This paper completes the proof of the necessity of spherical symmetry in the static general-relativistic stellar models that have equations of state satisfying certain inequalities. The technical assumption — that there exists a “reference spherical stellar model” — that was essential in the previous discussions of this problem is removed. This paper also extends beyond previous discussions the class of equations of state included in the proof. The analysis of the equations for spherical stellar models, used here to demonstrate the existence of a “reference spherical model,” may also be of independent interest.
This is a preview of subscription content, log in via an institution to check access.
Access this article Subscribe and saveSpringer+ Basic
€34.99 /Month
Price includes VAT (Germany)
Instant access to the full article PDF.
Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. ReferencesLichtenstein, L.: Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl., 1120 (1918)
Lindblom, L. Phil.: Trans. Roy. Soc. Lond. A,340, 353–364 (1992)
Masood-ul-Alam, A.K.M.: Class. Quantum Grav.4, 625–633 (1987)
Masood-ul-Alam, A.K.M.: Class. Quantum.Grav.5, 409–421 (1988)
Lindblom, L.: J. Math. Phys.29, 436–439 (1988)
Beig, R., Simon, W.: Lett. Math. Phys.21, 245–250 (1992)
Beig, R., Simon, W.: Commun. Math. Phys.144, 373–390 (1992)
Lindblom, L., Masood-ul-Alam, A.K.M.: In: Directions in general relativity. II. Essays in Honor of Dieter Brill. B.L. Hu, T.A. Jacobson (eds.) London: Cambridge University Press, 1993, pp. 172–181
Lindblom, L.: J. Math. Phys.21, 1455–1459 (1980)
Masood-ul-Alam, A.K.M.: Commun. Math. Phys.108, 193–211 (1987)
Beig, R.: Gen. Rel. Grav.12, 439–451 (1980)
Masood-ul-Alam, A.K.M.: The topology of asymptotically Euclidean static perfect fluid spacetime. Ph. D. Thesis, Australian National University (1985)
Bunting, G.L., Masood-ul-Alam, A.K.M.: Gen. Rel. Grav.19, 147–154 (1987)
Hartman, P.: Ordinary differential equations. Boston: Birkhäuser 1982
Lindblom, L.: Ap. J.278, 364–368 (1984)
Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. New York: McGraw-Hill 1955
Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Berlin, Heidelberg, New York: Springer 1983
Robinson, D.: Gen. Rel. Gav.8, 695–698 (1977)
Bondi, H.: Proc. Roy. Soc. A282, 303–317 (1964)
Rendall, A.D., Schmidt, B.D.: Class. Quantum Grav. 8, 985–1000 (1991)
Simon, W.: Class. Quantum Grav.10, 177–181 (1993)
Buchdahl, H.A.: Phys. Rev.116, 1027–1034 (1959)
Bartnik, R.: Commun. Pure Appl. Math.39, 661–693 (1986)
Schoen, R., Yau, S.-T.: Commun. Math. Phys.65, 45–76 (1979)
Avez, A.: Ann. Inst. Henri Poincaré A1, 291–300 (1964)
Künzle, H.P.: Commun. Math. Phys.20, 85–100 (1971)
Physics Department, Montana State University, 59717, Bozeman, Montana, USA
Lee Lindblom & A. K. M. Masood-ul-Alam
Theoretical Astrophysics, California Institute of Technology, 91125, Pasadena, California, USA
Lee Lindblom
Institute of Theoretical Science, University of Oregon, 97403, Eugene, Oregon, USA
A. K. M. Masood-ul-Alam
Communicated by S.-T. Yau
About this article Cite this articleLindblom, L., Masood-ul-Alam, A.K.M. On the spherical symmetry of static stellar models. Commun.Math. Phys. 162, 123–145 (1994). https://doi.org/10.1007/BF02105189
Received: 11 January 1993
Revised: 20 September 1993
Issue Date: April 1994
DOI: https://doi.org/10.1007/BF02105189
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4