A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/BF01569895 below:

Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance

  • Amyes, S.G.B. and C.G. Gemmell. 1992. Antibiotic resistance in bacteria. J. Med. Microbiol. 36: 4–29.

    PubMed  Google Scholar 

  • Anderson, O.S. 1978. Permeability properties of unmodified lipid bilayer membranes. In: Membrane Transport in Biology (G. Giebisch, D.C. Tosteson and H.H. Ussing, eds), pp. 369–446. Springer Verlag, Berlin.

    Google Scholar 

  • Aruoma, O.I. and H. Halliwell. 1991. DNA damage and free radicals. Chem. Brit. 149–152.

  • Babich, H. and G. Stotzky. 1980. Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms. Crit. Rev. Microbiol. 9: 99–145.

    Google Scholar 

  • Bagg, A. and J.B Neilands. 1987. Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol. Rev. 51: 509–518.

    PubMed  Google Scholar 

  • Beswick, P.H., G.H. Hall, A.J. Hook, K. Little, D. McBrien and K.A.K. Lott. 1976. Copper toxicity: evidence for the conversion of cupric to cuprous cooperin vivo under anaerobic conditions. Chem.-Biol. Interactions 14: 347–356.

    Google Scholar 

  • Beyersmann, D. 1994. Interactions in metal carcinogenicity. Toxicol. L Lett. 121: 141–146.

    Google Scholar 

  • Bitton, G. and V. Freihofer. 1978. Influence of extracellular polysaccharides on the toxicity of copper and cadmium towardsKlebsiella aerogenes. Microbial Ecol. 4: 119–125.

    Google Scholar 

  • Brown, N.L., J. Camakaris, B.T.O. Lee, T. Williams, A.P. Morby, J. Parkhill and D.A. Rouch. 1991. Bacterial resistances to mercury and copper. J. Cell. Biochem. 46: 106–114.

    PubMed  Google Scholar 

  • Bryson, J.W., T.V. O'Halloran, D.A. Rouch, N.L. Brown, J. Camakaris and B.T.O. Lee. 1993. Chemical and genetic studies of copper resistance inE. coli. In: Bioinorganic Chemistry (K.D. Karlin and Z. Tyeklár, eds), pp. 101–109, Chapman and Hall, New York.

    Google Scholar 

  • Chopra, I. 1975. Mechanism of plasmid mediated resistance to cadmium inStaphylococcus aureus. Antimicrob. Agents Chemother. 7: 8–14.

    PubMed  Google Scholar 

  • Cooksey, D.A. 1994. Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiol. Rev. 14: 381–386.

    PubMed  Google Scholar 

  • Davey, R.B. and D.C. Reanney. 1980. Extrachromosomal genetic elements and the adaptive evolution of bacteria. Evol. Biol. 13: 113–147.

    Google Scholar 

  • Fraústo da Silva, J.J.R. and R.J.P. Williams. 1993. The Biological Chemistry of the Elements. Oxford University Press, Oxford.

    Google Scholar 

  • Freedman, J.H., M.R. Cirolo and J. Peisach. 1989. The role of glutathione in copper metabolism and toxicity. J. Biol. Chem. 264: 5598–5605.

    PubMed  Google Scholar 

  • Gadd, G.M. and A.J. Griffiths. 1978. Microorganisms and heavy metal toxicity. Microbial Ecol. 4: 303–317.

    Google Scholar 

  • Gupta, A., A.P. Morby, J.S. Turner, B.A. Whitton and N.J., Robinson. 1993. Deletion within the metallothionein locus of cadmiumtolerantSynchecococcus PCC 6301 involving a highly iterated palindrome (HIP1). Mol. Microbiol. 7: 189–195.

    PubMed  Google Scholar 

  • Gupta A., B.A. Whitton, A.P. Morby, J.W. Huckle and N.J. Robinson. 1992. Amplification and rearrangement of a prokaryotic metallothionein locus,smt inSynechococcus PCC 6301 selected for tolerance to cadmium. Proc. Roy. Soc. B 248: 273–281.

    Google Scholar 

  • Gutteridge, J.M.C. and B. Halliwell. 1990. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem. Sci. 15: 129–135.

    PubMed  Google Scholar 

  • Hangstein, W.G. 1976. Uncoupling of oxidative phosphorylation. Biochim. Biophys. Acta 456: 129–148.

    PubMed  Google Scholar 

  • Hao, O.J. and C.H. Chang. 1988. Metal toxicity on phosphate removal in pure culture and in activated sludge systems. J. Environ. Engineer. 114: 38–53.

    Google Scholar 

  • Hughes, M.N. and R.K. Poole. 1989. Metals and Micro-organisms. Chapman and Hall, London.

    Google Scholar 

  • Hughes, M.N. and R.K. Poole. 1991. Metal speciation and microbial growth—the hard (and soft) facts. J. Gen. Microbiol. 137: 725–734.

    Google Scholar 

  • Ichikawa, H., K. Ronowicz, M. Hicks and J.M. Gebicki. 1987. Lipid peroxidation is not the cause of lysis of human erythrocytes exposed to inorganic or methyl mercury. Arch. Biochem. Biophys. 259: 46–51.

    PubMed  Google Scholar 

  • Ivey, D.M., A.A. Guffanti, Z.H. Shen, N. Kudyan and T.A. Krulwich. 1992. TheCadC gene-product of alkaliphilicBacillus firmus OF4 partially restores Na+ resistance to anEscherichia coli strain lacking an Na+/H+ antiporter (NhaA). J. Bacteriol. 174: 4878–4884.

    PubMed  Google Scholar 

  • Jocelyn, P.C. 1972. Biochemistry of the SH Group. Academic Press, London.

    Google Scholar 

  • Jungmann, J., H.-A. Reins, C. Schobert and S. Jentsch. 1993. Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature 361: 369–371.

    PubMed  Google Scholar 

  • Khesin, R.B. and E.V. Karasyova. 1984. Mercury-resistant plasmids in bacteria from a mercury and antimony deposit area. Molec. Gen. Genet. 197: 280–285.

    PubMed  Google Scholar 

  • Kronmann, M.J. and S.C. Bratcher. 1984. Conformational changes induced by zinc and terbium binding to native bovine α-lactalbumin and calcium free α-lactalbumin. J. Biol. Chem. 259: 10887–10895.

    PubMed  Google Scholar 

  • Lee, B.T.O., S. Rogers, A. Bergemann, J. Camakaris and D.A. Rouch. 1990. Bacterial response to copper in the environment: copper resistance inEscherichia coli as a model system. In: Metal Speciation in the Environment (J.A.C. Broekaert, S. Güçer and F. Adams, eds), pp. 625–632. Springer-Verlag, Berlin.

    Google Scholar 

  • Lloyd-Jones, G., A.M. Osborn, D.A. Ritchie, P. Strike, J.L. Hobman, N.L. Brown and D.A. Rouch. 1994. Accumulation and intracellular fate of tellurite in tellurite-resistantEscherichia coli: a model for the mechanism of resistance. FEMS Microbiol. Lett. 118: 113–120.

    PubMed  Google Scholar 

  • Lloyd-Jones, G., D.A. Ritchie and P. Strike. 1991. Biochemical and biophysical analysis of plasmid pMJ600-encoded tellurite [TeO3 2−] resistance. FEMS Microbiol. Lett. 81: 19–24.

    Google Scholar 

  • Lutkenhaus, J.F. 1977. Role of a major outer membrane protein inEscherichia coli. J. Bacteriol. 131: 631–637.

    PubMed  Google Scholar 

  • Macaskie, L.E., K.M. Bonthrone and D.A. Rouch. 1994. Phosphatase-mediated heavy metal accumulation by aCitrobacter sp. and related enterobacteria. FEMS Microbiol. Lett. 121: 141–146.

    PubMed  Google Scholar 

  • Macdonald, T.L. and R.B. Martin. 1988. Aluminium ion in biological systems. Trends Biochem. Sci. 13: 15–19.

    PubMed  Google Scholar 

  • Marzilli, L.G., T.J. Kistenmacher and G.L. Eichhorn. 1980. Structural principles of metal ion-nucleotide and metal ion-nucleic acid interactions. In: Nucleic Acid-metal Ion Interaction (T.G. Spiro, ed.), pp. 179–250. J. Wiley and Sons, New York.

    Google Scholar 

  • Mitra, R.S. and I.A. Bernstein. 1978. Single strand breakage in DNA ofE. coli exposed to Cd2+. J. Bacteriol. 121: 1180–1188.

    Google Scholar 

  • Moore, S.A., D.M.C. Moennich and M.J. Gresser. 1983. Synthesis and hydrolysis of ADP-arsenate by beef heart submitochondrial particles. J. Biol. Chem. 258: 6266–6271.

    PubMed  Google Scholar 

  • Nieboer, E. and D.H.S. Richardson. 1980. The replacement of the nondescript term “heavy metals” by a biologically and chemically significant classification of metal ions. Environ. Pollut. (Ser. B) 1: 3–26.

    Google Scholar 

  • Nikaido, H. and M. Vaara. 1985. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49: 1–32.

    PubMed  Google Scholar 

  • Nucifora, G., L. Chu, T.K. Misra and S. Silver. 1989. Cadmium resistance fromStaphylococcus aureus plasmid pI258cadA gene results from a cadmium-efflux ATPase. Proc. Natl Acad. Sci. USA 86: 3544–3548.

    PubMed  Google Scholar 

  • Pan, T. and O.C. Uhlenbeck. 1992. In vitro selection of RNAs that undergo autolytic cleavage with Pb2+. Biochemistry 31: 3887–3895.

    PubMed  Google Scholar 

  • Pan-Hou, H.S.K. and N. Imura. 1981. Role of hydrogen sulfide in mercury resistance determined by plasmid ofClostridium cochlearium T-2. Arch. Microbiol. 129: 49–52.

    PubMed  Google Scholar 

  • Passow, H. and A. Rothstein. 1960. The binding of mercury by the yeast cell in relation to change in permeability. J. Gen. Physiol. 43: 621–633.

    PubMed  Google Scholar 

  • Pickett, A.W., I.S. Carter and A.C.R. Dean. 1976. Enzymic activities of cadmium and zinc tolerant strains ofKlebsiella aerogenes grown in glucose limited chemostats. Microbios 15: 105–111.

    PubMed  Google Scholar 

  • Rehder, D. 1992. Structure and function of vanadium compounds in living organisms. Biometals 5: 3–12.

    PubMed  Google Scholar 

  • Robinson, N.J., A. Gupta, A.P. Fordham-Skelton, R.R.D. Croy, B.A. Whitton and J.W. Huckle. 1990. Prokaryotic metallothionein gene characterization and expression: chromosome crawling by ligation-mediated PCR. Proc. Roy. Soc. Lond. B 242: 241–247.

    Google Scholar 

  • Rouch, D.A. 1986. Plasmid-mediated copper resistance inE. coli. PhD thesis, University of Melbourne.

  • Rouch, D.A., J. Camakaris and B.T.O. Lee. 1989. Copper transport inEscherichia coli. In: Metal Ion Homeostasis: Molecular Biology and Chemistry (D.H. Hamer and D.R. Winge, eds), pp. 469–477, Alan R. Liss, New York.

    Google Scholar 

  • Rouch, D.A., J. Parkhill and N.L. Brown. 1994. Induction of bacterial mercury- and copper-responsive promoters: functional differences between inducible systems and for their use in genefusions forin vivo biosensors. J. Ind. Microbiol. 14: in press.

  • Schreurs, W.J. and H. Rosenberg. 1982. Effect of silver ions on transport and retention of phosphate byEscherichia coli. J. Bacteriol. 152: 7–13.

    PubMed  Google Scholar 

  • Silver, S.. 1978. Transport of cations and anions. In: Bacterial Transport (B.P. Rosen, ed.), pp. 221–324, Marcel Dekker, New York.

    Google Scholar 

  • Silver, S., G. Ji, S. Broer, S. Dey, D. Dou and B.P. Rosen. 1993. Orphan enzyme or patriarch of a new tribe: the arsenic resistance ATPase of bacterial plasmids. Mol. Microbiol. 8: 637–642.

    PubMed  Google Scholar 

  • Silver, S., J. Schottel and A. Weiss. 1975. Bacterial resistance to toxic metals determined by extrachromosomal R factors. Proceedings 3rd International Biodegradation Symposium, Kingston, Rhode Is., USA.

  • Silver, S. and W. Walderhaug. 1992. Gene regulation of plasmid-determined and chromosome-determined inorganic ion transport in bacteria. Microbiol. Rev. 56: 195–228.

    PubMed  Google Scholar 

  • Slawson, R.M., M.I. Van Dyke, H. Lee and J.T. Trevors. 1992. Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 27: 72–79.

    PubMed  Google Scholar 

  • Steinmann, H.M. 1992. Construction of anEscherichia coli K-12 strain deleted for manganese and iron superoxide dismutate genes and its use in cloning the iron superoxide dismutase gene ofLegionella pneumophila. Mol. Gen. Genet. 232: 427–430.

    PubMed  Google Scholar 

  • Turner, J.S., A.P. Morby, B.A. Whitton, A. Gupta and N.J. Robinson. 1993. Construction of Zn2+/Cd2+ hypersensitive cyanobacterial mutants lacking a functional metallothionein locus. J. Biol. Chem. 268: 4494–4498.

    PubMed  Google Scholar 

  • Vallee, B.L. and D.D. Ulmer. 1972. Biochemical effects of mercury, cadmium, and lead. Ann. Rev. Biochem. 41: 91–128.

    PubMed  Google Scholar 

  • Walter, E.G. and D.E. Taylor. 1992. Plasmid-mediated resistance to tellurite: expressed and cryptic. Plasmid 27: 52–64.

    PubMed  Google Scholar 

  • Williams, R.J.P. 1984. Structural aspects of metal toxicity. In: Changing Metal Cycles and Human Health (J.O. Nriagu, ed.), pp. 251–263. Springer-Verlag, Berlin.

    Google Scholar 

  • Willsky, G.R. and M.H. Malamy. 1980. Effect of arsenate on inorganic phosphate transport inEscherichia coli. J. Bacteriol. 144: 366–374.

    PubMed  Google Scholar 

  • Yamane, T. and N. Davidson. 1962. On the complexing of deoxyribonucleic acid by silver(I). Biochim. Biophys. Acta 55: 609–621.

    PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4