Barnes, J.P., andPutnam, A.R. 1983. Rye residues contribute weed suppression in no-tillage cropping systems.J. Chem. Ecol. 9:1045–1057.
Barnes, J.P., Putnam, A.R., andBurke, A. 1986. Allelopathic activity of rye (Secale cereale L.), pp. 271–286,in A.R. Putnam and C.S. Tang (eds.). The Science of Allelopathy. John Wiley & Sons, New York.
Bates-Smith, E.C. 1956. The commoner phenolic constituents of plants and their systematic distribution.Proc. R. Dublin Sci. Soc. 27:165–176.
Blum, U., andShafer, S.R. 1988. Microbial populations and phenolic acids in soil.Soil Biol. Biochem. 20:793–800.
Blum, U., Weed, S.B., andDalton, B.R. 1987. Influence of various soil factors on the effects of ferulic acid on leaf expansion of cucumber seedlings.Plant Soil 98:111–130.
Box, J.D. 1983. Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters.Water Res. 17:511–525.
Chou, C.H., andPatrick, Z.A. 1976. Identification and phytotoxic activity of compounds produced during decomposition of corn and rye residues in soil.J. Chem. Ecol. 2:369–387.
Dalton, B.R., Weed, S.B., andBlum, U. 1987. Plant phenolic acids in soils: A comparison of extraction procedures.Soil Sci. Soc. Am. J. 51:1515–1521.
Gauch, H.G., Jr. 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, New York.
Haider, K., andMartin, J.P. 1975. Decomposition of specifically carbon-14 labeled benzoic and cinnamic acid derivatives in soil.Soil Sci. Am. Proc. 39:657–662.
Harborne, J.B. 1980. Plant phenolics, pp. 331–401,in E.A. Bell and B.V. Chariwood (eds.). Secondary Plant Products, Encyclopedia of Plant Physiology, Vol. 8. Springer-Verlag, Berlin.
Harborne, J.B. 1984. Phytochemical Methods. A Guide to Modern Plant Analysis. Chapman and Hall, New York.
Harmsen, G.W., andVan Schreven, D.A. 1955. Mineralization of organic nitrogen in soil.Adv. Agron. 7: 299–395.
Hartley, R.D., andWhitehead, D.C. 1985. Phenolic acids in soils and their influence on piant growth and soil microbial processes, pp. 109–150,in D. Vaughan and R.E. Malcolm (eds.). Soil Organic Matter and Biological Activity, Developments in Plant and Soil Sciences, Vol. 16. Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht, Netherlands.
Huang, P.M., Wang, T.S.C., Wang, M.K., Wu, M.H., andHsu, N.W. 1977. Retention of phenolic acids by noncrystalline hydroxy-aluminum and -iron compounds and clay minerals of soils.Soil Sci. 123:213–219.
Iritani, W.M., andArnold, C.Y. 1960. Nitrogen release of vegetable crop residues during incubation as related to their chemical composition.Soil Sci. 89:74–82.
Kuiters, A.T., andDenneman, C.A.J. 1987. Water-soluble phenolic substances in soils under several coniferous and deciduous tree species.Soil Biol. Biochem. 19:765–769.
Liebl, R.A., andWorsham, A.D. 1983. Inhibition of morningglory (Ipomoea lacunosa L.) and certain other weed species by phytotoxic components of wheat (Triticum aestivum L.) straw.J. Chem. Ecol. 9:1027–1043.
Lodhi, M.A.K. 1978. Allelopathic effects of decaying litter of dominant trees and their associated soil in a lowland forest community.Am. J. Bot. 65:340–344.
Putnam, A.R., andDe Frank, J. 1983. Use of phytotoxic plant residues for selective weed control.Crop Prot. 2:173–181.
Putnam, A.R., De Frank, J., andBarnes, J.P. 1983. Exploitation of allelopathy for weed control in annual and perennial cropping systems.J. Chem. Ecol. 9:1001–1010.
Rice, E.L. 1984. Allelopathy, 2nd ed. Academic Press, Orlando, Florida.
SAS Institute Inc. 1988. SAS/STAT User's Guide Release 6.03 Edition. SAS Institute Inc., Cary, North Carolina.
Shilling, D.G., Liebl, R.A., andWorsham, A.D. 1985. Rye (Secale cereale L.) and wheat (Triticum aestivum L.) mulch: The suppression of certain broadleaved weeds and the isolation and identification of phytotoxins, pp. 243–271,in A.C. Thompson (ed.). The Chemistry of Allelopathy: Biochemical Interactions Among Plants. ACS Symposium Series 268, American Chemical Society, Washington, D.C.
Shilling, D.G., Jones, L.A., Worsham, A.D., Parker, C.E., andWilson, R.F. 1986a. Isolation and identification of some phytotoxic compounds from aqueous extracts of rye (Secale cereale L.).J. Agric. Food Chem. 34:633–638.
Shilling, D.G., Worsham, A.D., andDanehower, D.A. 1986b. Influence of mulch, tillage, and diphenamid on weed control, yield, and quality in no-till flue-cured tobacco (Nicotiana tabacum).Weed Sci. 34:738–744.
Skujins, J.J. 1967. Enzymes in soils, pp. 371–414,in A.D. McLaren and G.H. Peterson (eds.). Soil Biochemistry. Marcel Dekker, New York.
Steel, R.G.D., andTorrie, J.H. 1980. Principles and Procedures of Statistics, A Biomedical Approach. McGraw-Hill, New York.
Stevenson, F.J. 1982. Humus Chemistry. John Wiley & Sons, New York.
Summerell, B.A., andBurgess, L.W. 1989. Decomposition and chemical composition of cereal straw.Soil Biol. Biochem. 21:551–559.
Turner, J.A., andRice, E.L. 1975. Microbial decomposition of ferulic acid in soil.J. Chem. Ecol. 1:41–58.
Whitehead, D.C., Buchan, H., andHartley, R.D. 1979. Composition and decomposition of roots of ryegrass and red clover.Soil Biol. Biochem. 11:619–628.
Whitehead, D.C., Dibb, H., andHartley, R.D. 1981. Extracant pH and the release of phenolic compounds from soils, plant roots and leaf litter.Soil Biol. Biochem. 13:343–348.
Whitehead, D.C., Dibb, H., andHartley, R.D. 1982. Phenolic compounds in soil as influenced by the growth of different plant species.J. Appl. Ecol. 19:579–588.
Wild, A. 1988. Russell's Soil Conditions and Plant Growth, 11th ed. Longman Scientific and Technical, Essex, England.
Worsham, A.D. 1989. Current and potential techniques using allelopathy as an aid in weed management, pp. 275–291,in C.H. Chou, and G.R. Waller (eds.). Phytochemical Ecology: Allelochemicals, Mycotoxins and Insect Pheromones and Allomones. Academia Sinica Monograph Series No. 9, Taipei, Taiwan.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4