A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/BF00583675 below:

Bacterial interactions with chromate | Antonie van Leeuwenhoek

  • Aislabie J & Loutit MW (1984) The effect of effluent high in chromium on marine sediment aerobic heterotrophic bacteria. Marine Environ. Res. 13: 69–79

    Google Scholar 

  • Ajmal M, Nomani AA & Ahmad A (1984) Acute toxicity of chrome electroplating wastes to microorganisms: Adsorption of chromate and chromium (VI) on a mixture of clay and sand. Water Air Soil Pollut. 23: 119–127

    Google Scholar 

  • American Petroleum Institute (1982) The Sources, Chemistry, Fate and Effects of Chromium in Aquatic Environment. American Petroleum Institute, Washington, D.C.

    Google Scholar 

  • Babich H, Schiffenbauer M & Stotzky G (1982) Comparative toxicity of trivalent and hexavalent chromium to fungi. Bull. Environ. Contam. Toxicol. 28: 452–459

    Google Scholar 

  • Beveridge TJ, Forsberg CW & Doyle RJ (1982) Major sites of metal binding inBacillus licheniformis walls. J. Bacteriol. 150: 1438–1448

    Google Scholar 

  • Bidstrup PL & Case RAM (1956) Carcinoma of the lung in workmen in the bichromate industry in Great Britain. Br. J. Ind. Med. 13: 260–264

    Google Scholar 

  • Bopp LH, Chakrabarty AM & Ehrlich HL (1983) Chromate resistance plasmid inPseudomonas fluorescens. J. Bacteriol. 155: 1105–1109

    Google Scholar 

  • Bopp LH & Ehrlich HL (1988) Chromate resistance and reduction inPseudomonas fluorescens LB300. Arch. Microbiol. 150: 426–431

    Google Scholar 

  • Cary EW (1982) Chromium in air, soil and natural waters. In: Langard S (Ed) Biological and Environmental Aspects of Chromium (pp 49–64). Elsevier, Amsterdam

    Google Scholar 

  • Cervantes C & Ohtake H (1988) Plasmid-determined resistance to chromate inPseudomonas aeruginosa. FEMS Microbiol. Lett. 56: 173–176

    Google Scholar 

  • Cervantes C, Ohtake H, Chu L, Misra TK & Silver S (1990) Cloning, nucleotide sequence and expression of the chromate resistance determinant ofPseudomonas aeruginosa plasmid pUM505. J. Bacteriol. 172: 287–291

    Google Scholar 

  • Cervantes C & Silver S (1990) Inorganic cation and anion transport systems ofPseudomonas. In: Silver S, Chakrabarty AM, Iglewski B & Kaplan S (Eds)Pseudomonas: Biotransformations, Pathogenicity and Evolving Biotechnology (pp 359–372). American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Cervantes-Vega C, Chávez J, Córdova NA, de laMora P & Velasco JA (1986) Resistance to metals byPseudomonas aeruginosa clinical isolates. Microbios 48: 159–163

    Google Scholar 

  • Drucker H, Garland TR & Wildung RE (1982) Metabolic response of microbiota to chromium and other metals. In: Kharasch N (Ed) Trace Metals in Health and Disease (pp 1–19). Raven Press, New York.

    Google Scholar 

  • Efstathiou JD & McKay LL (1977) Inorganic salts resistance associated with a lactose-fermenting plasmid inStreptococcus lactis. J. Bacteriol. 130: 257–265

    Google Scholar 

  • Elinder CG (1984) Metabolism and toxicity of metals. In: Nriagu JO (Ed) Changing Metal Cycles and Human Health (pp 265–274). Springer-Verlag, Berlin

    Google Scholar 

  • Enterline PE (1974) Respiratory cancer among chromate workers. J. Occup. Med. 16: 523–526

    Google Scholar 

  • Gruber JE & Jennette KW (1978) Metabolism of the carcinogen chromate by rat liver microsomes. Biochem. Biophys. Res. Commun. 82: 700–706

    Google Scholar 

  • Gvozdyak PL, Mogilavich NF, Rylskii AF & Grishchenko NI (1986) Reduction of hexavalent chromium by collection strains of bacteria. Mikrobiologiya 55: 962–965

    Google Scholar 

  • Horitsu H, Futo S, Miyazawa Y, Ogai S & Kawai K (1987) Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerantPseudomonas ambigua G-1. Agric. Biol. Chem. 51: 2417–2420

    Google Scholar 

  • Horitsu H, Futo S, Ozawa K & Kawai K (1983) Comparison of characteristics of hexavalent chromium tolerant bacterium,Pseudomonas ambigua G-1, and its hexavalent chromium-sensitive mutant. Agric. Biol. Chem. 47: 2907–2908

    Google Scholar 

  • Ishibashi Y, Cervantes C & Silver S (1990) Chromium reduction inPseudomonas putida. Appl. Environ. Microbiol. 56: 2268–2270

    Google Scholar 

  • Komori K, Wang P, Rivas A, Toda K & Ohtake H (1990) Biological removal of toxic chromium using anEnterobacter cloacae strain that reduces chromate under anaerobic conditions. Biotechnol. Bioeng. 35: 951–954

    Google Scholar 

  • Kvasnikov EI, Stepanyuk VV, Klushnikova TM, Serpokrylov NS, Simonova GA, Kasatkina TP & Panchenko LP (1985) A new chromium-reducing gram variable bacterium with mixed type of flagellation. Mikrobiologiya 54: 83–88

    Google Scholar 

  • Lebedeva EV & Lyalikova NN (1979) Reduction of crocoite byPseudomonas chromatophila sp. nov. Mikrobiologiya 48: 517–522

    Google Scholar 

  • Levis AG & Bianchi V (1982) Mutagenic and cytogenetic effects of chromium compounds. In: Langard S (Ed) Biological and Environmental Aspects of Chromium (pp 171–208). Elsevier, Amsterdam

    Google Scholar 

  • Luli GW, Talnagi JW, Strohl WR & Pfister RM (1983) Hexavalent chromium-resistant bacteria isolated from river sediments. Appl. Environ. Microbiol. 46: 846–854

    Google Scholar 

  • Maeda Y, Shoji Y, Yoneda A & Azumi T (1984) Preliminary studies on treatment of chromium tannery waste sludge by anaerobic digestion. J. Ferment. Technol. 62: 421–427

    Google Scholar 

  • Mertz W (1969) Chromium occurrence and function in biological systems. Physiol. Rev. 49: 163–239

    Google Scholar 

  • National Academy of Sciences (1980) Drinking Water and Health. Safe Drinking Water Committee, Vol 3 (pp 364–369). National Academy Press, Washington, D.C.

    Google Scholar 

  • National Research Council (1976) Effects of Chromium in the Canadian Environment. Associate Committee on Scientific Criteria for Environment, NRCC No. 15017, Ottawa

    Google Scholar 

  • Nies A, Nies DH & Silver S (1989) Cloning and expression of plasmid genes encoding resistance to chromate and cobalt inAlcaligenes eutrophus. J. Bacteriol. 171: 5065–5070

    Google Scholar 

  • Nies A, Nies DH & Silver S (1990) Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant fromAlcaligenes eutrophus. J. Biol. Chem. 265: 5648–5653

    Google Scholar 

  • Nies DH & Silver S (1989) Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt inAlcaligenes eutrophus. J. Bacteriol. 171: 896–900

    Google Scholar 

  • Nishioka H (1975) Mutagenic activities of metal compounds in bacteria. Mutation Res 31: 185–189

    Google Scholar 

  • Norris PR & Kelly DP (1979) Accumulation of metals by bacteria and yeasts. Dev. Ind. Microbiol. 20: 299–308

    Google Scholar 

  • Offenbacher EG & Pi-Sunyer FX (1988) Chromium in human nutrition. Ann. Rev. Nutr. 8: 543–563

    Google Scholar 

  • Ohtake H, Cervantes C & Silver S (1987) Decreased chromate uptake inPseudomonas fluorescens carrying a chromate resistance plasmid. J. Bacteriol. 169: 3853–3856

    Google Scholar 

  • Ohtake H, Komori K, Cervantes C & Toda K (1990) Chromate resistance in chromate-reducing strain ofEnterobacter cloacae. FEMS Microbiol. Lett. 67: 85–88

    Google Scholar 

  • Petrilli FL & deFlora S (1977) Toxicity and mutagenicity of hexavalent chromium inSalmonella typhimurium. Appl. Environ. Microbiol. 33: 805–809

    Google Scholar 

  • Romanenko VI & Korenkov VW (1977) A pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Mikrobiologiya 46: 414–417

    Google Scholar 

  • Ross DS, Sjogren RE & Bartlett RJ (1981) Behavior of chromium in soils. J. Environ. Qual. 10: 145–148

    Google Scholar 

  • Schroeder HA (1968) The role of chromium in mammalian nutrition. Am. J. Clin. Nutr. 21: 230–244

    Google Scholar 

  • Schroeder DC & Lee GF (1975) Potential transformations of chromium in natural waters. Water Air Soil Pollut. 4: 355–365

    Google Scholar 

  • Silver S & Misra TK (1988) Plasmid-mediated heavy metal resistances. Ann. Rev. Microbiol. 42: 717–743

    Google Scholar 

  • Stern RM (1982) Chromium compounds: Production and occupational exposure. In: Langard S (Ed) Biological and Environmental Aspects of Chromium (pp 5–47). Elsevier, Amsterdam

    Google Scholar 

  • Strandberg GW, ShumateII SE & ParrottJr JR (1981) Microbial cells as biosorbents for heavy metals: Accumulation of uranium bySaccharomyces cerevisiae andPseudomonas aeruginosa. Appl. Environ. Microbiol. 41: 237–245

    Google Scholar 

  • Summers AO & Jacoby GA (1978) Plasmid-determined resistance to boron and chromium compounds inPseudomonas aeruginosa. Antimicrob. Agents Chemother. 13: 637–640

    Google Scholar 

  • Summers AO, Jacoby GA, Swartz MN, McHugh G & Sutton L (1978) Metal cation and oxyanion resistances in plasmids of gram negative bacteria. In: Schlessinger D (Ed) Microbiology (pp 128–131). American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Underwood EJ (1971) Chromium. In: Underwood EJ (Ed) Trace Elements in Human and Animal Nutrition (pp 253–266). Academic Press, New York

    Google Scholar 

  • Venitt S & Levy LS (1974) Mutagenicity of chromate in bacteria and its relevance to chromate carcinogenesis. Nature 250: 493–495

    Google Scholar 

  • Wang PC, Mori T, Komori K, Sasatsu M, Toda K & Ohtake H (1989) Isolation and characterization of anEnterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl. Environ. Microbiol. 55: 1665–1669

    Google Scholar 

  • Wang PC, Mori T, Toda K & Ohtake H (1990) Membrane-associated chromate reductase activity fromEnterobacter cloacae. J. Bacteriol. 172: 1670–1672

    Google Scholar 

  • Williams JW & Silver S (1984) Bacterial resistance and detoxification of heavy metals. Enzyme Microb. Technol. 6: 530–536

    Google Scholar 

  • Wong PTS & Trevors JT (1988) Chromium toxicity to algae and bacteria. In: Nriagu JO & Nieboer E (Eds) Chromium in the Natural and Human Environments (pp 305–315). Wiley, New York

    Google Scholar 

  • Zajic JE & Chiu YS (1972) Recovery of heavy metals by microbes. Dev. Ind. Microbiol. 13: 91–100

    Google Scholar 

  • Zibilske LM & Wagner GH (1982) Bacterial growth and fungal genera distribution in soil amended with sewage sludge containing cadmium, chromium and copper. Soil. Sci. 134: 364–370

    Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4