A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/BF00966782 below:

Extracellular ATP stimulates inositol phospholipid turnover and calcium influx in C6 glioma cells

References
  1. Gordon, J. L. 1986. Extracellular ATP: effects, sources and fate. Biochem. J. 233:309–319.

    Google Scholar 

  2. Burnstock, G. 1990. Purinergic mechanisms. Ann. N.Y. Acad. Sci. 603:1–17.

    Google Scholar 

  3. El-Moatassim, C., Dornand, J., and Mani, J. C. 1992. Extracellular ATP and cell signalling. Biochim. Biophys. Acta 1134:31–45.

    Google Scholar 

  4. Berridge, M. C., and Irvine, R. F. 1989. Inositol phosphate and cell signalling. Nature 341:197–205.

    Google Scholar 

  5. Hallam, T. J., and Rink, T. J. 1989. Receptor-mediated Ca2+ entry: diversity of functin and mechanism. Trends Pharmacol. Sci. 10:8–10.

    Google Scholar 

  6. Kuno, N., and Gardner, P. 1987. Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature 326:301–304.

    Google Scholar 

  7. Putney, J. W. 1986. A model for receptor-regulated calcium entry. Cell Calcium 7:1–12.

    Google Scholar 

  8. Putney, J. W. 1987. Formation and actions of calcium-mobilizing messenger, inositol 1,4,5-triphosphate. Am. J. Physiol. 252:G149–157.

    Google Scholar 

  9. Lin, W.-W., Lee, C. Y., and Chuang, D.-M. 1990. Comparative studies of phosphoinositide hydrolysis induced by endothelin-related peptides in cultured cerebellar astrocytes, C6-glioma and cerebellar granule cells. Biochem. Biophys. Res. Commun. 168:512–519.

    Google Scholar 

  10. Berridge, M. J., Downes, C. P., and Hanley, M. R. 1982. Lithium amplifies agonist-dependent phosphatidyl-inositol responses in brain and salivary glands. Biochem. J. 206:587–595.

    Google Scholar 

  11. Grynkiewicz, G., Poenie, M. and Tsien, R. Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450.

    Google Scholar 

  12. Lin, W.-W., and Chuang, D.-M. 1992. Potentiation by Ca2+ ionophores and inhibition by extracellular KCl of endothelin-induced phosphoinositide turnover in C6 glioma cells. Neurochem. Int. 21:293–301.

    Google Scholar 

  13. Hoiting, B., Molleman, A., Nelemans, A., and Hertog, A. D. 1990. P2-purinoceptor-activated membrane currents and inositol tetrakisphosphate formation are blocked by suramin. Eur. J. Pharmacol. 181:127–131.

    Google Scholar 

  14. Downes, C. P. 1988. Inositol phosphates: a family of signal molecules? Trends Neurosci. 11:336–339.

    Google Scholar 

  15. Benham, C. D., and Tsien, R. W. 1987. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature 328:275–278.

    Google Scholar 

  16. Nakazawa, K., and Matsuki, N. 1987. Adenosine triphosphate-activated inward current in isolated smooth muscle from rat vas deferens. Pflugers Arch. 409:644–646.

    Google Scholar 

  17. Friel, D. D. 1988. An ATP-sensitive conductance in single smooth muscle cells from the rat vas deferens. J. Physiol. 401:361–380.

    Google Scholar 

  18. Hume, R. I., and Hong, M. G. 1986. Excitatory action of ATP on embryonic chick muscle. J. Neurosci. 6:681–690.

    Google Scholar 

  19. Friel, D. D., and Bean, B. P. 1988. Two ATP-activated conductances in bullfrog atrial cells. J. Gen. Physiol. 91:1–27.

    Google Scholar 

  20. Krishtal, O. A., Marchenko, S. M., and Pidoplichko, V. I. 1983. Receptor for ATP in the membrane of mammalian sensory neurons. Neurosci. Lett. 35:41–45.

    Google Scholar 

  21. Bean, B. P. 1990. ATP-activated channels in rat and bullfrog sensory neurons: concentration dependence and kinetics. J. Neurosci. 10:1–10.

    Google Scholar 

  22. Glaum, S. R., Holzwarth, J. A., and Miller, R. J. 1990. Glutamate receptors activate Ca2+ mobilization and Ca2+ influx into astrocytes. Proc. Natl. Acad. Sci. USA 87:3454–3458.

    Google Scholar 

  23. Diamant, S., and Atlas, D. 1989. Potentiation of [3H]inositol phosphate formation by receptor activation and membrane depolarization in brain cortical slices (l). Brain Res. 503:55–61.

    Google Scholar 

  24. Kendall, D. A., and Nahorski, S. R. 1984. Inositol phospholipid hydrolysis in rat cerebral cortical slices. II. Calcium requirement. J. Neurochem. 42:1388–1394.

    Google Scholar 

  25. Lin, W. W., Kiang, J. G., and Chuang, D.-M. 1992. Pharmacological characterization of endothelin-stimulated phosphoinositide breakdown and cytosolic free Ca2+ rise in C6 glioma cells. J. Neurosci. 12:1077–1085.

    Google Scholar 

  26. Gusovsky, F., Hollingsworth, E. B., and Daly, J. W. 1987. Stimulation of phosphoinositide breakdown in brain synaptoneurosomes by agents that activate sodium influx: antagonism by tetrodotoxin, saxitoxin and cadmium. Mol. Pharmacol. 32:479–487.

    Google Scholar 

  27. McDonough, P. M., Goldstein, D., and Brown, J. H. 1988. Elevation of cytoplasmic calcium concentration stimulates hydrolysis of phosphatidylinositol bisphosphate in chick heart cells: effect of sodium channel activators. Mol. Pharmacol. 33:310–315.

    Google Scholar 

  28. Benuck, M., Reith, M. E. A., and Lajtha, A. 1989. Evidence for the involvement of Na+/Ca++ exchange in the stimulation of inositol phospholipid hydrolysis by sodium channel activation and depolarization. Eur. J. Pharmacol. 159:187–190.

    Google Scholar 

  29. Guiramand, J., Vignes, M., Mayat, E., Lebrun, F., Sassetti, I., and Recasens, M. 1991. A specific transduction mechanism for the glutamate action on phosphoinositide metabolism via the quisqualate metabotropic receptor in rat brain synaptoneurosomes: I. External Na+ requirement. J. Neurochem. 57:1488–1500.

    Google Scholar 

  30. Dahlquist, R. 1974. Relationship of uptake of sodium and45calcium to ATP-induced histamine release from rat mast cells. Acta Pharmacol. Toxicol. 35:11–22.

    Google Scholar 

  31. Steinberg, T. H., and Silverstein, S. C. 1987. Extracellular ATP4-promotes cation fluxes in the J774 mouse macrophage cell line. J. Biol. Chem. 262:3118–3122.

    Google Scholar 

  32. Weisman, G. A., Dunn, S. D., De, B. K., Kitagawa, T., and Friedberg, I. 1984. Cellular responses to external ATP which precede an increase in nucleotide permeability in transformed cells. J. Cell Physiol. 119:211–219.

    Google Scholar 

  33. Gonzalez, F. A., Wang, D., Huang, N., and Heppel, L. A. 1989. Two distinct receptors for ATP can be distinguished in Swiss 3T6 mouse fibroblasts by their desensitization. Biochem. Biophys. Res. Commun. 164:706–713.

    Google Scholar 

  34. Pianet, J., Merle, M., and Labouesse, J. 1989. ADP and, indirectly, ATP are potent inhibitors of cAMP production in intact isoproterenol-stimulated C6 glioma cells. Biochem. Biophys. Res. Commun. 163:1150–1157.

    Google Scholar 

  35. Linden, J., and Delahunty, T. M. 1989. Receptors that inhibit phosphoinositide breakdown. Trends Pharmacol. Sci. 10:114–120.

    Google Scholar 

  36. El-Etr, M., Marin, P., Tence, M., Delumean, J. C., Cordier, J., Glowinski, J., and Premont, J. 1992. 2-Chloroadenosine potentiates the α1-adrenergic activation of phospholipase C through a mechanism involving arachidonic acid and glutamate in striatal astrocytes. J. Neurosci. 12:1363–1369.

    Google Scholar 

  37. Okajima, F., Sato, K., Nazarea, M., Sho, K., and Kondo, Y. 1989. A permissive role of pertussis toxin substrate G-protein in P2-purinergic stimulation of phosphoinositide turnover and arachidonate release in FRTL-5 thyroid cells. J. Biol. Chem. 264:13029–13037.

    Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4