A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/BF02277422 below:

Catalases in plants | Molecular Breeding

  • Abler ML, Scandalios JG: Isolation and characterization of a genomic sequence encoding the maizeCat3 catalase gene. Plant Mol Biol 22: 1031–1038 (1993).

    Article  PubMed  Google Scholar 

  • Acevedo A, Scandalios JG: Catalase and superoxide dismutase gene expression and distribution during stem development in maize. Devel Genet 12: 423–430 (1991).

    Article  Google Scholar 

  • Acevedo A, Williamson JD, Scandalios JG: Photoregulation of theCat2 andCat3 catalase genes in pigmented and pigment-deficient maize: the circadian regulation ofCat3 is superimposed on its quasi-constitutive expression in maize leaves. Genetics 127: 601–607 (1991).

    PubMed  Google Scholar 

  • Aono M, Kubo A, Saji H, Natori T, Tanaka K, Kondo N: Resistance to active oxygen toxicity of transgenicNicotiana tabacum that expresses the gene for glutathione reductase fromEscherchia coli. Plant Cell Physiol 32: 691–697 (1991).

    Google Scholar 

  • Aono M, Kubo A, Saji H, Tanaka K, Kondo N: Enhanced tolerance to photooxidative stress of transgenicNicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol 34: 129–135 (1993).

    Google Scholar 

  • Apostol I, Heinstein PF, Low PS: Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Role in defense and signal transduction. Plant Physiol 90: 109–116 (1989).

    Google Scholar 

  • Asada K, Takahashi M: Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Topics in Photosynthesis, vol. 9, pp. 227–287. Elsevier Science Publishers, Amsterdam (1987).

    Google Scholar 

  • Baker CJ, Atkinson MM, Collmer A: Concurrent loss in Tn5 mutants ofPseudomonas syringae pv.syringae of the ability to induce the hypersensitive response and host plasma membrane K+/H+ exchange in tobacco. Phytopathology 77: 1268–1272 (1987).

    Google Scholar 

  • Barber J, Andersson B: Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci 17: 61–66 (1992).

    Article  PubMed  Google Scholar 

  • Beaumont F, Jouve H-M, Gagnon J, Gaillard J, Pelmont J: Purification and properties of a catalase from potato tubers (Solanum tuberosum). Plant Sci 72: 19–26 (1990).

    Article  Google Scholar 

  • Beeor-Tzahar T, Ben Hayyim G, Holland D, Faltin Z, Eshdat Y: A stress-associated citrus protein is a distinct plant phospholipid hydroperoxide glutathione peroxidase. FEBS Lett 366: 151–155 (1995).

    Article  PubMed  Google Scholar 

  • Behari R, Baker A: The carboxyl terminus of isocitrate lyase is not essential for import into glyoxysomes in anin vitro system. J Biol Chem 268: 7315–7322 (1993).

    PubMed  Google Scholar 

  • Bielawski W, Joy KW: Properties of glutathione reductase from chloroplasts and roots of pea. Phytochemistry 25: 2261–2265 (1986).

    Article  Google Scholar 

  • Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M, Inzé D: Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10: 1723–1732 (1991).

    PubMed  Google Scholar 

  • Bradley DJ, Kjellbom P, Lamb CJ: Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70: 21–30 (1992).

    Article  PubMed  Google Scholar 

  • Chai HB, Doke N: Superoxide anion generation: a response of potato leaves to infection withPhytophthora infestans. Phytopathology 77: 645–649 (1987).

    Google Scholar 

  • Chai HB, Doke N: Systemic activation of O2 generating reaction, superoxide dismutase, and peroxidase in potato plants in relation to induction of systemic resistance toPhytophthora infestans. Ann Phytopath Soc Japan 53: 585–590 (1987).

    Google Scholar 

  • Chandlee JM, Scandalios JG: Analysis of variants affecting the catalase developmental program in maize scutellum. Theor Appl Genet 69: 71–77 (1984).

    Article  Google Scholar 

  • Chen Z, Silva H, Klessig DF: Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262: 1883–1886 (1993).

    PubMed  Google Scholar 

  • Cock JM, Brock IW, Watson AT, Swarup R, Morby AP, Cullimore JV: Regulation of glutamine synthetase genes in leaves ofPhaseolus vulgaris. Plant Mol Biol 17: 761–771 (1991).

    Article  PubMed  Google Scholar 

  • Comai L, Dietrich RA, Maslyar DJ, Baden CS, Harada JJ: Coordinate expression of transcriptionally regulated isocitrate lyase and malate synthase genes inBrassica napus L. Plant Cell 1: 293–300 (1989).

    Article  PubMed  Google Scholar 

  • Creissen GP, Edwards EA, Mullineaux PM: Glutathione reductase and ascorbate peroxidase. In: Foyer CH, Mullineaux PM (eds) Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, pp. 343–364. CRC Press, Boca Raton, FL (1994).

    Google Scholar 

  • Criqui MC, Jamet E, Parmentier Y, Marbach J, Durr A, Fleck J: Isolation and characterization of a plant cDNA showing homology to animal glutathione peroxidases. Plant Mol Biol 18: 623–627 (1992).

    Article  PubMed  Google Scholar 

  • Croft KPC, Voisey CR, Slusarenko AJ: Mechanism of hypersensitive cell collapse: correlation of increased lipoxygenase activity with membrane damage in leaves ofPhaseolus vulgaris (L.) inoculated with an avirulent race ofPseudomonas syringae pv.phaseolicola. Physiol Mol Plant Path 36: 49–62 (1990).

    Article  Google Scholar 

  • Dalton DA, Hanus FJ, Russell SA, Evans HJ: Purification, properties, and distribution of ascorbate peroxidase in legume root nodules. Plant Physiol 83: 789–794 (1987).

    Google Scholar 

  • Davis D, Merida J, Legendre L, Low PS, Heinstein P: Independent elicitation of the oxidative burst and phytoalexin formation in cultured plant cells. Phytochemistry 32: 607–611 (1993).

    Article  Google Scholar 

  • Davison AJ, Kettle AJ, Fatur DJ: Mechanism of the inhibition of catalase by ascorbate. Roles of active oxygen species, copper and semidehydroascorbate. J Biol Chem 261: 1193–1200 (1986).

    PubMed  Google Scholar 

  • De Bellis L, Picciarelli P, Pistelli L, Alpi A: Localization of glyoxylate-cycle marker enzymes in peroxisomes of senescent leaves and green cotyledons. Planta 180: 435–439 (1990).

    Article  Google Scholar 

  • De Bellis L, Tsugeki R, Nishimura M: Glyoxylate cycle enzymes in peroxisomes isolated from petals of pumpkin (Cucurbita sp.) during senescence. Plant Cell Physiol 32: 1227–1235 (1991).

    Google Scholar 

  • del Río LA, Fernández VM, Rupérez FL, Sandalio LM, Palma JM: NADH induces the generation of superoxide radicals in leaf peroxisomes. Plant Physiol 89: 728–731 (1989).

    Google Scholar 

  • del Río LA, Sandalio LM, Palma JM, Bueno P, Corpas FJ: Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Rad Biol Med 13: 557–580 (1992).

    Article  PubMed  Google Scholar 

  • Dempsey DA, Klessig DF: Salicylic acid, active oxygen species and systemic acquired resistance in plants. Trends Cell Biol 4: 334–338 (1994).

    Article  PubMed  Google Scholar 

  • Devlin WS, Gustine DL: Involvement of the oxidative burst in phytoalexin accumulation and the hypersensitive reaction. Plant Physiol 100: 1189–1195 (1992).

    Google Scholar 

  • Doke N: NADPH-dependent O2 generation in membrane fractions isolated from wounded potato tubers inoculated withPhytophthora infestans. Physiol Plant Path 27: 311–322 (1985).

    Google Scholar 

  • Doke N, Ohashi Y: Involvement of a superoxide anion generating system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus. Physiol Mol Plant Path 32: 163–175 (1988).

    Google Scholar 

  • Doke N, Miura Y, Sanchez LM, Kawakita K: Involvement of superoxide in signal transduction: responses to attack by pathogens, physical and chemical shocks, and UV irradiation. In: Foyer CH, Mullineaux PM (eds) Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, pp. 177–197. CRC Press, Boca Raton, FL (1994).

    Google Scholar 

  • Drory A, Woodson WR: Molecular cloning and nucleotide sequence of a cDNA encoding catalase from tomato. Plant Physiol 100: 1605–1606 (1992).

    Google Scholar 

  • Drotar A, Phelps P, Fall R: Evidence for glutathione peroxidase activities in cultured plant cells. Plant Sci 42: 35–40 (1985).

    Article  Google Scholar 

  • Drumm H, Falk H, Möller J, Mohr H: The development of catalase in the mustard seedling. Cytobiologie 2: 335–340 (1970).

    Google Scholar 

  • Drumm H, Schopfer P: Effect of phytochrome on development of catalase activity and isoenzyme pattern in mustard (Sinapis alba L.) seedlings. Planta 120: 13–30 (1974).

    Article  Google Scholar 

  • Eising R, Gerhardt B: Catalase synthesis and turnover during peroxisome transition in the cotyledons ofHelianthus annuus L. Plant Physiol 89: 1000–1005 (1989).

    Google Scholar 

  • Eising R, Trelease RN, Ni W: Biogenesis of catalase in glyoxysomes and leaf-type peroxisomes of sunflower cotyledons. Arch Biochem Biophys 278: 258–264 (1990).

    Article  PubMed  Google Scholar 

  • Enyedi AJ, Yalpani N, Silverman P, Raskin I: Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc Natl Acad Sci USA 89: 2480–2484 (1992).

    PubMed  Google Scholar 

  • Epperlein MM, Noronha-Dutra AA, Strange RN: Involvement of the hydroxyl radical in the abiotic elicitation of phytoalexins in legumes. Physiol Mol Plant Path 28: 67–77 (1986).

    Google Scholar 

  • Espelie KE, Franceschi VR, Kolattukudy PE: Immunocytochemical localization and time course of appearance of an anionic peroxidase associated with suberization in wound-healing potato tuber tissue. Plant Physiol 81: 487–492 (1986).

    Google Scholar 

  • Ettinger WF, Harada JJ: Translational or post-translational processes affect differentially the accumulation of isocitrate lyase and malate synthase proteins and enzyme activities in embryo and seedlings ofBrassica napus. Arch Biochem Biophys 281: 139–143 (1990).

    Article  PubMed  Google Scholar 

  • Eyster HC: Catalase activity in chloroplast pigment deficient types of corn. Plant Physiol 25: 630–638 (1950).

    Google Scholar 

  • Feierabend J, Engel S: Photoinactivation of catalasein vitro and in leaves. Arch Biochem Biophys 251: 567–576 (1986).

    Article  PubMed  Google Scholar 

  • Feierabend J, Schaan C, Hertwig B: Photoinactivation of catalase occurs under both high- and low-temperature stress conditions and accompanies photoinhibition of photosystem II. Plant Physiol 100: 1554–1561 (1992).

    Google Scholar 

  • Ferguson IB, Dunning SJ: Effect of 3-amino-1,2,4-triazole, a catalase inhibitor, on peroxide content of suspension-cultured pear fruit cells. Plant Sci 43: 7–11 (1986).

    Article  Google Scholar 

  • Foyer CH, Halliwell B: The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133: 21–25 (1976).

    Article  Google Scholar 

  • Foyer CH, Descourvières P, Kunert KJ: Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ 17: 507–523 (1994).

    Google Scholar 

  • Frederick, SE: DAB procedures. In: Vaughn KC (ed) Handbook of Plant Cytochemistry, vol. 1, pp. 3–25. CRC Press, Boca Raton, FL (1987).

    Google Scholar 

  • Fry SC: Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol 37: 165–186 (1986).

    Article  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J: Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754–756 (1993).

    Google Scholar 

  • Gerdes H-H, Kindl H: Gene response upon illumination in forming mRNA encoding peroxisomal glycolate oxidase. Biochim Biophys Acta 949: 195–205 (1988).

    PubMed  Google Scholar 

  • Gerhardt B: Basic metabolic function of the higher plant peroxisome. Physiol Vég 24: 397–410 (1986).

    Google Scholar 

  • Gietl C: Glyoxysomal malate dehydrogenase from watermelon is synthesized with an amino-terminal transit peptide. Proc Natl Acad Sci USA 87: 5773–5777 (1990).

    PubMed  Google Scholar 

  • Gould SJ, Keller G-A, Hosken N, Wilkinson J, Subramani S: A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol 108: 1657–1664 (1989).

    Article  PubMed  Google Scholar 

  • Gould SJ, Keller G-A, Schneider M, Howell SH, Garrard LJ, Goodman JM, Distel B, Tabak H, Subramani S: Peroxisomal protein import is conserved between yeast, plants, insects and mammals. EMBO J 9: 85–90 (1990).

    PubMed  Google Scholar 

  • Graham IA, Leaver CJ, Smith SM: Induction of malate synthase gene expression in senescent and detached organs of cucumber. Plant Cell 4: 349–357 (1992).

    Article  PubMed  Google Scholar 

  • Grisebach H: Lignins. In: Conn EE (ed) Secondary Plant Products. The Biochemistry of Plants: A Comprehensive Treatise, vol. 7, pp. 457–478. Academic Press, New York (1981).

    Google Scholar 

  • Guan L, Scandalios JG: Characterization of the catalase antioxidant defense geneCat1 of maize, and its developmentally regulated expression in transgenic tobacco. Plant J 3: 527–536 (1993).

    Article  PubMed  Google Scholar 

  • Gut H, Matile P: Apparent induction of key enzymes of the glyoxylic acid cycle in senescent barley leaves. Planta 176: 548–550 (1988).

    Article  Google Scholar 

  • Halliwell B: Lignin synthesis: the generation of hydrogen peroxide and superoxide by horseradish peroxidase and its stimulation by manganese (II) and phenols. Planta 140: 81–88 (1978).

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC: Free Radicals in Biology and Medicine. Clarendon Press, Oxford (1989).

    Google Scholar 

  • Hanson KR, Peterson RB: Regulation of photorespiration in leaves: evidence that the fraction of ribulose bisphosphate oxygenated is conserved and stoichiometry fluctuates. Arch Biochem Biophys 246: 332–346 (1986).

    Article  PubMed  Google Scholar 

  • Hanson KR, Peterson RB: Stereospecifically tritiated glycerate as a probe of photorespiratory metabolism. In: Biggins J (ed) Progress in Photosynthesis Research, vol III, pp. 549–556. Martinus Nijhoff, Dordrecht (1987).

    Google Scholar 

  • Havir EA, McHale NA: Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84: 450–455 (1987).

    Google Scholar 

  • Havir EA, McHale NA: Enhanced-peroxidatic activity in specific catalase isozymes of tobacco, barley, and maize. Plant Physiol 91: 812–815 (1989).

    Google Scholar 

  • Havir EA: Thein vivo andin vitro inhibition of catalase from leaves ofNicotiana sylvestris by 3-amino-1,2,4-triazole. Plant Physiol 99: 533–537 (1992).

    Google Scholar 

  • Hertwig B, Streb P, Feierabend J: Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiol 100: 1547–1553 (1992).

    Google Scholar 

  • Herzog V, Fahimi HD: The effect of glutaraldehyde on catalase. Biochemical and cytochemical studies with beef liver catalase and rat liver peroxisomes. J Cell Biol 60: 303–310 (1974).

    Article  PubMed  Google Scholar 

  • Holland D, Ben-Hayyim G, Faltin Z, Camoin L, Strosberg AD, Eshdat Y: Molecular characterization of salt-stressed-associated protein in citrus: protein and cDNA sequence homology to mammalian glutathione peroxidases. Plant Mol Biol 21: 923–927 (1993).

    Article  PubMed  Google Scholar 

  • Holland D, Faltin Z, Perl A, Ben-Hayyim G, Eshdat Y: A novel plant glutathione peroxidase-like protein provides tolerance to oxygen radicals generated by paraquat inEscherichia coli. FEBS Lett 337: 52–55 (1994).

    Article  PubMed  Google Scholar 

  • Holtman WL, van Duijn G, Zimmermann D, Bakhuizen R, Doderer A, Donker W, Heistek JC, Schram AW, Valk BE, Douma AC: Monoclonal antibodies for differential recognition of catalase subunits in barley aleurone cells. Plant Physiol Biochem 31: 311–321 (1993).

    Google Scholar 

  • Hong Y-N, Schopfer P: Control by phytochrome of urate oxidase and allantoinase activities during peroxisome development in the cotyledons of mustard (Sinapis alba L.) seedlings. Planta 152: 325–335 (1981).

    Article  Google Scholar 

  • Huang D, Scandalios JG, Skadsen RW, Tsaftaris AS: Non-coordinate genetic alterations in the expression of catalase and other glyoxysomal enzymes during maize development. J Exp Bot 37: 1189–1200 (1986).

    Google Scholar 

  • Kendall AC, Keys AJ, Turner JC, Lea PJ, Miflin BJ: The isolation and characterization of a catalase-deficient mutant of barley (Hordeum vulgare). Planta 159: 505–511 (1983).

    Article  Google Scholar 

  • Keppler LD, Novacky A: The initiation of membrane lipid peroxidation during bacteria-induced hypersensitive reaction. Physiol Mol Plant Path 30: 233–245 (1987).

    Article  Google Scholar 

  • Keppler LD, Baker CJ, Atkinson MM: Active oxygen production during a bacteria-induced hypersensitive reaction in tobacco suspension cells. Phytopathology 79: 974–978 (1989).

    Google Scholar 

  • Kindl H, Lazarow PB: Peroxisomes and glyoxysomes. Ann NY Acad Sci 386: 1–550 (1982).

    Google Scholar 

  • Kirkman HN, Galiano S, Gaetani GF: The function of catalase-bound NADPH. J Biol Chem 262: 660–666 (1987).

    PubMed  Google Scholar 

  • Kleff S, Trelease RN, Eising R: Nucleotide and deduced amino acid sequence of a putative higher molecular weight precursor for catalase in sunflower cotyledons. Biochem Biophys Acta 1224: 463–466 (1994).

    Article  PubMed  Google Scholar 

  • Kono Y, Fridovich I: Superoxide radical inhibits catalase. J Biol Chem 257: 5751–5754 (1982).

    PubMed  Google Scholar 

  • Kopczynski CC, Scandalios JG:Cat-2 gene expression. Developmental control of translatable CAT-2 mRNA levels in maize scutellum. Mol Gen Genet 203: 185–188 (1986).

    Article  PubMed  Google Scholar 

  • Kragler F, Langeder A, Raupachova J, Binder M, Hartig A: Two independent peroxisomal targeting signals in catalase A ofSaccharomyces cerevisiae. J Cell Biol 120: 665–673 (1993).

    Article  PubMed  Google Scholar 

  • Kunce CM, Trelease RN: Heterogeneity of catalase in maturing and germinated cotton seeds. Plant Physiol 81: 1134–1139 (1986).

    Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C: H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593 (1994).

    Article  PubMed  Google Scholar 

  • MacRae EA, Ferguson IB: Changes in catalase activity and hydrogen peroxide concentration in plants in response to low temperature. Physiol Plant 65: 51–56 (1985).

    Google Scholar 

  • Madamanchi NR, Kuć J: Induced systemic resistance in plants. In: Cole GT, Hoch HC (eds) The Fungal Spore and Disease Initiation in Plants and Animals, pp. 347–362. Plenum Press, New York (1991).

    Google Scholar 

  • Marrison JL, Onyeocha I, Baker A, Leech RM: Recognition of peroxisomes by immunofluorescence in transformed and untransformed tobacco cells. Plant Physiol 103: 1055–1059 (1993).

    PubMed  Google Scholar 

  • Masuta C, Van den Bulcke M, Bauw G, Van Montagu M, Caplan AB: Differential effects of elicitors on the viability of rice suspension cells. Plant Physiol 97: 619–629 (1991).

    Google Scholar 

  • Matters GL, Scandalios JG: Effect of elevated temperature on catalase and superoxide dismutase during maize development. Differentiation 30: 190–196 (1986).

    PubMed  Google Scholar 

  • Matters GL, Scandalios JG: Synthesis of isozymes of superoxide dismutase in maize leaves in response to O3, SO2 and elevated O2. J Exp Bot 38: 842–852 (1987).

    Google Scholar 

  • May MJ, Leaver CJ: Oxidative stimulation of glutathione synthesis inArabidopsis thaliana suspension cultures. Plant Physiol 103: 621–627 (1993).

    PubMed  Google Scholar 

  • McKersie BD, Chen Y, de Beus M, Bowley SR, Bowler C, Inzé D, D'Halluin K, Botterman J: Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol 103: 1155–1163 (1993).

    Article  PubMed  Google Scholar 

  • Medhy MC: Active oxygen species in plant defense against pathogens. Plant Physiol 105: 467–472 (1994).

    PubMed  Google Scholar 

  • Meyer M, Schreck R, Baeuerle PA: H2O2 and antioxidants have opposite effects on activation of NF-κB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J 12: 2005–2015 (1993).

    PubMed  Google Scholar 

  • Mori H, Higo K-i, Higo H, Minobe Y, Matsui H, Chiba S: Nucleotide and derived amino acid sequence of a catalase cDNA isolated from rice immature seeds. Plant Mol Biol 18: 973–976 (1992).

    Article  PubMed  Google Scholar 

  • Ni W, Turley RB, Trelease RN: Characterization of a cDNA encoding cottonseed catalase. Biochem Biophys Acta 1049: 219–222 (1990).

    PubMed  Google Scholar 

  • Ni W, Trelease RN: Post-transcriptional regulation of catalase isozyme expression in cotton seeds. Plant Cell 3: 737–744 (1991).

    Article  PubMed  Google Scholar 

  • Niebel A, Heungens K, Barthels N, Inzé D, Van Montagu M, Gheysen G: Characterization of a pathogen-induced potato catalase and its systemic expression upon nematode and bacterial infection. Mol Plant-Microbe Interact, 8: 371–378 (1995).

    PubMed  Google Scholar 

  • Oda T, Funai T, Ichiyama A: Generation of a single gene of two mRNAs that encode the mitochondrial and peroxisomal serine:pyruvate aminotransferase of rat liver. J Biol Chem 265: 7513–7519 (1990).

    PubMed  Google Scholar 

  • Olsen LJ, Ettinger WF, Damsz B, Matsudaira K, Webb MA, Harada JJ: Targeting of glyoxysomal proteins to peroxisomes in leaves and roots of a higher plant. Plant Cell 5: 941–952 (1993).

    Article  PubMed  Google Scholar 

  • Omran RG: Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiol 65: 407–408 (1980).

    Google Scholar 

  • Onyeocha I, Behari R, Hill D, Baker A: Targeting of castor bean glyoxysomal isocitrate lyase of tobacco leaf peroxisomes. Plant Mol Biol 22: 385–396 (1993).

    Article  PubMed  Google Scholar 

  • Orr WC, Sohal RS: Extension of life-span by overexpression of superoxide dismutase and catalase inDrosophila melanogaster. Science 263: 1128–1130 (1994).

    PubMed  Google Scholar 

  • Osumi T, Fujiki Y: Topogenesis of peroxisomal proteins. BioEssays 12: 217–222 (1990).

    Article  PubMed  Google Scholar 

  • Ota Y, Ario T, Hayashi K, Nakagawa T, Hattori T, Maeshima M, Asahi T: Tissue-specific isoforms of catalase subunits in castor bean seedlings. Plant Cell Physiol 33: 225–232 (1992).

    Google Scholar 

  • Overbaugh JM, Fall R: Characterization of a selenium-independent glutathione peroxidase fromEuglena gracilis. Plant Physiol 77: 437–442 (1985).

    Google Scholar 

  • Pastori GM, del Río LA: An activated-oxygen-mediated role for peroxisomes in the mechanism of senescence ofPisum sativum L. leaves. Planta 193: 385–391 (1994).

    Article  Google Scholar 

  • Patterson BD, Payne LA, Chen Y-Z, Graham D: An inhibitor of catalase induced by cold in chilling-sensitive plants. Plant Physiol 76: 1014–1018 (1984).

    Google Scholar 

  • Pauls KP, Thompson JE: Effects of cytokinins and antioxidants on the susceptibility of membranes to ozone damage. Plant Cell Physiol 23: 821–832 (1982).

    Google Scholar 

  • Peever TL, Higgins VJ: Electrolyte leakage, lipoxygenase, and lipid peroxidation induced in tomato leaf tissue by specific and nonspecific elicitors fromCladosporium fulvum. Plant Physiol 90: 867–875 (1989).

    Google Scholar 

  • Perl A, Perl-Treves R, Galili S, Aviv D, Shalgi E, Malkin S, Galun E: Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu,Zn superoxide dismutases. Theor Appl Genet 85: 568–576 (1993).

    Article  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR: Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6: 65–74 (1994).

    Article  PubMed  Google Scholar 

  • Price AH, Taylor A, Ripley SJ, Griffiths A, Trewavas AJ, Knight MR: Oxidative signals in tobacco increase cytosolic calcium. Plant Cell 6: 1301–1310 (1994).

    Article  PubMed  Google Scholar 

  • Redinbaugh MG, Wadsworth GJ, Scandalios JG: Characterization of catalase transcripts and their differential expression in maize. Biochem Biophys Acta 951: 104–116 (1988).

    PubMed  Google Scholar 

  • Redinbaugh MG, Sabre M, Scandalios JG: Expression of the maizeCat3 catalase gene is under the influence of a circadian rhythm. Proc Natl Acad Sci USA 87: 6853–6857 (1990).

    PubMed  Google Scholar 

  • Redinbaugh MG, Sabre M, Scandalios JG: The distribution of catalase activity, isozyme protein, and transcript in the tissues of the developing maize seedling. Plant Physiol 92: 375–380 (1990).

    Google Scholar 

  • Rennenberg H: Glutathione metabolism and possible biological roles in higher plants. Phytochemistry 21: 2771–2781 (1982).

    Article  Google Scholar 

  • Rubin B, Penner D, Seattler AW: Induction of isoflavonoid production inPhaseolus vulgaris L. leaves by ozone, sulfur dioxide and herbicide stress. Environ Toxicol Chem 2: 295–306 (1983).

    Google Scholar 

  • Rushmore TH, Morton MR, Pickett CB: The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem 266: 11632–11639 (1991).

    PubMed  Google Scholar 

  • Sabeh F, Wright T, Norton SJ: Purification and characterization of a glutathione peroxidase from theAloe vera plant. Enzyme Protein 47: 92–98 (1993).

    PubMed  Google Scholar 

  • Sakajo S, Nakamura K, Asahi T: Molecular cloning and nucleotide sequence of full-length cDNA for sweet potato catalase mRNA. Eur J Biochem 165: 437–442 (1987).

    Article  PubMed  Google Scholar 

  • Scandalios JG: Genetic control of multiple molecular forms of catalase in maize. Ann NY Acad Sci 151: 274–293 (1968).

    PubMed  Google Scholar 

  • Scandalios JG, Tong W-F, Roupakias DG:Cat3, a third gene locus coding for a tissue-specific catalase in maize: genetics, intracellular location, and some biochemical properties. Mol Gen Genet 179: 33–41 (1980).

    Article  Google Scholar 

  • Scandalios JG, Tsaftaris AS, Chandlee JM, Skadsen RW: Expression of the developmentally regulated catalase (Cat) genes in maize. Devel Genet 4: 281–293 (1984).

    Article  Google Scholar 

  • Scandalios JG: Regulation and properties of plant catalases. In: Foyer CH, Mullineaux PM (eds) Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, pp. 275–315. CRC Press, Boca Raton, FL (1994).

    Google Scholar 

  • Schittenhelm J, Toder S, Fath S, Westphal S, Wagner E: Photoinactivation of catalase in needles of Norway spruce. Physiol Plant 90: 600–606 (1994).

    Article  Google Scholar 

  • Schöner S, Krause GH: Protective systems against active oxygen species in spinach: response to cold acclimation in excess light. Planta 180: 383–389 (1990).

    Article  Google Scholar 

  • Schraudner M, Ernst D, Langebartels C, Sandermann H Jr: Biochemical plant responses to ozone. III. Activation of the defense-related proteins β-1,3-glucanase and chitinase in tobacco leaves. Plant Physiol 99: 1321–1328 (1992).

    Google Scholar 

  • Schreck R, Baeuerle PA: A role for oxygen radicals as second messengers. Trends Cell Biol 1: 39–42 (1991).

    Article  PubMed  Google Scholar 

  • Sen Gupta A, Heinen JL, Holaday AS, Burke JJ, Allen RD: Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90: 1629–1633 (1993).

    PubMed  Google Scholar 

  • Sen Gupta A, Webb RP, Holaday AS, Allen RD: Over-expression of superoxide dismutase protects plants from oxidative stress. Plant Physiol 103: 1067–1073 (1993).

    PubMed  Google Scholar 

  • Sharma YK, Davis KR: Ozone-induced expression of stress-related genes inArabidopsis thaliana. Plant Physiol 105: 1089–1096 (1994).

    PubMed  Google Scholar 

  • Skadsen RW, Scandalios JG: Evidence for processing of maize catalase 2 and purification of its messenger RNA aided by translation of antibody-bound polysomes. Biochemistry 25: 2027–2032 (1986).

    Article  PubMed  Google Scholar 

  • Skadsen RW, Scandalios JG: Translational control of photo-induced expression of theCat2 catalase gene during leaf development in maize. Proc Natl Acad Sci USA 84: 2785–2789 (1987).

    PubMed  Google Scholar 

  • Sloan JS, Schwartz BW, Becker WM: Promoter analysis of a light-regulated gene encoding hydroxypyruvate reductase, an enzyme of the photorespiratory glycolate pathway. Plant J 3: 867–874 (1993).

    Article  Google Scholar 

  • Slooten L, Capiau K, Van Camp W, Van Montagu M, Sybesma C, Inzé D: Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco over-expressing manganese superoxide dismutase in the chloroplasts. Plant Physiol 107: 737–750 (1995).

    PubMed  Google Scholar 

  • Smith IK, Kendall AC, Keys AJ, Turner JC, Lea PJ: Increased levels of glutathione in a catalase-deficient mutant of barley (Hordeum vulgare L.). Plant Sci Lett 37: 29–33 (1984).

    Article  Google Scholar 

  • Smith IK: Stimulation of glutathione synthesis in photorespiring plants by catalase inhibitors. Plant Physiol 79: 1044–1047 (1985).

    Google Scholar 

  • Sorenson JC, Scandalios JG: Developmental expression of a catalase inhibitor in maize. Plant Physiol 57: 351–352 (1976).

    Google Scholar 

  • Streb P, Michael-Knauf A, Feierabend J: Preferential photoinactivation of catalase and photoinhibition of photosystem II are common early symptoms under various osmotic and chemical stress conditions. Physiol Plant 88: 590–598 (1993).

    Article  Google Scholar 

  • Subramani S: Protein import into peroxisomes and biogenesis of the organelle. Annu Rev Cell Biol 9: 445–478 (1993).

    Article  PubMed  Google Scholar 

  • Sun Y, Oberley LW: The inhibition of catalase by glutathione. Free Rad Biol Med 7: 595–602 (1989).

    Article  PubMed  Google Scholar 

  • Suzuki M, Ario T, Hattori T, Nakamura K, Asahi T: Isolation and characterization of two tightly linked catalase genes from castor bean that are differentially regulated. Plant Mol Biol 25: 507–516 (1994).

    Article  PubMed  Google Scholar 

  • Suzuki M, Miyamoto R, Hattori T, Nakamura K, Asahi T: Differential regulation of the expression in transgenic tobacco of the gene for β-glucuronidase under the control of the 5′-upstream regions of two catalase genes from castor bean. Plant Cell Physiol 36: 273–279 (1995).

    PubMed  Google Scholar 

  • Swinkels BW, Gould SJ, Subramani S: Targeting efficiencies of various permutations of the consensus C-terminal tripeptide peroxisomal targeting signal. FEBS Lett 305: 133–136 (1992).

    Article  PubMed  Google Scholar 

  • Tanaka K, Kondo N, Sugahara K: Accumulation of hydrogen peroxide in chloroplasts of SO2-fumigated spinach leaves. Plant Cell Physiol 23: 999–1007 (1982).

    Google Scholar 

  • Tanaka K, Otsubo T, Kondo N: Participation of hydrogen peroxide in the inactivation of Calvin-cycle SH enzymes in SO2-fumigated spinach leaves. Plant Cell Physiol 23: 1009–1018 (1982).

    Google Scholar 

  • Tanaka K, Suda Y, Kondo N, Sugahara K: O3 tolerance and the ascorbate-dependent H2O2 decomposing system in chloroplasts. Plant Cell Physiol 26: 1425–1431 (1985).

    Google Scholar 

  • Thomas JP, Maiorino M, Ursini F, Girotti AW: Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. J Biol Chem 265: 454–461 (1990).

    PubMed  Google Scholar 

  • Trelease RN, Becker WM, Gruber PJ, Newcomb EH: Microbodies (glyoxysomes and peroxisomes) in cucumber cotyledons. Correlative biochemical and ultrastructural study in light- and dark-grown seedlings. Plant Physiol 48: 461–475 (1971).

    Google Scholar 

  • Tsaftaris AS, Bosabalidis AM, Scandalios JG: Cell-type-specific gene expression and acatalasemic peroxisomes in a nullCat2 catalase mutant of maize. Proc Natl Acad Sci USA 80: 4455–4459 (1983).

    Google Scholar 

  • Van Camp W, Willekens H, Bowler C, Van Montagu M, Inzé D, Reupold-Popp P, Sandermann Jr H, Langebartels C: Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Bio/technology 12: 165–168 (1994).

    Article  Google Scholar 

  • van Huystee RB: Some molecular aspects of plant peroxidase biosynthetic studies. Annu Rev Plant Physiol 38: 205–218 (1987).

    Article  Google Scholar 

  • Vera-Estrella R, Blumwald E, Higgins VJ: Effect of specific elicitors ofCladosporium fulvum on tomato suspension cells. Evidence for the involvement of active oxygen species. Plant Physiol 99: 1208–1215 (1992).

    Google Scholar 

  • Vernooij B, Friedrich L, Morse A, Reist R, Kolditz-Jawhar R, Ward E, Uknes S, Kessmann H, Ryals J: Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6: 959–965 (1994).

    Article  PubMed  Google Scholar 

  • Vicentini F, Matile P: Gerontosomes, a multifunctional type of peroxisome in senescent leaves. J Plant Physiol 142: 50–56 (1993).

    Google Scholar 

  • Volk S, Feierabend J: Photoinactivation of catalase at low temperature and its relevance to photosynthetic and peroxide metabolism in leaves. Plant Cell Environ 12: 701–712 (1989).

    Google Scholar 

  • Wadsworth GJ, Scandalios JG: Molecular characterization of a catalase null allele at theCat3 locus in maize. Genetics 125: 867–872 (1990).

    PubMed  Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Métraux J-P, Ryals JA: Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3: 1085–1094 (1991).

    Article  PubMed  Google Scholar 

  • Willekens H, Langebartels C, Tiré C, Van Montagu M, Inzé D, Van Camp W: Differential expression of catalase genes inNicotiana plumbaginifolia. Proc Natl Acad Sci USA 91: 10450–10454 (1994).

    PubMed  Google Scholar 

  • Willekens H, Van Camp W, Van Montagu M, Inzé D, Sandermann H Jr, Langebartels C: Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes inNicotiana plumbaginifolia (L.). Plant Physiol 106: 1007–1014 (1994).

    PubMed  Google Scholar 

  • Willekens H, Villarroel R, Inzé D, Van Montagu M, Van Camp W: Molecular identification of catalases fromNicotiana plumbaginifolia. FEBS Lett 352: 79–83 (1994).

    Article  PubMed  Google Scholar 

  • Yamaguchi J, Nishimura M, Akazawa T: Maturation of catalase precursor proceeds to a different extent in glyoxysomes and leaf peroxisomes of pumpkin cotyledons. Proc Natl Acad Sci USA 81: 4809–4813 (1984).

    Google Scholar 

  • Zelitch I: Oxygen-resistant photosynthesis in tobacco plants selected for oxygen-resistant growth. In: Zelitch I (ed) Perspectives in Biochemical and Genetic Regulation of Photosynthesis. Plant Biology vol. 10, pp. 239–251. Alan R. Liss, New York (1990).

    Google Scholar 

  • Zelitch I: Further studies on O2-resistant photosynthesis and photorespiration in a tobacco mutant with enhanced catalase activity. Plant Physiol 92: 352–357 (1990).

    Google Scholar 

  • Zhong HH, Young JC, Pease EA, Hangarter RP, McClung CR: Interactions between light and the circadian clock in the regulation ofCAT2 expression inArabidopsis. Plant Physiol 104: 889–898 (1994).

    PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4