A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/JHEP01(2010)109 below:

Combined measurement and QCD analysis of the inclusive e ± p scattering cross sections at HERA

Abstract

A combination is presented of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised e ± p scattering at HERA during the period 1994-2000. The data span six orders of magnitude in negative four-momentum-transfer squared, Q 2, and in Bjorken x. The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy. The combined data are the sole input in a NLO QCD analysis which determines a new set of parton distributions, HERAPDF1.0, with small experimental uncertainties. This set includes an estimate of the model and parametrisation uncertainties of the fit result.

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. H. Collaboration, Measurement of the inclusive ep scattering cross section at low Q 2 and x at HERA, Eur. Phys. J. C 63 (2009) 625 [arXiv:0904.0929] [SPIRES].

    Google Scholar 

  2. H1 collaboration, F.D. Aaron et al., A precision measurement of the inclusive ep scattering cross section at HERA, Eur. Phys. J. C 64 (2009) 561 [arXiv:0904.3513] [SPIRES].

    Article  Google Scholar 

  3. H1 collaboration, C. Adloff et al., Measurement of neutral and charged current cross-sections in positron proton collisions at large momentum transfer, Eur. Phys. J. C 13 (2000) 609 [hep-ex/9908059] [SPIRES].

    Article  ADS  Google Scholar 

  4. H1 collaboration, C. Adloff et al., Measurement of neutral and charged current cross-sections in electron-proton collisions at high Q 2, Eur. Phys. J. C 19 (2001) 269 [hep-ex/0012052] [SPIRES].

    ADS  Google Scholar 

  5. H1 collaboration, C. Adloff et al., Measurement and QCD analysis of neutral and charged current cross sections at HERA, Eur. Phys. J. C 30 (2003) 1 [hep-ex/0304003] [SPIRES].

    ADS  Google Scholar 

  6. ZEUS collaboration, J. Breitweg et al., Measurement of the proton structure function F 2 and σ tot (γ*p) at low Q 2 and very low x at HERA, Phys. Lett. B 407 (1997) 432 [hep-ex/9707025] [SPIRES].

    ADS  Google Scholar 

  7. ZEUS collaboration, J. Breitweg et al., Measurement of the proton structure function F 2 at very low Q 2 at HERA, Phys. Lett. B 487 (2000) 53 [hep-ex/0005018] [SPIRES].

    ADS  Google Scholar 

  8. ZEUS collaboration, J. Breitweg et al., ZEUS results on the measurement and phenomenology of F 2 at low x and low Q 2, Eur. Phys. J. C 7 (1999) 609 [hep-ex/9809005] [SPIRES].

    Article  ADS  Google Scholar 

  9. ZEUS collaboration, S. Chekanov et al., Measurement of the neutral current cross section and F 2 structure function for deep inelastic e+ p scattering at HERA, Eur. Phys. J. C 21 (2001) 443 [hep-ex/0105090] [SPIRES].

    ADS  Google Scholar 

  10. ZEUS collaboration, J. Breitweg et al., Measurement of high-Q 2 charged-current e + p deep inelastic scattering cross sections at HERA, Eur. Phys. J. C 12 (2000) 411 [Erratum ibid. C 27 (2003) 305] [hep-ex/9907010] [SPIRES].

    ADS  Google Scholar 

  11. ZEUS collaboration, S. Chekanov et al., Measurement of high-Q 2 e p neutral current cross sections at HERA and the extraction of xF3, Eur. Phys. J. C 28 (2003) 175 [hep-ex/0208040] [SPIRES].

    ADS  Google Scholar 

  12. ZEUS collaboration, S. Chekanov et al., Measurement of high-Q 2 charged current cross sections in e p deep inelastic scattering at HERA, Phys. Lett. B 539 (2002) 197 [Erratum ibid. B 552 (2003) 308] [hep-ex/0205091] [SPIRES].

    ADS  Google Scholar 

  13. ZEUS collaboration, S. Chekanov et al., High-Q 2 neutral current cross sections in e + p deep inelastic scattering at √s = 318GeV, Phys. Rev. D 70 (2004) 052001 [hep-ex/0401003] [SPIRES].

    ADS  Google Scholar 

  14. ZEUS collaboration, S. Chekanov et al., Measurement of high-Q 2 charged current cross sections in e+ p deep inelastic scattering at HERA, Eur. Phys. J. C 32 (2003) 1 [hep-ex/0307043] [SPIRES].

    ADS  Google Scholar 

  15. A. Glazov, Averaging of DIS cross section data, AIP Conf. Proc. 792 (2005) 237 [SPIRES].

    Article  ADS  Google Scholar 

  16. M. Klein and R. Yoshida, Collider physics at HERA, Prog. Part. Nucl. Phys. 61 (2008) 343 [arXiv:0805.3334] [SPIRES].

    Article  ADS  Google Scholar 

  17. ZEUS collaboration, S. Chekanov et al., An NLO QCD analysis of inclusive cross-section and jet-production data from the ZEUS experiment, Eur. Phys. J. C 42 (2005) 1 [hep-ph/0503274] [SPIRES].

    ADS  Google Scholar 

  18. M. Klein and T. Riemann, Electroweak interactions probing the nucleon structure, Z. Phys. C 24 (1984) 151 [SPIRES].

    ADS  Google Scholar 

  19. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  20. C.G. Callan, Jr. and D.J. Gross, High-energy electroproduction and the constitution of the electric current, Phys. Rev. Lett. 22 (1969) 156 [SPIRES].

    Article  ADS  Google Scholar 

  21. V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [SPIRES].

    Google Scholar 

  22. V.N. Gribov and L.N. Lipatov, e + e pair annihilation and deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 675 [Yad. Fiz. 15 (1972) 1218] [SPIRES].

    Google Scholar 

  23. L.N. Lipatov, The parton model and perturbation theory, Sov. J. Nucl. Phys. 20 (1975) 94 [Yad. Fiz. 20 (1974) 181] [SPIRES].

    Google Scholar 

  24. Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e + e annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP 46 (1977) 641 [Zh. Eksp. Teor. Fiz. 73 (1977) 1216] [SPIRES].

    ADS  Google Scholar 

  25. G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [SPIRES].

    Article  ADS  Google Scholar 

  26. F. Jacquet and A. Blondel, Detection and study of the charged current event, in ep facility for Europe, U. Amaldi ed., Hamburg, Germany (1979).

    Google Scholar 

  27. U. Bassler and G. Bernardi, On the kinematic reconstruction of deep inelastic scattering at HERA: the Sigma method, Nucl. Instrum. Meth. A 361 (1995) 197 [hep-ex/9412004] [SPIRES].

    ADS  Google Scholar 

  28. S. Bentvelsen et al., Reconstruction of (x,Q2) and extraction of structure functions in neutral scattering at HERA, in the proceedings of the Workshop on HERA Physics, W. Buchmuller and G. Ingelman eds., DESY, Hamburg, Germany (1992), volume 1, page 23.

    Google Scholar 

  29. K. Hoeger, Measurement of x, y, Q 2 in neutral current events, in the proceedings of the Workshop on HERA Physics, W. Buchmuller and G. Ingelman eds., DESY, Hamburg, Germany (1992), volume 1, page 43.

    Google Scholar 

  30. ZEUS collaboration, M. Derrick et al., Measurement of the F 2 structure function in deep inelastic e + p scattering using 1994 data from the ZEUS detector at HERA, Z. Phys. C 72 (1996) 399 [hep-ex/9607002] [SPIRES].

    ADS  Google Scholar 

  31. H1 collaboration, I. Abt et al., The H1 detector at HERA, Nucl. Instrum. Meth. A 386 (1997) 310.

    ADS  Google Scholar 

  32. H1 collaboration, I. Abt et al., The tracking, calorimeter and muon detectors of the H1 experiment at HERA, Nucl. Instrum. Meth. A 386 (1997) 348.

    ADS  Google Scholar 

  33. H1 collaboration, R.D. Apphhn et al., The H1 lead/scintillating-fibre calorimeter, Nucl. Instrum. Meth. A 386 (1997) 397.

    ADS  Google Scholar 

  34. ZEUS collaboration, U. Holm, The ZEUS detector. Status Report, unpublished, DESY (1993), http://www-zeus.desy.de/bluebook/bluebook.html.

  35. H1 collaboration, C. Adloff et al., A measurement of the proton structure function F 2(x,Q 2) at low x and low Q 2 at HERA, Nucl. Phys. B 497 (1997) 3 [hep-ex/9703012] [SPIRES].

    ADS  Google Scholar 

  36. H1 collaboration, C. Adloff et al., Deep-inelastic inclusive ep scattering at low x and a determination of α s , Eur. Phys. J. C 21 (2001) 33 [hep-ex/0012053] [SPIRES].

    Article  ADS  Google Scholar 

  37. The combined data together with the full correlation information is provided at https://www.desy.de/h1zeus/.

  38. BCDMS collaboration, A.C. Benvenuti et al., A high statistics measurement of the proton structure functions F 2(x,Q 2) and R from deep inelastic muon scattering at high Q 2, Phys. Lett. B 223 (1989) 485 [SPIRES].

    ADS  Google Scholar 

  39. New Muon collaboration, M. Arneodo et al., Measurement of the proton and deuteron structure functions, F 2(p) and F 2(d) and of the ratio σ L T , Nucl. Phys. B 483 (1997) 3 [hep-ph/9610231] [SPIRES].

    ADS  Google Scholar 

  40. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].

    Article  ADS  Google Scholar 

  41. S. Alekhin, Parton distributions from deep-inelastic scattering data, Phys. Rev. D 68 (2003) 014002 [hep-ph/0211096] [SPIRES].

    ADS  Google Scholar 

  42. M. Botje, A QCD analysis of HERA and fixed target structure function data, Eur. Phys. J. C 14 (2000) 285 [hep-ph/9912439] [SPIRES].

    Article  ADS  Google Scholar 

  43. ZEUS collaboration, S. Chekanov et al., A ZEUS Next-to-Leading-Order QCD analysis of data on deep inelastic scattering, Phys. Rev. D 67 (2003) 012007 [hep-ex/0208023] [SPIRES].

    ADS  Google Scholar 

  44. A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, MRST 2001: partons and α s from precise deep inelastic scattering and Tevatron jet data, Eur. Phys. J. C 23 (2002) 73 [hep-ph/0110215] [SPIRES].

    ADS  Google Scholar 

  45. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].

    Article  Google Scholar 

  46. A. Cooper-Sarkar and C. Gwenlan, Comparison and combination of ZEUS and H1 PDF analyses, hep-ph/0508304 [SPIRES].

  47. S.I. Alekhin, Comparative study of the uncertainties in parton distribution functions, Nucl. Instrum. Meth. A 502 (2003) 761.

    Article  ADS  Google Scholar 

  48. M. Botje, QCDNUM version 17β, http://www.nikhef.nl/h24/qcdnum/index.html.

  49. C. Pascaud and F. Zomer, QCD analysis from the proton structure function F 2 measurement: issues on fitting, statistical and systematic errors, preprint LAL-95-05 [SPIRES].

  50. R.S. Thorne and R.G. Roberts, An ordered analysis of heavy flavour production in deep inelastic scattering, Phys. Rev. D 57 (1998) 6871 [hep-ph/9709442] [SPIRES].

    ADS  Google Scholar 

  51. R.S. Thorne, A variable-flavour number scheme for NNLO, Phys. Rev. D 73 (2006) 054019 [hep-ph/0601245] [SPIRES].

    ADS  Google Scholar 

  52. R.S. Thorne, private communication (2008).

  53. P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [SPIRES].

    ADS  Google Scholar 

  54. M. Krämer, 1, F.I. Olness and D.E. Soper, Treatment of heavy quarks in deeply inelastic scattering, Phys. Rev. D 62 (2000) 096007 [hep-ph/0003035] [SPIRES].

    ADS  Google Scholar 

Download references

Author information Authors and Affiliations
  1. I. Physikalisches Institut der RWTH, Aachen, Germany

    H.-U. Martyn

  2. Institute of Physics and Technology of Ministry of Education and Science of Kazakhstan, Almaty, Kazakhstan

    A. N. Barakbaev, E. G. Boos, N. S. Pokrovskiy & B. O. Zhautykov

  3. NIKHEF and University of Amsterdam, Amsterdam, Netherlands

    G. Grigorescu, A. Keramidas, E. Koffeman, P. Kooijman, A. Pellegrino, H. Tiecke, M. Vázquez & L. Wiggers

  4. Argonne National Laboratory, Argonne, Illinois, 60439-4815, U.S.A.

    S. Chekanov, M. Derrick, S. Magill, B. Musgrave, D. Nicholass, J. Repond & R. Yoshida

  5. Vinca Institute of Nuclear Sciences, Belgrade, Serbia

    I. Bozovic-Jelisavcic, M. Mudrinic, M. Pandurovic & I. Smiljanic

  6. Andrews University, Berrien Springs, Michigan, 49104-0380, U.S.A.

    M. C. K. Mattingly

  7. School of Physics and Astronomy, University of Birmingham, Birmingham, U.K.

    J. Bracinik, I. R. Kenyon, P. R. Newman, R. N. Shaw-West & P. D. Thompson

  8. INFN Bologna, Bologna, Italy

    P. Antonioli, G. Bari, L. Bellagamba, D. Boscherini, A. Bruni, G. Bruni, F. Cindolo, M. Corradi, G. Iacobucci, A. Margotti, R. Nania & A. Polini

  9. University and INFN Bologna, Bologna, Italy

    S. Antonelli, M. Basile, M. Bindi, L. Cifarelli, A. Contin, S. De Pasquale, G. Sartorelli & A. Zichichi

  10. Physikalisches Institut der Universität Bonn, Bonn, Germany

    D. Bartsch, I. Brock, H. Hartmann, E. Hilger, H.-P. Jakob, M. Jüngst, A. E. Nuncio-Quiroz, E. Paul, U. Samson, V. Schönberg, R. Shehzadi & M. Wlasenko

  11. H.H. Wills Physics Laboratory, University of Bristol, Bristol, U.K.

    J. D. Morris

  12. Inter-University Institute for High Energies ULB-VUB, Brussels, Belgium

    J. Delvax, E. A. De Wolf, L. Favart, T. Hreus, X. Janssen, P. Marage, M. U. Mozer, R. Roosen, D. Sunar, T. Sykora & P. Van Mechelen

  13. Universiteit Antwerpen, Antwerpen, Belgium

    J. Delvax, E. A. De Wolf, L. Favart, T. Hreus, X. Janssen, P. Marage, M. U. Mozer, B. Roland, R. Roosen, D. Sunar, T. Sykora & P. Van Mechelen

  14. National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest, Romania

    F. D. Aaron, C. Alexa, M. Rotaru & G. Stoicea

  15. Panjab University, Department of Physics, Chandigarh, India

    M. Kaur, P. Kaur & I. Singh

  16. Department of Engineering in Management and Finance, Univ. of the Aegean, Chios, Greece

    I. Gialas & K. Papageorgiu

  17. Physics Department, Ohio State University, Columbus, Ohio, 43210, U.S.A.

    N. Brümmer, B. Bylsma, L. S. Durkin, A. Lee & T. Y. Ling

  18. Calabria University, Physics Department and INFN, Cosenza, Italy

    M. Capua, S. Fazio, A. Mastroberardino, M. Schioppa, G. Susinno & E. Tassi

  19. The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland

    J. Chwastowski, A. Eskreys, A. Falkiewicz, J. Figiel, A. Galas, L. Goerlich, S. Mikocki, I. Milcewicz-Mika, G. Nowak, K. Olkiewicz, B. Pawlik, P. Sopicki, P. Stopa, J. Turnau & L. Zawiejski

  20. Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Cracow, Poland

    L. Adamczyk, T. Bołd, I. Grabowska-Bołd, D. Kisielewska, J. Lukasik, M. Przybycień & L. Suszycki

  21. Department of Physics, Jagellonian University, Cracow, Poland

    A. Kotański & W. S lomiński

  22. Kyungpook National University, Center for High Energy Physics, Daegu, South Korea

    D. Son

  23. Rutherford Appleton Laboratory, Chilton, Didcot, U.K.

    J. A. Coughlan, J. C. Hart, J. V. Morris & D. P. C. Sankey

  24. Institut für Physik, TU Dortmund, Dortmund, Germany

    D. South & D. Wegener

  25. Joint Institute for Nuclear Research, Dubna, Russia

    M. Kapichine, A. Makankine, A. Morozov, D. Nikitin, V. Palichik, V. Spaskov & V. Tchoulakov

  26. INFN Florence, Florence, Italy

    G. Barbagli & E. Gallo

  27. University and INFN Florence, Florence, Italy

    P. G. Pelfer

  28. Fakultät für Physik der Universität Freiburg i.Br., Freiburg i.Br., Germany

    A. Bamberger, D. Dobur, F. Karstens & N. N. Vlasov

  29. CEA, DSM/Irfu, CE-Saclay, Gif-sur-Yvette, France

    G. Cozzika, J. Feltesse, E. Perez & L. Schoeffel

  30. Department of Physics and Astronomy, University of Glasgow, Glasgow, U.K.

    P. J. Bussey, A. T. Doyle, M. Forrest, D. H. Saxon & I. O. Skillicorn

  31. Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany

    M. Brinkmann, S. Habib, U. Holm, R. Klanner, B. List, E. Lohrmann, H. Perrey, B. Pokorny, P. Schleper, T. Schörner-Sadenius, H. Stadie, J. Sztuk, T. Toll & M. Turcato

  32. Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

    M. Al-daya Martin, B. Antunovic, O. Bachynska, W. Bartel, O. Behnke, J. Behr, U. Behrens, C. Blohm, K. Borras, D. Bot, G. Brandt, A. J. Campbell, A. Cholewa, R. Ciesielski, N. Coppola, M. Deák, G. Eckerlin, E. Elsen, S. Fang, R. Felst, D.-J. Fischer, M. Fleischer, J. Gayler, A. Geiser, S. Ghazaryan, A. Glazov, P. Göttlicher, M. Gouzevitch, J. Grebenyuk, I. Gregor, B. R. Grell, T. Haas, D. Haidt, W. Hain, C. Helebrant, A. Hüttmann, F. Januschek, H. Jung, B. Kahle, I. I. Katkov, J. Katzy, U. Klein, C. Kleinwort, A. Knutsson, U. Kötz, H. Kowalski, M. Kraemer, K. Krastev, K. Kutak, S. Levonian, V. Libov, K. Lipka, M. Lisovyi, J. List, E. Lobodzinska, B. Löhr, R. Mankel, Ll. Marti, I.-A. Melzer-Pellmann, A. B. Meyer, H. Meyer, J. Meyer, S. Miglioranzi, A. Montanari, T. Namsoo, C. Niebuhr, A. Nikiforov, D. Notz, J. E. Olsson, I. Panagoulias, Th. Papadopoulou, A. Parenti, D. Pitzl, R. Plačakytė, V. Radescu, A. Raval, P. Roloff, I. Rubinsky, S. Schmitt, U. Schneekloth, F. Sefkow, A. Spiridonov, Z. Staykova, M. Steder, D. Szuba, J. Szuba, T. Theedt, J. Tomaszewska, A. Vargas Trevino, A. Verbytskyi, S. Vinokurova, M. von den Driesch, Ch. Wissing, G. Wolf, K. Wrona, E. Wünsch, A. G. Yagües-Molina, C. Youngman & W. Zeuner

  33. Max-Planck-Institut für Kernphysik, Heidelberg, Germany

    A. Bunyatyan, V. Dodonov & B. Povh

  34. Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany

    M. Sauter & A. Schöning

  35. Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany

    V. Aushev, E. Hennekemper, M. Herbst, A. W. Jung, K. Krüger, V. Lendermann, H.-C. Schultz-Coulon & K. Urban

  36. Nevis Laboratories, Columbia University, Irvington on Hudson, New York, 10027, U.S.A.

    Y. Ning, Z. Ren & F. Sciulli

  37. Institute for Nuclear Research, National Academy of Sciences, and Kiev National University, Kiev, Ukraine

    M. Borodin, I. Kadenko, Ie. Korol, O. Kuprash, D. Lontkovskyi, I. Makarenko, Yu. Onishchuk, A. Salii, Lu. Sorokin, V. Viazlo, O. Volynets, O. Zeniaev & M. Zolko

  38. Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovak Republic

    D. Bruncko, V. Cerny, J. Ferencei, P. Murín & F. Tomasz

  39. Jabatan Fizik, Universiti Malaya, 50603, Kuala Lumpur, Malaysia

    Z. A. Ibrahim, B. Kamaluddin, F. Mohamad Idris & W. A. T. Wan Abdullah

  40. Chonnam National University, Kwangju, South Korea

    J. Y. Kim

  41. Department of Physics, University of Lancaster, Lancaster, U.K.

    R. C. W. Henderson & T. Sloan

  42. Department of Physics, University of Liverpool, Liverpool, U.K.

    J. B. Dainton, E. Gabathuler, T. Greenshaw, M. Klein, T. Kluge, J. Kretzschmar, P. Laycock, S. J. Maxfield, A. Mehta, G. D. Patel & A. J. Rahmat

  43. Physics and Astronomy Department, University College London, London, U.K.

    S. K. Boutle, J. M. Butterworth, T. W. Jones, J. H. Loizides & M. Wing

  44. Queen Mary and Westfield College, London, U.K.

    M. P. J. Landon, E. Rizvi, G. Thompson & D. Traynor

  45. Imperial College London, High Energy Nuclear Physics Group, London, U.K.

    K. R. Long & A. D. Tapper

  46. Institut de Physique Nucléaire, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

    J. de Favereau & K. Piotrzkowski

  47. Physics Department, University of Lund, Lund, Sweden

    L. Jönsson & S. Osman

  48. Departamento de Fisica Aplicada, CINVESTAV, Mérida, Yucatán, Mexico

    K. B. Cantun Avila, J. G. Contreras & J. E. Ruiz Tabasco

  49. Departamento de Fisica, CINVESTAV, México City, Mexico

    G. Herrera & R. Lopez-Fernandez

  50. Department of Physics, University of Wisconsin, Madison, Wisconsin, 53706, U.S.A.

    E. Brownson, D. D. Reeder, A. A. Savin, W. H. Smith & H. Wolfe

  51. Departamento de Física Teórica, Universidad Autónoma de Madrid, Madrid, Spain

    F. Barreiro, J. del Peso, C. Glasman, M. Jimenez, E. Ron, J. Terrón & C. Uribe-Estrada

  52. CPPM, CNRS/IN2P3 - Univ. Mediterranee, Marseille, France

    C. Diaconu, D. Hoffmann, E. Sauvan, T. N. Trinh & C. Vallée

  53. Department of Physics, McGill University, Montréal, Québec, Canada, H3A 2T8

    F. Corriveau, J. Schwartz & C. Zhou

  54. Institute for Theoretical and Experimental Physics, Moscow, Russia

    L. Bystritskaya, V. Efremenko, A. Fedotov, A. Kropivnitskaya, V. Lubimov, D. Ozerov, A. Petrukhin, A. Rostovtsev & A. Zhokin

  55. Lebedev Physical Institute, Moscow, Russia

    V. Andreev, A. Belousov, A. Eliseev, A. Fomenko, N. Gogitidze, A. Lebedev, N. Loktionova, E. Malinovski, S. Rusakov, L. N. Shtarkov, Y. Soloviev & Y. Vazdik

  56. Moscow Engineering Physics Institute, Moscow, Russia

    A. Antonov, B. A. Dolgoshein, D. Gladkov, V. Sosnovtsev, A. Stifutkin & S. Suchkov

  57. Moscow State University, Institute of Nuclear Physics, Moscow, Russia

    R. K. Dementiev, P. F. Ermolov, L. K. Gladilin, Yu. A. Golubkov, L. A. Khein, I. A. Korzhavina, V. A. Kuzmin, B. B. Levchenko, O. Yu. Lukina, A. S. Proskuryakov, L. M. Shcheglova & D. S. Zotkin

  58. Max-Planck-Institut für Physik, München, Germany

    I. Abt, G. Buschhorn, A. Caldwell, V. Chekelian, A. Dossanov, G. Grindhammer, C. Kiesling, R. Kogler, D. Kollar, A. Liptaj, A. Raspiareza, B. Reisert, W. B. Schmidke & S. Shushkevich

  59. LAL, Univ. Paris-Sud, CNRS/IN2P3, Orsay, France

    J. C. Bizot, V. Brisson, B. Delcourt, M. Jacquet, G. Li, C. Pascaud, T. H. Tran, Z. Zhang & F. Zomer

  60. Department of Physics, University of Oxford, Oxford, U.K.

    A. M. Cooper-Sarkar, R. C. E. Devenish, J. Ferrando, B. Foster, C. Gwenlan, K. Horton, K. Oliver, A. Robertson & R. Walczak

  61. INFN Padova, Padova, Italy

    A. Bertolin, F. Dal Corso, S. Dusini, A. Longhin & L. Stanco

  62. Dipartimento di Fisica dell’Università and INFN, Padova, Italy

    R. Brugnera, R. Carlin, A. Garfagnini & S. Limentani

  63. LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau, France

    V. Boudry, F. Moreau & A. Specka

  64. LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France

    E. Barrelet

  65. Faculty of Science, University of Montenegro, Podgorica, Montenegro

    S. Backovic, A. Dubak, G. Laštovička-Medin, I. Picuric & N. Raicevic

  66. Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

    J. Cvach, P. Reimer & J. Zálešák

  67. Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic

    K. Cerny, O. Pejchal, R. Polifka, D. Sálek, A. Valkárová & J. Žáček

  68. Department of Particle Physics, Weizmann Institute, Rehovot, Israel

    Y. Eisenberg, D. Hochman & U. Karshon

  69. Dipartimento di Fisica Università di Roma Tre and INFN Roma 3, Roma, Italy

    B. Stella

  70. Dipartimento di Fisica, Università ’La Sapienza’ and INFN, Rome, Italy

    G. D’Agostini, G. Marini & A. Nigro

  71. Polytechnic University, Sagamihara, Japan

    Y. Iga

  72. Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

    I. Tsakov

  73. Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics, Tel Aviv University, Tel Aviv, Israel

    H. Abramowicz, R. Ingbir, S. Kananov, A. Levy & A. Stern

  74. Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

    M. Ishitsuka, T. Kanno, M. Kuze & J. Maeda

  75. Department of Physics, University of Tokyo, Tokyo, Japan

    R. Hori, N. Okazaki & S. Shimizu

  76. Tokyo Metropolitan University, Department of Physics, Tokyo, Japan

    R. Hamatsu, S. Kitamura, O. Ota & Y. D. Ri

  77. Università di Torino and INFN, Torino, Italy

    M. Costa, M. I. Ferrero, V. Monaco, R. Sacchi, V. Sola & A. Solano

  78. Università del Piemonte Orientale, Novara, and INFN, Torino, Italy

    M. Arneodo & M. Ruspa

  79. Department of Physics, University of Toronto, Toronto, Ontario, M5S1A7, Canada

    S. Fourletov, J. F. Martin & T. P. Stewart

  80. Institute of Particle and Nuclear Studies, KEK, Tsukuba, Japan

    T. Matsumoto, K. Nagano, K. Tokushuku, S. Yamada & Y. Yamazaki

  81. Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar, Mongolia

    K. Begzsuren, T. Ravdandorj & B. Tseepeldorj

  82. Department of Physics, Pennsylvania State University, University Park, Pennsylvania, 16802, U.S.A.

    B. Y. Oh & J. J. Whitmore

  83. Paul Scherrer Institut, Villigen, Switzerland

    S. Egli, M. Hildebrandt & R. Horisberger

  84. Warsaw University, Institute of Experimental Physics, Warsaw, Poland

    B. Brzozowska, J. Ciborowski, G. Grzelak, P. Kulinski, P. Łużniak, J. Malka, R. J. Nowak, J. M. Pawlak, W. Perlanski & A. F. Żarnecki

  85. Institute for Nuclear Studies, Warsaw, Poland

    M. Adamus, P. Plucinski & T. Tymieniecka

  86. Fachbereich C, Universität Wuppertal, Wuppertal, Germany

    K. Daum & H. Meyer

  87. Yerevan Physics Institute, Yerevan, Armenia

    A. Baghdasaryan, A. Bunyatyan, V. Volchinski & H. Zohrabyan

  88. Meiji Gakuin University, Faculty of General Education, Yokohama, Japan

    T. Tsurugai

  89. Department of Physics, York University, Ontario, M3J1P3, Canada

    S. Bhadra, C. D. Catterall, G. Hartner, U. Noor & J. Whyte

  90. Deutsches Elektronen-Synchrotron DESY, Zeuthen, Germany

    V. Drugakov, I. Glushkov, H. Henschel, K. H. Hiller, P. Kostka, W. Lange, W. Lohmann, Th. Naumann, S. Piec & S. Schlenstedt

  91. Institut für Teilchenphysik, ETH, Zürich, Switzerland

    C. Grab & T. Zimmermann

  92. Physik-Institut der Universität Zürich, Zürich, Switzerland

    K. Müller, K. Nowak, P. Robmann, U. Straumann & P. Truöl

Consortia

H1 and ZEUS collaborations

Corresponding author

Correspondence to S. Schmitt.

Additional information

Also at Physics Department, National Technical University, Zografou Campus, GR-15773 Athens, Greece

Also at Rechenzentrum, Universität Wuppertal, Wuppertal, Germany

Also at University of P.J. Šafárik, Košice, Slovak Republic

Also at CERN, Geneva, Switzerland

Also at Max-Planck-Institut für Physik, München, Germany

Also at Comenius University, Bratislava, Slovak Republic

Also at DESY and University Hamburg, Helmholtz Humboldt Research Award

Also at Faculty of Physics, University of Bucharest, Bucharest, Romania

Also at Ulaanbaatar University, Ulaanbaatar, Mongolia

Also affiliated with University College London, U.K.

Now at Queen Mary University of London, U.K.

Also working at Max Planck Institute, Munich, Germany

Now at Institute of Aviation, Warsaw, Poland

Supported by the research grant No. 1 P03B 04529 (2005-2008)

This work was supported in part by the Marie Curie Actions Transfer of Knowledge project COCOS (contract MTKD-CT-2004-517186)

Now at DESY group FEB, Hamburg, Germany

Also at Moscow State University, Russia

Now at University of Liverpool, U.K.

On leave of absence at CERN, Geneva, Switzerland

Now at CERN, Geneva, Switzerland

Also at Institut of Theoretical and Experimental Physics, Moscow, Russia

Also at INP, Cracow, Poland

Also at FPACS, AGH-UST, Cracow, Poland

Partially supported by Warsaw University, Poland

Partially supported by Moscow State University, Russia

Also affiliated with DESY, Germany

Now at Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, Japan

Also at University of Tokyo, Japan

Now at Kobe University, Japan

Supported by DESY, Germany

Partially supported by Russian Foundation for Basic Research grant No. 05-02-39028-NSFC-a

STFC Advanced Fellow

Nee Korcsak-Gorzo

This material was based on work supported by the National Science Foundation, while working at the Foundation.

Also at Max Planck Institute, Munich, Germany, Alexander von Humboldt Research Award

Now at Nihon Institute of Medical Science, Japan

Now at SunMelx Co. Ltd., Tokyo, Japan

Now at Osaka University, Osaka, Japan

Now at University of Bonn, Germany

also Senior Alexander von Humboldt Research Fellow at Hamburg University

Also at Łódź University, Poland

Member of Łódź University, Poland

Now at Lund University, Lund, Sweden

Supported by Chonnam National University, South Korea, in 2009

Also at University of Podlasie, Siedlce, Poland

Supported by the German Federal Ministry for Education and Research (BMBF), under contract numbers 05H09GUF, 05H09VHC, 05H09VHF and 05H16PEA

Supported by the German Federal Ministry for Education and Research (BMBF), under contract numbers 05 HZ6PDA, 05 HZ6GUA, 05 HZ6VFA and 05 HZ4KHA

Supported by FNRS-FWO-Vlaanderen, IISN-IIKW and IWT and by Interuniversity Attraction Poles Programme, Belgian Science Policy

Supported by the Polish State Committee for Scientific Research, project No. DESY/256/2006 - 154/DES/2006/03

Partially Supported by Polish Ministry of Science and Higher Education, grant PBS/DESY/70/2006

Supported by the Deutsche Forschungsgemeinschaft

Supported by VEGA SR grant no. 2/7062/ 27

Supported by the Swedish Natural Science Research Council

Supported by the Ministry of Education of the Czech Republic under the projects LC527, INGO-1P05LA259 and MSM0021620859

Supported by the Swiss National Science Foundation

Supported by CONACYT, México, grant 48778-F

Russian Foundation for Basic Research (RFBR), grant no 1329.2008.2

This project is co-funded by the European Social Fund (75% and National Resources (25%) - (EPEAEK II) - PYTHAGORAS II

Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)

Supported in part by the MINERVA Gesellschaft für Forschung GmbH, the Israel Science Foundation (grant No. 293/02-11.2) and the US-Israel Binational Science Foundation

Supported by the Israel Science Foundation

Supported by the Italian National Institute for Nuclear Physics (INFN)

Supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and its grants for Scientific Research

Supported by the Korean Ministry of Education and Korea Science and Engineering Foundation

Supported by the Netherlands Foundation for Research on Matter (FOM)

Partially supported by the German Federal Ministry for Education and Research (BMBF)

Supported by RF Presidential grant N 1456.2008.2 for the leading scientific schools and by the Russian Ministry of Education and Science through its grant for Scientific Research on High Energy Physics

Supported by the Spanish Ministry of Education and Science through funds provided by CICYT

Supported by the UK Science and Technology Facilities Council

Supported by the US Department of Energy

Supported by the US National Science Foundation. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Supported by the Polish Ministry of Science and Higher Education as a scientific project (2009-2010)

Supported by FNRS and its associated funds (IISN and FRIA) and by an Inter-University Attraction Poles Programme subsidised by the Belgian Federal Science Policy Office

Supported by an FRGS grant from the Malaysian government

deceased

ArXiv ePrint: 0911.0884

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article Cite this article

H1 and ZEUS collaborations., Aaron, F.D., Abramowicz, H. et al. Combined measurement and QCD analysis of the inclusive e ± p scattering cross sections at HERA. J. High Energ. Phys. 2010, 109 (2010). https://doi.org/10.1007/JHEP01(2010)109

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4