Google Scholar 

  • R. Hellings and G. Downs, Upper limits on the isotropic gravitational radiation background from pulsar timing analysis, Astrophys. J. Lett. 265 (1983) L39 [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Punturo, ET sensitivities page, http://www.et-gw.eu/index.php/etsensitivities.

  • LIGO Scientific and Virgo collaboration, Exploring the sensitivity of next generation gravitational wave detectors, https://dcc.ligo.org/LIGO-P1600143/public.

  • C.J. Moore, R.H. Cole and C.P.L. Berry, Gravitational-wave sensitivity curves, Class. Quant. Grav. 32 (2015) 015014 [arXiv:1408.0740] [INSPIRE].

    Article  ADS  Google Scholar 

  • KAGRA, LIGO Scientific, VIRGO collaboration, Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA, Living Rev. Rel. 21 (2018) 3 [arXiv:1304.0670] [INSPIRE].

  • LIGO Scientific, Virgo collaboration, A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals, Class. Quant. Grav. 37 (2020) 055002 [arXiv:1908.11170] [INSPIRE].

    Article  ADS  Google Scholar 

  • M.L. Chan, C. Messenger, I.S. Heng and M. Hendry, Binary neutron star mergers and third generation detectors: localization and early warning, Phys. Rev. D 97 (2018) 123014 [arXiv:1803.09680] [INSPIRE].

    Article  ADS  Google Scholar 

  • N. Cornish and T. Robson, Galactic binary science with the new LISA design, J. Phys. Conf. Ser. 840 (2017) 012024 [arXiv:1703.09858] [INSPIRE].

    Article  Google Scholar 

  • N. Karnesis, M. Lilley and A. Petiteau, Assessing the detectability of a Stochastic Gravitational Wave Background with LISA, using an excess of power approach, Class. Quant. Grav. 37 (2020) 215017 [arXiv:1906.09027] [INSPIRE].

    Article  ADS  Google Scholar 

  • C. Caprini et al., Reconstructing the spectral shape of a stochastic gravitational wave background with LISA, JCAP 11 (2019) 017 [arXiv:1906.09244] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • T.L. Smith and R. Caldwell, LISA for cosmologists: calculating the signal-to-noise ratio for stochastic and deterministic sources, Phys. Rev. D 100 (2019) 104055 [arXiv:1908.00546] [INSPIRE].

    Article  ADS  Google Scholar 

  • X. Siemens, J. Ellis, F. Jenet and J.D. Romano, The stochastic background: scaling laws and time to detection for pulsar timing arrays, Class. Quant. Grav. 30 (2013) 224015 [arXiv:1305.3196] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4