Gordon, J. L. 1986. Extracellular ATP: effects, sources and fate. Biochem. J. 233:309–319.
Burnstock, G. 1990. Purinergic mechanisms. Ann. N.Y. Acad. Sci. 603:1–17.
El-Moatassim, C., Dornand, J., and Mani, J. C. 1992. Extracellular ATP and cell signalling. Biochim. Biophys. Acta 1134:31–45.
Berridge, M. C., and Irvine, R. F. 1989. Inositol phosphate and cell signalling. Nature 341:197–205.
Hallam, T. J., and Rink, T. J. 1989. Receptor-mediated Ca2+ entry: diversity of functin and mechanism. Trends Pharmacol. Sci. 10:8–10.
Kuno, N., and Gardner, P. 1987. Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature 326:301–304.
Putney, J. W. 1986. A model for receptor-regulated calcium entry. Cell Calcium 7:1–12.
Putney, J. W. 1987. Formation and actions of calcium-mobilizing messenger, inositol 1,4,5-triphosphate. Am. J. Physiol. 252:G149–157.
Lin, W.-W., Lee, C. Y., and Chuang, D.-M. 1990. Comparative studies of phosphoinositide hydrolysis induced by endothelin-related peptides in cultured cerebellar astrocytes, C6-glioma and cerebellar granule cells. Biochem. Biophys. Res. Commun. 168:512–519.
Berridge, M. J., Downes, C. P., and Hanley, M. R. 1982. Lithium amplifies agonist-dependent phosphatidyl-inositol responses in brain and salivary glands. Biochem. J. 206:587–595.
Grynkiewicz, G., Poenie, M. and Tsien, R. Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450.
Lin, W.-W., and Chuang, D.-M. 1992. Potentiation by Ca2+ ionophores and inhibition by extracellular KCl of endothelin-induced phosphoinositide turnover in C6 glioma cells. Neurochem. Int. 21:293–301.
Hoiting, B., Molleman, A., Nelemans, A., and Hertog, A. D. 1990. P2-purinoceptor-activated membrane currents and inositol tetrakisphosphate formation are blocked by suramin. Eur. J. Pharmacol. 181:127–131.
Downes, C. P. 1988. Inositol phosphates: a family of signal molecules? Trends Neurosci. 11:336–339.
Benham, C. D., and Tsien, R. W. 1987. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature 328:275–278.
Nakazawa, K., and Matsuki, N. 1987. Adenosine triphosphate-activated inward current in isolated smooth muscle from rat vas deferens. Pflugers Arch. 409:644–646.
Friel, D. D. 1988. An ATP-sensitive conductance in single smooth muscle cells from the rat vas deferens. J. Physiol. 401:361–380.
Hume, R. I., and Hong, M. G. 1986. Excitatory action of ATP on embryonic chick muscle. J. Neurosci. 6:681–690.
Friel, D. D., and Bean, B. P. 1988. Two ATP-activated conductances in bullfrog atrial cells. J. Gen. Physiol. 91:1–27.
Krishtal, O. A., Marchenko, S. M., and Pidoplichko, V. I. 1983. Receptor for ATP in the membrane of mammalian sensory neurons. Neurosci. Lett. 35:41–45.
Bean, B. P. 1990. ATP-activated channels in rat and bullfrog sensory neurons: concentration dependence and kinetics. J. Neurosci. 10:1–10.
Glaum, S. R., Holzwarth, J. A., and Miller, R. J. 1990. Glutamate receptors activate Ca2+ mobilization and Ca2+ influx into astrocytes. Proc. Natl. Acad. Sci. USA 87:3454–3458.
Diamant, S., and Atlas, D. 1989. Potentiation of [3H]inositol phosphate formation by receptor activation and membrane depolarization in brain cortical slices (l). Brain Res. 503:55–61.
Kendall, D. A., and Nahorski, S. R. 1984. Inositol phospholipid hydrolysis in rat cerebral cortical slices. II. Calcium requirement. J. Neurochem. 42:1388–1394.
Lin, W. W., Kiang, J. G., and Chuang, D.-M. 1992. Pharmacological characterization of endothelin-stimulated phosphoinositide breakdown and cytosolic free Ca2+ rise in C6 glioma cells. J. Neurosci. 12:1077–1085.
Gusovsky, F., Hollingsworth, E. B., and Daly, J. W. 1987. Stimulation of phosphoinositide breakdown in brain synaptoneurosomes by agents that activate sodium influx: antagonism by tetrodotoxin, saxitoxin and cadmium. Mol. Pharmacol. 32:479–487.
McDonough, P. M., Goldstein, D., and Brown, J. H. 1988. Elevation of cytoplasmic calcium concentration stimulates hydrolysis of phosphatidylinositol bisphosphate in chick heart cells: effect of sodium channel activators. Mol. Pharmacol. 33:310–315.
Benuck, M., Reith, M. E. A., and Lajtha, A. 1989. Evidence for the involvement of Na+/Ca++ exchange in the stimulation of inositol phospholipid hydrolysis by sodium channel activation and depolarization. Eur. J. Pharmacol. 159:187–190.
Guiramand, J., Vignes, M., Mayat, E., Lebrun, F., Sassetti, I., and Recasens, M. 1991. A specific transduction mechanism for the glutamate action on phosphoinositide metabolism via the quisqualate metabotropic receptor in rat brain synaptoneurosomes: I. External Na+ requirement. J. Neurochem. 57:1488–1500.
Dahlquist, R. 1974. Relationship of uptake of sodium and45calcium to ATP-induced histamine release from rat mast cells. Acta Pharmacol. Toxicol. 35:11–22.
Steinberg, T. H., and Silverstein, S. C. 1987. Extracellular ATP4-promotes cation fluxes in the J774 mouse macrophage cell line. J. Biol. Chem. 262:3118–3122.
Weisman, G. A., Dunn, S. D., De, B. K., Kitagawa, T., and Friedberg, I. 1984. Cellular responses to external ATP which precede an increase in nucleotide permeability in transformed cells. J. Cell Physiol. 119:211–219.
Gonzalez, F. A., Wang, D., Huang, N., and Heppel, L. A. 1989. Two distinct receptors for ATP can be distinguished in Swiss 3T6 mouse fibroblasts by their desensitization. Biochem. Biophys. Res. Commun. 164:706–713.
Pianet, J., Merle, M., and Labouesse, J. 1989. ADP and, indirectly, ATP are potent inhibitors of cAMP production in intact isoproterenol-stimulated C6 glioma cells. Biochem. Biophys. Res. Commun. 163:1150–1157.
Linden, J., and Delahunty, T. M. 1989. Receptors that inhibit phosphoinositide breakdown. Trends Pharmacol. Sci. 10:114–120.
El-Etr, M., Marin, P., Tence, M., Delumean, J. C., Cordier, J., Glowinski, J., and Premont, J. 1992. 2-Chloroadenosine potentiates the α1-adrenergic activation of phospholipase C through a mechanism involving arachidonic acid and glutamate in striatal astrocytes. J. Neurosci. 12:1363–1369.
Okajima, F., Sato, K., Nazarea, M., Sho, K., and Kondo, Y. 1989. A permissive role of pertussis toxin substrate G-protein in P2-purinergic stimulation of phosphoinositide turnover and arachidonate release in FRTL-5 thyroid cells. J. Biol. Chem. 264:13029–13037.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4