A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/BF02873590 below:

Penicillin V production byPenicillium chrysogenum in the presence of Fe3+ and in low-iron culture medium

  • Anderson M.E.: Determination of glutathione and glutathione disulphide in biological samples.Meth. Enzymol.113, 548–555 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Bainbridge Z.A., Scott R.I., Perry D.: Oxygen utilization by isopenicillin N synthase fromPenicillium chrysogenum.J. Chem. Tech. Biotechnol.55, 233–238 (1992).

    CAS  Google Scholar 

  • Bundgaard H., Ilver K.: A new spectrophotometric method for the determination of penicillins.J. Pharm. Pharmac.24, 790–794 (1972).

    CAS  Google Scholar 

  • Charlang G., Ng B., Horowitz N.H., Horowitz R.M.: Cellular and extracellular siderophores ofAspergillus nidulans andPenicillium chrysogenum.Mol. Cell Biol.1, 94–100 (1981).

    PubMed  CAS  Google Scholar 

  • Drechsel H., Winkelmann G.: Iron chelators and siderophores, pp. 1–49 in G. Winkelmann, C.J. Carrano (Eds):Transition Metals in Microbial Metabolism. Harwood Academic Publishers, Amsterdam 1997.

    Google Scholar 

  • Dombovári J., Becker J.S., Kuhn A.J., Schröder W.H., Dietze H.J.: Multielement analysis of small plant tissue samples using inductively coupled plasma mass spectrometry.Atomic Spectr.21, 37–41 (2000a).

    Google Scholar 

  • Dombovári J., Papp L., Mátyus J., Varga Z., Kakuk G.: Analysis of human blood, plasma and hair samples, using ICP-OES, GAAS and spectrographic methods.Magyar Kém. Folyóirat.106, 230–237 (2000b).

    Google Scholar 

  • Emri T., Bartók G., Szentirmai A.: Regulation of specific activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase inPenicillium chrysogenum.FEMS Microbiol. Lett.117, 67–70 (1994).

    Article  CAS  Google Scholar 

  • Emri T., Pócsi I., Szentirmai A.: Phenoxyacetic acid induces glutathione-dependent detoxification and depletes the glutathione pool inPenicillium chrysogenum.J. Basic. Microbiol.37, 181–186 (1997a).

    Article  PubMed  CAS  Google Scholar 

  • Emri T., Pócsi I., Szentirmai A.: Glutathione metabolism and the protection against oxidative stress caused by peroxides inPenicillium chrysogenum.Free Rad. Biol. Med.23, 809–814 (1997b).

    Article  PubMed  CAS  Google Scholar 

  • Emri T., Pócsi I., Szentirmai A.: Changes in the glutathione (GSH) metabolism ofP. chrysogenum grown on different nitrogen, sulfur and carbon sources.J. Basic Microbiol.38, 3–8 (1998).

    Article  CAS  Google Scholar 

  • Emri T., Sámi L., Szentirmai A., Pócsi I.: Co-ordination of the nitrate and nitrite assimilation, the glutathione and free radical metabolisms, and the pentose phosphate pathway, inPenicillium chrysogenum.J. Basic Microbiol.39, 109–115 (1999a).

    Article  CAS  Google Scholar 

  • Emri T., Pócsi I., Szentirmai A.: Analysis of the oxidative stress response ofPenicillium chrysogenum to menadione.Free Rad. Res.30, 125–132 (1999b).

    Article  CAS  Google Scholar 

  • Emri T., Leiter É., Pócsi I.: Effect of phenoxyacetic acid on the glutathione metabolism ofPenicillium chrysogenum.J. Basic Microbiol.40, 93–104 (2000).

    Article  CAS  Google Scholar 

  • Eriksen S.H., Jensen B., Schneider I., Kaasgaard S., Olsen J.: Uptake of phenoxyacetic acid byPenicillium chrysogenum.Appl. Microbiol. Biotechnol.42, 945–950 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B., Gutteridge J.M.C.:Free Radicals in Biology and Medicine. Oxford University Press, Oxford 1999.

    Google Scholar 

  • van der Helm D., Winkelmann G.: Hydroxamates and polycarboxylates as iron transport agents (siderophores) in fungi, pp. 39–98 in G. Winkelmann, D.R. Winge (Eds):Metal, Ions in Fungi. Marcel Dekker, New York 1994.

    Google Scholar 

  • Henriksen C.M., Nielsen J., Villadsen J.: Influence of the dissolved oxygen concentration on the penicillin biosynthetic pathway in steady-state cultures ofPenicillium chrysogenum.Biotechnol. Prog.13, 776–782 (1997).

    Article  CAS  Google Scholar 

  • Henriksen C.M., Nielsen J., Villadsen J.: Modelling of the protonophoric uncoupling by phenoxyacetic acid of the plasma membrane potential ofPenicillium chrysogenum.Biotechnol. Bioeng.60, 761–767 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Heymann P., Ernst J.F., Winkelmann G.: Identification of a fungal triacetylfusarinine C siderophore transport gene (TAF1) inSaccharomyces cerevisiae as a member of the major facilitator superfamily.BioMetals12, 301–306 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Hödt W., Römheld V., Winkelmann G.: Fusarinines and dimerum acid, mono- and dihydroxamate siderophores fromPenicillium chrysogenum, improve iron utilization by strategy I and strategy II plants.BioMetals13, 37–46 (2000).

    Article  Google Scholar 

  • Jaklitsch W.M., Hampel W., Röhr M., Kubicek C.P., Gamerith G.: α-Aminoadipate pool concentration and penicillin biosynthesis in strains ofPenicillium chrysogenum.Can. J. Microbiol.32, 473–480 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Jalal M.A.F., van der Helm D.: Isolation and spectroscopic identification of fungal siderophores, pp. 235–269 in G. Winkelmann (Ed.)CRC Handbook of Microbial Iron Chelators. CRC Press, Boca Raton 1991.

    Google Scholar 

  • Jarvis F.G., Johnson M.J.: The mineral nutrition ofPenicillium chrysogenum Q176.J. Bacteriol.59, 51–60 (1950).

    PubMed  CAS  Google Scholar 

  • Ledenfeld T., Ghali D., Wolschek M., Kubicek-Pranz E.M., Kubicek C.P.: Subcellular compartmentation of penicillin biosynthesis inPenicillium chrysogenum.J. Biol. Chem.268, 665–671 (1993).

    Google Scholar 

  • Lesuisse E., Labbe P.: Reductive iron assimilation inSaccharomyces cerevisiae, pp. 149–178 in G. Winkelmann, D.R. Winge (Eds):Metal Ions in Fungi. Marcel Dekker, New York 1994.

    Google Scholar 

  • Nielsen J., Johansen C.L., Villadsen J.: Culture fluorescence measurements during batch and fed-batch cultivations withPenicillium chrysogenum.J. Biotechnol.38, 51–62 (1994).

    Article  CAS  Google Scholar 

  • Nielsen J.:Physiological Engineering Aspects of Penicillium chrysogenum. Polyteknisk Forlag, Lyngby (Denmark) 1995.

    Google Scholar 

  • Peterson G.L.: Determination of total protein.Meth. Enzymol.91, 86–105 (1983).

    Google Scholar 

  • Pinto M.C., Mata A.M., López-Barea J.: Reversible inactivation ofSaccharomyces cerevisiae glutathione reductase under reducing conditions.Arch. Biochem. Biophys.228, 1–12 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Pócsi I., Pusztahelyi T., Bogáti M.S., Szentirmai A.: The formation ofN-acetyl-β-d-hexosaminidase is repressed by glucose inPenicillium chrysogenum.J. Basic Microbiol.33, 259–267 (1993).

    Article  Google Scholar 

  • Pusztahelyi T., Pócsi I., Kozma J., Szentirmai A.: Aging ofPenicillium chrysogenum cultures under carbon starvation—I. Morphological changes and secondary metabolite production.Biotechnol. Appl. Biochem.25, 81–86 (1997).

    CAS  Google Scholar 

  • Ramos F.R., López-Nieto M.J., Martín J.F.: Isopenicillin N synthase ofPenicillium chrysogenum, an enzyme that converts δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine to isopenicillin N.Antimicrob. Agents Chemother.27, 380–387 (1985).

    PubMed  CAS  Google Scholar 

  • Sigler K., Chaloupka J., Brozmanová J., Stadler N., Höfer M.: Oxidative stress in microorganisms—I. Microbialvs. higher cells—damage and defenses in relation to cell aging and death.Folia Microbiol.44, 587–624 (1999).

    Article  CAS  Google Scholar 

  • White S., Berry D.R., McNeil B.: Effect of phenylacetic acid feeding on the process of cellular autolysis in submerged batch cultures ofPenicillium chrysogenum.J. Biotechnol.75, 173–185 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Wiebe C., Winkelmann G.: Kinetic studies on the specificity of chelate-iron uptake inAspergillus.J. Bacteriol.123, 837–842 (1975).

    PubMed  CAS  Google Scholar 

  • Winkelmann G.: Kinetics energetics, and mechanisms of siderophore iron transport in fungi, pp. 219–239 in L.L. Barton, B.C. Hemming (Eds):Iron Chelation in Plants and Soil Microorganisms. Academic Press, San Diego 1993.

    Google Scholar 

  • Winkelmann G., Drechsel H.: Microbial siderophores, pp. 200–246 in H.-J. Rehn, G. Reed (Eds).Biotechnology, Vol. 7. VCH Press, Weinheim (Germany) 1997.

    Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4