A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/BF02101736 below:

The Newtonian limit for asymptotically flat solutions of the Vlasov-Einstein system

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

References
  1. Asano, K., Ukai, S.: On the Vlasov-Poisson limit of the Vlasov-Maxwell equation. In: Nishida, T., Mimura, M., Fujii, H. (eds.) Patterns and waves. Amsterdam: North-Holland 1986

    Google Scholar 

  2. Batt, J.: Global symmetric solutions of the initial value problem of stellar dynamics. J. Diff. Eq.25, 342–364 (1977)

    Article  Google Scholar 

  3. Cantor, M.: A necessary and sufficient condition for York data to specify an asymptotically flat spacetime. J. Math. Phys.20, 1741–1744 (1979)

    Article  Google Scholar 

  4. Cartan, E.: Sur les variétés à connexion affine et la théorie de la relativité généralisée. Ann. Sci. Ecole Norm. Sup.39, 325–412 (1922);41, 1–25 (1924)

    MathSciNet  Google Scholar 

  5. Choquet-Bruhat, Y.: Problème de Cauchy pour le système integro differentiel d'Einstein-Liouville. Ann. Inst. Fourier (Grenoble)21, 181–201 (1971)

    Google Scholar 

  6. Christodoulou, D., Klainerman, S.: The global nonlinear stability of the Minkowski space. Princeton, NJ: Princeton University Press 1993

    Google Scholar 

  7. Dautray, R., Lions, J.-L.: Mathematical analysis and numerical methods for science and technology, Vol. 1, Berlin, Heidelberg, New York: Springer 1990

    Google Scholar 

  8. Degond, P.: Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equation for infinite light velocity. Math. Meth. Appl. Sci.8, 533–558 (1986)

    Google Scholar 

  9. Dieudonné, J.: Foundations of modern analysis. New York: Academic Press 1969

    Google Scholar 

  10. Ebin, D., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math.92, 102–163 (1970)

    Google Scholar 

  11. Ehlers, J.: The Newtonian limit of general relativity. In: Ferrarese, G. (ed.) Classical mechanics and relativity: relationship and consistency. Naples: Bibliopolis 1991

    Google Scholar 

  12. Friedrichs, K.O.: Eine invariante Formulierung des Newtonschen Gravitationsgesetzes und des Grenzüberganges vom Einsteinschen zum Newtonschen Gesetz. Math. Ann.98, 566–575 (1927)

    Article  MathSciNet  Google Scholar 

  13. Fritelli, S., Reula, O.: On the Newtonian limit of general relativity. Preprint MPA 630, Garching

  14. Klainerman, S.: Global existence for nonlinear wave equations. Commun. Pure Appl. Math.33, 43–101 (1980)

    Google Scholar 

  15. Lottermoser, M.: A convergent post-Newtonian approximation for the constraint equations in general relativity. Ann. Inst. H. Poincaré (Physique Théorique)57, 279–317 (1992)

    Google Scholar 

  16. Majda, A., Compressible fluid flow and systems of conservation laws in several space variables. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  17. Marsden, J., Ebin, D.G., Fischer, A.E.: Diffeomorphism groups, hydrodynamics and relativity. In: Vanstone, J.R., Proc. 13th Biennial Seminar of the Canadian Mathematical Congress. Canadian Mathematical Society, Montreal 1972

    Google Scholar 

  18. Rein, G., Rendall, A.D.: Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data. Commun. Math. Phys.150, 561–583 (1992)

    Google Scholar 

  19. Rein, G., Rendall, A.D.: The Newtonian limit of the spherically symmetric Vlasov-Einstein system. Commun. Math. Phys.150, 585–591 (1992)

    Google Scholar 

  20. Rendall, A.D.: The initial value problem for a class of general relativistic fluid bodies. J. Math. Phys.33, 1047–1053 (1992)

    Article  Google Scholar 

  21. Rendall, A.D.: On the definition of post-Newtonian approximations. Proc. R. Soc. Lond.438, 341–360 (1992)

    Google Scholar 

  22. Schaeffer, J.: The classical limit of the relativistic Vlasov-Maxwell system. Commun. Math. Phys.104, 403–421 (1986)

    Article  Google Scholar 

  23. Zeidler, E.: Nonlinear functional analysis and its applications, Vol. 2. Berlin, Heidelberg, New York: Springer 1990

    Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4