An existence and uniqueness theorem of the solution of the Cauchy problem for the coupled Einstein-Maxwell-Boltzman system is proven, in an appropriate Sobolev space for the potentials, and weighted Sobolev space for the distribution function. The proof relies on a priori estimates for the collision operator previously established by D.B., and for the solution of the Einstein-Maxwell-Liouville system by Y.C.B. It is also proved here that the solution depends continuously on the data.
This is a preview of subscription content, log in via an institution to check access.
Access this article Subscribe and saveSpringer+ Basic
€34.99 /Month
Price includes VAT (Germany)
Instant access to the full article PDF.
Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. ReferencesChoquet-Bruhat, Y.: Problème de Cauchy pour le système intégro-différentiel d'Einstein-Liouville. Ann. Inst. Fournier, XXI, 3, 1971, p.181–201 and Einstein-Maxwell-Liouville system, volume in the honour of Petrov
Bancel, D.: Problème de Cauchy pour l'équation de Boltzman en relativité générale (to be published, Annales de l'Institut Poincaré)
Bitcheler, K.: On the Cauchy problem for relativistic Boltzman equation. Commun. math. Phys.4, 352–364, 1967
Ehlers, J.: General relativity and kinetic theory. In: Proceedings of the Int. School of Physics “Enrico Fermi” Course 47 — p. 1.70 New York: Acad. Press 1971
Ehlers, J., Sachs, R. K.: Kinetic theory and cosmology in Astrophysics and General Relativity. New York: Gordon Breach 1971
Bel, L.: Kinetic theory of cosmology. Astro physical. J.55, 83–87 (1969)
Lichnerowicz, A., Marrot, R.: Propriétés statistiques des ensembles de particules en relativité restreinte. C.R.210, 759–61 (1940)
Israel, W.: The relativistic Boltzman equation “General Relativity”. Papers in honour of J. L. Synge, Oxford: Clarendon Press 1972
Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity, Commun. math. Phys.14, 329 (1971)
Daniel Bancel
Present address: Département de Mathématiques, Université Paul Sabatier, Toulouse, France
Département de Mécanique, Université Paris 6, Paris, France
Daniel Bancel & Yvonne Choquet-Bruhat
Bancel, D., Choquet-Bruhat, Y. Existence, uniqueness, and local stability for the Einstein-Maxwell-Boltzman system. Commun.Math. Phys. 33, 83–96 (1973). https://doi.org/10.1007/BF01645621
Received: 20 February 1973
Issue Date: June 1973
DOI: https://doi.org/10.1007/BF01645621
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4