Aickin CC, Thomas RC (1977) An investigation of the ionic mechanism of intracellular pH regulation in mouse soleus muscle fibres. J Physiol 273: 295–316
Baker PF, Blaustein MP, Hodgkin AL, Steinhardt RA (1969) The influence of calcium on sodium efflux in squid axons. J Physiol 200: 431–458
Bers DM (1981) A simple method for the calculation of free [Ca] in EGTA buffered Ca solutions. J Physiol 312: 2P-3P
Bers DM, Ellis D (1981) Changes of intracellular calcium and sodium activities in sheep heart Purkinje fibres measured with ion-selective micro-electrodes. J Physiol 310: 73P-74P
Bers DM, Philipson KD, Nishimoto AY (1980) Sodium-calcium exchange and sidedness of isolated cardiac sarcolemmal vesicles. Biochim Biophys Acta 601: 358–371
Carafoli E, Crompton M (1978) The regulation of intracellular calcium. In: Bronner F, Kleinzeller A (eds) Current topics in membranes and transport. Academic Press, New York, pp 151–216
Caroni P, Carafoli E (1981) The Ca2+-pumping ATPase of heart sarcolemma: Characterization, calmodulin dependence and partial purification. J Biol Chem 256: 3263–3270
Chapman RA (1979) Excitation-contraction coupling in cardiac muscle. Prog Biophys Mol Biol 35: 1–52
Chapman RA, Cigada C, Coray A, McGuigan JAS (1981) Sodium withdrawal contractures in mammalian ventricular muscle. J Physiol 318: 4P-5P
Chapman RA, Miller DJ (1974) The effects of caffeine on the contraction of the frog heart. J Physiol 242: 589–613
Chapman RA, Tunstall J (1980) The interaction of sodium and calcium ions at the cell membrane and the control of contractile strength in frog atrial muscle. J Physiol 305: 109–123
Coraboeuf E, Gautier P, Guiraudou P (1981) Potential and tension changes induced by sodium removal in dog Purkinje fibres: role of an electrogenic sodium-calcium exchange. J Physiol 311: 605–622
Coray A, Fry CH, Hess P, McGuigan JAS, Weingart R (1980) Resting Ca in sheep cardiac tissue and frog skeletal muscle measured with ion-selective microelectrodes. J Physiol 305:60P
Dahl G, Isenberg G (1980) Decoupling of heart muscle cells: Correlation with increased cytoplasmic calcium activity and with changes of nexus ultrastructure. J Membr Biol 53: 63–75
Deitmer JW, Ellis D (1978a) Changes in the intracellular sodium activity of sheep heart Purkinje fibres produced by calcium and other divalent cations. J Physiol 277: 437–453
Deitmer JW, Ellis D (1978b) The intracellular sodium activity of cardiac Purkinje fibres during inhibition and reactivation of the Na−K pump. J Physiol 284: 241–259
Deitmer JW, Ellis D (1980) Interactions between the regulation of the intracellular pH and sodium activity of sheep cardiac Purkinje fibres. J Physiol 304: 471–488
Ellis D (1977) The effects of external cations and ouabain on the sodium activity in sheep heart Purkinje fibres. J Physiol 273: 211–240
Ellis D, Deitmer JW (1978) The relationship between intra- and extracellular sodium activity of sheep heart Purkinje fibres during inhibition of the Na−K pump. Pflügers Arch 377: 209–215
Ellis D, Thomas RC (1976) Direct measurement of the intracellular pH of mammalian cardiac muscle. J Physiol 262: 755–771
Fabiato A, Fabiato F (1978a) Calcium induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat and frog hearts and from fetal and newborn rat ventricles. Ann NY Acad Sci 308: 491–522
Fabiato A, Fabiato F (1978b) Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J Physiol 276: 233–255
Glitsch HG, Reuter H, Scholtz H (1970) The effect of the internal sodium concentration on calcium fluxes in isolated guinea pig auricles. J Physiol 209: 25–43
Hess P, Weingart R (1980) Intracellular free calcium modified by pH i in sheep cardiac Purkinje fibres. J Physiol 307: 60P-61P
Horackova M, Vassort G (1979) Sodium-calcium exchange in regulation of cardiac contractility: Evidence for an electrogenic, voltage dependent mechanism. J Gen Physiol 703: 403–424
Langer GA (1964) Kinetic studies of calcium distribution in ventricular muscle of the dog. Circ Res 15: 393–405
Lea TJ, Ashley CC (1981) Carbon dioxide or bicarbonate ions release Ca2+ from internal stores in crustacean myofibrillar bundles. J Membr Biol 61: 115–125
Lee CO, Uhm DY, Dresdner K (1980) Sodium-calcium exchange in rabbit heart muscle cells: Direct measurement of sarcoplasmic Ca2+ activity. Science 209: 699–701
Lee KS, Klaus W (1971) The subcellular basis for the mechanism of inotropic action of cardiac glycosides. Pharmacol Rev 23: 193–261
Lüttgau HC, Niedergerke R (1958) The antagonism between Ca and Na ions on the frog heart. J Physiol 143: 486–505
Marban E, Rink TJ, Tsien RW, Tsien TY (1980) Free calcium in heart muscle at rest and during contraction measured with Ca2+-sensitive electrodes. Nature 286: 845–850
Meech RW, Thomas RC (1977) The effect of calcium injection on the intracellular sodium and pH of snail neurones. J Physiol 265: 867–879
Mullins LJ (1979) The generation of electric currents in cardiac fibres by Na/Ca exchange. Am J Physiol 236: C103-C110
Niedergerke R (1963) Movements of Ca in frog ventricles at rest and during contractures. J Physiol 167: 515–550
Oehme M, Kessler M, Simon W (1976) Neutral carrier Ca2+-microelectrode. Chimia 30: 204–206
Pitts BJR (1979) Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles. J Biol Chem 254: 6232–6235
Reeves JP, Sutko JL (1980) Sodium-calcium exchange activity generates a current in cardiac membrane vesicles. Science 208: 1461–1464
Reuter H (1981) Na−Ca countertransport in cardiac muscle. In: Martinosi A (ed) Membranes and transport. Academic Press, London (in press)
Reuter H, Seitz N (1968) The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol 195: 451–470
Sheu SS, Fozzard HA (1981) The stoichiometry of Na/Ca exchange in the mammalian myocardium. Biophys J 33: 11a
Solaro RJ, Wise RM, Shiner JS, Briggs FN (1974) Calcium requirements for cardiac myofibrillar activation. Circ Res 34: 525–530
Steiner RA, Oehme M, Ammann D, Simon W (1979) Neutral carrier sodium ion-selective microelectrode for intracellular studies. Anal Chem 51: 351–353
Thomas RC (1977) The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones. J Physiol 273: 317–338
Thomas, RC (1978) Ion selective intracellular microelectrodes. Academic Press, London
Tillisch JH, Langer GA (1974) Myocardial mechanical responses and ionic exchange in high sodium perfusate. Circ Res 34: 40–50
Tsien RY, Rink TJ (1980) Neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium. Biochim Biophys Acta 599: 623–638
Vercesi A, Reynafarje B, Lehninger AL (1978) Stoichiometry of H+ ejection and Ca2+ uptake coupled to electron transport in rat heart mitochondria. J Biol Chem 253: 6379–6385
Weber A, Herz R (1968) The relationship between caffeine contracture of intact muscle and the effect of caffeine on sarcoplasmic reticulum. J Gen Physiol 52: 750–759
Wendt IR, Langer GA (1977) The sodium-calcium relationship in mammalian myocardium. Effects of sodium deficient perfusion on calcium fluxes. J Mol Cell Cardiol 9: 551–564
Wilbrandt W, Koller H (1948) Die Calciumwirkung am Froschherz als Funktion des lonengleichgewichts zwischen Zellmembran und Umgebung. Helv Physiol Pharmacol Acta 6: 208–221
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4