A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/BF01607952 below:

Differentiability of spatially homogeneous solutions of the Boltzmann equation in the non maxwellian case

Abstract

The non linear Boltzmann equation is studied and differentiable solutions are shown to exist if the initial datum is suitably chosen

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. Bodmer, R.: Zur Boltzmanngleichung. Zürich: Seminar für Theoretische Physik, E.T.H.

  2. Cercignani, C.: Mathematical methods in kinetic theory. New York: Plenum Press 1969

    Google Scholar 

  3. Da Prato, G.: Somme d'applications non linéaires. In: Symposia Mathematica vol. VII. Roma: Istituto Nazionale di Alta Matematica 1971

    Google Scholar 

  4. Di Blasio, G.: Strong solution for Boltzmann equation in the spatially homogeneous case. Boll. Unione Matematica Italiana.8, 127–136 (1973)

    Google Scholar 

  5. Dunford, N., Schwartz, J. T.: Linear operators I. New York: Interscience 1958

    Google Scholar 

  6. Grad, H.: Principles of kinetic theory of gases, Handbuch der Physik, V. 12, Berlin-Göttingen-Heidelberg: Springer 1958

    Google Scholar 

  7. Iannelli, M.: A note on some non-linear non-contraction semigroups. Boll. Unione Matematica Italiana.6, 1015–1025 (1970)

    Google Scholar 

  8. Kato, T.: Non linear semigroups and evolution equations. J. Math. Soc. Japan.19, 508–520 (1967)

    Google Scholar 

  9. Povzner, A. Ja.: The Boltzmann equation in the kinetic theory of gases. Mat. Sbornik58, 65–86 (1962). Translated in: American Mat. Soc. Translations, Series2, 47, 193–216 (1965)

    Google Scholar 

Download references

Author information Authors and Affiliations
  1. Istituto Matematico, Università degli Studi, Roma, Italy

    Gabriella Di Blasio

Authors
  1. Gabriella Di Blasio
Additional information

Communicated by G. Gallavotti

About this article Cite this article

Di Blasio, G. Differentiability of spatially homogeneous solutions of the Boltzmann equation in the non maxwellian case. Commun.Math. Phys. 38, 331–340 (1974). https://doi.org/10.1007/BF01607952

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4