Springer+ Basic
€34.99 /Month
Price includes VAT (Germany)
Instant access to the full article PDF.
ReferencesAsano, K., Ukai, S.: On the Vlasov-Poisson limit of the Vlasov-Maxwell equation. In: Nishida, T., Mimura, M., Fujii, H. (eds.) Patterns and waves. Amsterdam: North-Holland 1986
Batt, J.: Global symmetric solutions of the initial value problem of stellar dynamics. J. Diff. Eq.25, 342–364 (1977)
Cantor, M.: A necessary and sufficient condition for York data to specify an asymptotically flat spacetime. J. Math. Phys.20, 1741–1744 (1979)
Cartan, E.: Sur les variétés à connexion affine et la théorie de la relativité généralisée. Ann. Sci. Ecole Norm. Sup.39, 325–412 (1922);41, 1–25 (1924)
Choquet-Bruhat, Y.: Problème de Cauchy pour le système integro differentiel d'Einstein-Liouville. Ann. Inst. Fourier (Grenoble)21, 181–201 (1971)
Christodoulou, D., Klainerman, S.: The global nonlinear stability of the Minkowski space. Princeton, NJ: Princeton University Press 1993
Dautray, R., Lions, J.-L.: Mathematical analysis and numerical methods for science and technology, Vol. 1, Berlin, Heidelberg, New York: Springer 1990
Degond, P.: Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equation for infinite light velocity. Math. Meth. Appl. Sci.8, 533–558 (1986)
Dieudonné, J.: Foundations of modern analysis. New York: Academic Press 1969
Ebin, D., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math.92, 102–163 (1970)
Ehlers, J.: The Newtonian limit of general relativity. In: Ferrarese, G. (ed.) Classical mechanics and relativity: relationship and consistency. Naples: Bibliopolis 1991
Friedrichs, K.O.: Eine invariante Formulierung des Newtonschen Gravitationsgesetzes und des Grenzüberganges vom Einsteinschen zum Newtonschen Gesetz. Math. Ann.98, 566–575 (1927)
Fritelli, S., Reula, O.: On the Newtonian limit of general relativity. Preprint MPA 630, Garching
Klainerman, S.: Global existence for nonlinear wave equations. Commun. Pure Appl. Math.33, 43–101 (1980)
Lottermoser, M.: A convergent post-Newtonian approximation for the constraint equations in general relativity. Ann. Inst. H. Poincaré (Physique Théorique)57, 279–317 (1992)
Majda, A., Compressible fluid flow and systems of conservation laws in several space variables. Berlin, Heidelberg, New York: Springer 1984
Marsden, J., Ebin, D.G., Fischer, A.E.: Diffeomorphism groups, hydrodynamics and relativity. In: Vanstone, J.R., Proc. 13th Biennial Seminar of the Canadian Mathematical Congress. Canadian Mathematical Society, Montreal 1972
Rein, G., Rendall, A.D.: Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data. Commun. Math. Phys.150, 561–583 (1992)
Rein, G., Rendall, A.D.: The Newtonian limit of the spherically symmetric Vlasov-Einstein system. Commun. Math. Phys.150, 585–591 (1992)
Rendall, A.D.: The initial value problem for a class of general relativistic fluid bodies. J. Math. Phys.33, 1047–1053 (1992)
Rendall, A.D.: On the definition of post-Newtonian approximations. Proc. R. Soc. Lond.438, 341–360 (1992)
Schaeffer, J.: The classical limit of the relativistic Vlasov-Maxwell system. Commun. Math. Phys.104, 403–421 (1986)
Zeidler, E.: Nonlinear functional analysis and its applications, Vol. 2. Berlin, Heidelberg, New York: Springer 1990
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4