A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/978-3-7643-8340-4_6 below:

Heavy Metal Toxicity and the Environment

  • Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon, Oxford

    Google Scholar 

  • Duffus JH (2002) Heavy metals—a meaningless term? Pure Appl Chem 74:793–807

    Article  CAS  Google Scholar 

  • Bradl H (2002) Heavy metals in the environment: origin, interaction and remediation, vol 6. Academic, London

    Google Scholar 

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    Article  PubMed  CAS  Google Scholar 

  • Goyer RA (2001) Toxic effects of metals. In: Klaassen CD (ed) Cassarett and Doull’s toxicology: the basic science of poisons. McGraw-Hill, New York, NY, pp 811–867

    Google Scholar 

  • Herawati N, Suzuki S, Hayashi K, Rivai IF, Koyoma H (2000) Cadmium, copper and zinc levels in rice and soil of Japan, Indonesia and China by soil type. Bull Env Contam Toxicol 64:33–39

    Article  CAS  Google Scholar 

  • Shallari S, Schwartz C, Hasko A, Morel JL (1998) Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci Total Environ 209:133–142

    PubMed  CAS  Google Scholar 

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49

    Article  CAS  Google Scholar 

  • Arruti A, Fernández-Olmo I, Irabien A (2010) Evaluation of the contribution of local sources to trace metals levels in urban PM2.5 and PM10 in the Cantabria region (Northern Spain). J Environ Monit 12:1451–1458

    Article  PubMed  CAS  Google Scholar 

  • Sträter E, Westbeld A, Klemm O (2010) Pollution in coastal fog at Alto Patache, Northern Chile. Environ Sci Pollut Res Int 17:1563–1573

    Article  PubMed  CAS  Google Scholar 

  • Pacyna JM (1996) Monitoring and assessment of metal contaminants in the air. In: Chang LW, Magos L, Suzuli T (eds) Toxicology of metals. CRC, Boca Raton, FL, pp 9–28

    Google Scholar 

  • WHO/FAO/IAEA (1996) Trace elements in human nutrition and health. World Health Organization, Geneva

    Google Scholar 

  • Kabata-Pendia A (2001) Trace elements in soils and plants, 3rd edn. CRC, Boca Raton, FL

    Google Scholar 

  • Hamelink JL, Landrum PF, Harold BL, William BH (1994) Bioavailability: physical, chemical, and biological interactions. CRC, Boca Raton, FL

    Google Scholar 

  • Verkleji JAS (1993) The effects of heavy metals stress on higher plants and their use as biomonitors. In: Markert B (ed) Plant as bioindicators: indicators of heavy metals in the terrestrial environment. VCH, New York, NY, pp 415–424

    Google Scholar 

  • Stern BR (2010) Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations. Toxicol Environ Health A 73:114–127

    Article  CAS  Google Scholar 

  • Harvey LJ, McArdle HJ (2008) Biomarkers of copper status: a brief update. Br J Nutr 99:S10–S13

    PubMed  CAS  Google Scholar 

  • ATSDR (2002) Toxicological profile for copper. Centers for Disease Control, Agency for Toxic Substances and Disease Registry, Atlanta, GA

    Google Scholar 

  • Tchounwou P, Newsome C, Williams J, Glass K (2008) Copper-induced cytotoxicity and transcriptional activation of stress genes in human liver carcinoma cells. Metal Ions Biol Med 10:285–290

    Google Scholar 

  • Chang LW, Magos L, Suzuki T (1996) Toxicology of metals. CRC, Boca Raton, FL

    Google Scholar 

  • Wang S, Shi X (2001) Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem 222:3–9

    Article  PubMed  CAS  Google Scholar 

  • Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512

    Article  PubMed  CAS  Google Scholar 

  • Yedjou CG, Tchounwou PB (2006) Oxidative stress in human leukemia cells (HL-60), human liver carcinoma cells (HepG2) and human Jerkat-T cells exposed to arsenic trioxide. Metal Ions Biol Med 9:298–303

    CAS  Google Scholar 

  • Yedjou GC, Tchounwou PB (2007) In vitro cytotoxic and genotoxic effects of arsenic trioxide on human leukemia cells using the MTT and alkaline single cell gel electrophoresis (comet) assays. Mol Cell Biochem 301:123–130

    Article  PubMed  CAS  Google Scholar 

  • Tchounwou PB, Centeno JA, Patlolla AK (2004) Arsenic toxicity, mutagenesis and carcinogenesis—a health risk assessment and management approach. Mol Cell Biochem 255:47–55

    Article  PubMed  CAS  Google Scholar 

  • Tchounwou PB, Ishaque A, Schneider J (2001) Cytotoxicity and transcriptional activation of stress genes in human liver carcinoma cells (HepG2) exposed to cadmium chloride. Mol Cell Biochem 222:21–28

    Article  PubMed  CAS  Google Scholar 

  • Patlolla A, Barnes C, Field J, Hackett D, Tchounwou PB (2009) Potassium dichromate-induced cytotoxicity, genotoxicity and oxidative stress in human liver carcinoma (HepG2) cells. Int J Environ Res Public Health 6:643–653

    Article  PubMed  CAS  Google Scholar 

  • Patlolla A, Barnes C, Yedjou C, Velma V, Tchounwou PB (2009) Oxidative stress, DNA damage and antioxidant enzyme activity induced by hexavalent chromium in Sprague Dawley rats. Environ Toxicol 24:66–73

    Article  PubMed  CAS  Google Scholar 

  • Yedjou GC, Tchounwou PB (2008) N-acetyl-cysteine affords protection against lead-induced cytotoxicity and oxidative stress in human liver carcinoma (HepG2) cells. Int J Environ Res Public Health 4:132–137

    Article  Google Scholar 

  • Tchounwou PB, Yedjou CG, Foxx D, Ishaque A, Shen E (2004) Lead-induced cytotoxicity and transcriptional activation of stress genes in human liver carcinoma cells (HepG2). Mol Cell Biochem 255:161–170

    Article  PubMed  CAS  Google Scholar 

  • Sutton DJ, Tchounwou PB (2007) Mercury induces the externalization of phosphatidylserine in human proximal tubule (HK-2) cells. Int J Environ Res Public Health 4:138–144

    Article  PubMed  CAS  Google Scholar 

  • Sutton D, Tchounwou PB, Ninashvili N, Shen E (2002) Mercury induces cytotoxicity, and transcriptionally activates stress genes in human liver carcinoma cells. Int J Mol Sci 3: 965–984

    Article  CAS  Google Scholar 

  • ATSDR (2000) Toxicological profile for arsenic TP-92/09. Center for Disease Control, Agency for Toxic Substances and Disease Registry, Atlanta, GA

    Google Scholar 

  • Tchounwou PB, Wilson B, Ishaque A (1999) Important considerations in the development of public health advisories for arsenic and arsenic-containing compounds in drinking water. Rev Environ Health 14:211–229

    PubMed  CAS  Google Scholar 

  • Centeno JA, Tchounwou PB, Patlolla AK, Mullick FG, Murakat L, Meza E, Gibb H, Longfellow D, Yedjou CG (2005) Environmental pathology and health effects of arsenic poisoning: a critical review. In: Naidu R, Smith E, Smith J, Bhattacharya P (eds) Managing arsenic in the environment: from soil to human health. CSIRO, Adelaide

    Google Scholar 

  • Rousselot P, Laboume S, Marolleau JP, Larghero T, Noguera ML, Brouet JC, Fermand JP (1999) Arsenic trioxide and melarsoprol induce apoptosis in plasma cell lines and in plasma cells from myeloma patients. Cancer Res 59:1041–1048

    PubMed  CAS  Google Scholar 

  • NRCC (1978) Effects of arsenic in the environment. National Research Council of Canada, Ottawa, pp 1–349

    Google Scholar 

  • Morton WE, Dunnette DA (1994) Health effects of environmental arsenic. In: Nriagu JO (ed) Arsenic in the environment part II: human health and ecosystem effects. Wiley, New York, NY, pp 17–34

    Google Scholar 

  • National Research Council (2001) Arsenic in drinking water. 2001 Update. Online available at http://www.nap.edu/books/0309076293/html/

  • Tchounwou PB, Centeno JA (2008) Toxicologic pathology. In: Gad SC (ed) Handbook of pre-clinical development. Wiley, New York, NY, pp 551–580

    Chapter  Google Scholar 

  • Tchounwou PB, Patlolla AK, Centeno JA (2003) Carcinogenic and systemic health effects associated with arsenic exposure—a critical review. Toxicol Pathol 31:575–588

    PubMed  CAS  Google Scholar 

  • Tchounwou PB, Wilson BA, Abdelgnani AA, Ishaque AB, Patlolla AK (2002) Differential cytotoxicity and gene expression in human liver carcinoma (HepG2) cells exposed to arsenic trioxide and monosodium acid methanearsonate (MSMA). Int J Mol Sci 3:1117–1132

    Article  CAS  Google Scholar 

  • Yedjou GC, Moore P, Tchounwou PB (2006) Dose and time dependent response of human leukemia (HL-60) cells to arsenic trioxide. Int J Environ Res Public Health 3:136–140

    Article  PubMed  CAS  Google Scholar 

  • Chappell W, Beck B, Brown K, North D, Thornton I, Chaney R, Cothern R, Cothern CR, North DW, Irgolic K, Thornton I, Tsongas T (1997) Inorganic arsenic: a need and an opportunity to improve risk assessment. Environ Health Perspect 105:1060–1067

    Article  PubMed  CAS  Google Scholar 

  • Centeno JA, Gray MA, Mullick FG, Tchounwou PB, Tseng C (2005) Arsenic in drinking water and health issues. In: Moore TA, Black A, Centeno JA, Harding JS, Trumm DA (eds) Metal contaminants in New Zealand. Resolution, New Zealand, pp 195–219

    Google Scholar 

  • Abernathy CO, Liu YP, Longfellow D, Aposhian HV, Beck B, Fowler B, Goyer R, Menzer R, Rossman T, Thompson C, Waalkes R (1999) Arsenic: health effects, mechanisms of actions and research issues. Environ Health Perspect 107:593–597

    Article  PubMed  CAS  Google Scholar 

  • Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Rossman TG (1996) The carcinogenicity of arsenic. In: Chang LW, Magos L, Suzuki T (eds) Toxicology of metals, vol 1. CRC, Boca Raton, FL, pp 221–229

    Google Scholar 

  • Belton JC, Benson NC, Hanna ML, Taylor RT (1985) Growth inhibition and cytotoxic effects of three arsenic compounds on cultured Chinese hamster ovary cells. J Environ Sci Health A 20:37–72

    Article  Google Scholar 

  • Li JH, Rossman TC (1989) Inhibition of DNA ligase activity by arsenite: a possible mechanism of its comutagenesis. Mol Toxicol 2:1–9

    PubMed  CAS  Google Scholar 

  • Jha AN, Noditi M, Nilsson R, Natarajan AT (1992) Genotoxic effects of sodium arsenite on human cells. Mutat Res 284:215–221

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Speit G (1994) Comparative investigations of the genotoxic effects of metals in the single cell gel assay and the sister-chromatid exchange test. Environ Mol Mutagen 23:299–305

    Article  PubMed  CAS  Google Scholar 

  • Patlolla A, Tchounwou PB (2005) Cytogenetic evaluation of arsenic trioxide toxicity in Sprague-Dawley rats. Mutat Res—Genet Toxicol Environ Mutagen 587:126–133

    Article  CAS  Google Scholar 

  • Basu A, Mahata J, Gupta S, Giri AK (2001) Genetic toxicology of a paradoxical human carcinogen, arsenic: a review. Mutat Res 488:171–194

    Article  PubMed  CAS  Google Scholar 

  • Landolph JR (1989) Molecular and cellular mechanisms of transformation of C3H/10T1/2C18 and diploid human fibroblasts by unique carcinogenic, non-mutagenic metal compounds. a review. Biol Trace Elem Res 21:459–467

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Barrett JC, Tsutsui T (2002) Transformation by inorganic arsenic compounds of normal Syrian hamster embryo cells into a neoplastic state in which they become anchorage-independent and cause tumors in newborn hamsters. Int J Cancer 99:629–634

    Article  PubMed  CAS  Google Scholar 

  • Anderson D, Yu TW, Phillips BJ, Schmezer P (1994) The effect of various antioxidants and other modifying agents on oxygen radical-generated DNA damage in human lymphocytes in the comet assay. Mutat Res 307:261–271

    Article  PubMed  CAS  Google Scholar 

  • Saleha Banu B, Danadevi K, Jamil K, Ahuja YR, Visweswara Rao K, Ishap M (2001) In vivo genotoxic effect of arsenic trioxide in mice using comet assay. Toxicology 162:171–177

    Article  PubMed  CAS  Google Scholar 

  • Barrett JC, Lamb PW, Wang TC, Lee TC (1989) Mechanisms of arsenic-induced cell transformation. Biol Trace Elem Res 21:421–429

    Article  PubMed  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Dorsey WC (2003) Arsenic trioxide-induced transcriptional activation and expression of stress genes in human liver carcinoma cells (HepG2). Cell Mol Biol 49:1071–1079

    PubMed  CAS  Google Scholar 

  • Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP (1997) Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci USA 94:10907–10912

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Guyton KZ, Gorospe M, Xu Q, Lee JC, Holbrook NJ (1996) Differential activation of ERK, JNK/SAPK and P38/CSBP/RK map kinase family members during the cellular response to arsenite. Free Radic Biol Med 21:771–781

    Article  PubMed  CAS  Google Scholar 

  • Ludwig S, Hoffmeyer A, Goebeler M, Kilian K, Hafner H, Neufeld B, Han J, Rapp UR (1998) The stress inducer arsenite activates mitogen-activated protein kinases extracellular signal-regulated kinases 1 and 2 via a MAPK kinase 6/p38-dependent pathway. J Biol Chem 273:1917–1922

    Article  PubMed  CAS  Google Scholar 

  • Trouba KJ, Wauson EM, Vorce RL (2000) Sodium arsenite-induced dysregulation of proteins involved in proliferative signaling. Toxicol Appl Pharmacol 164:161–170

    Article  PubMed  CAS  Google Scholar 

  • Vogt BL, Rossman TG (2001) Effects of arsenite on p53, p21 and cyclin D expression in normal human fibroblasts—a possible mechanism for arsenite’s comutagenicity. Mutat Res 478:159–168

    Article  PubMed  CAS  Google Scholar 

  • Chen NY, Ma WY, Huang C, Ding M, Dong Z (2000) Activation of PKC is required for arsenite-induced signal transduction. J Environ Pathol Toxicol Oncol 19:297–306

    PubMed  CAS  Google Scholar 

  • Porter AC, Fanger GR, Vaillancourt RR (1999) Signal transduction pathways regulated by arsenate and arsenite. Oncogene 18:7794–7802

    Article  PubMed  CAS  Google Scholar 

  • Soignet SL, Frankel SR, Douer D, Tallman MS, Kantarjian H, Calleja E, Stone RM, Kalaycio M, Scheinberg DA, Steinherz P, Sievers EL, Coutré S, Dahlberg S, Ellison R, Warrell RP Jr (2001) United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J Clin Oncol 19:3852–3860

    PubMed  CAS  Google Scholar 

  • Murgo AJ (2001) Clinical trials of arsenic trioxide in hematologic and solid tumors: overview of the National Cancer Institute Cooperative Research and Development Studies. Oncologist 6:22–28

    Article  PubMed  CAS  Google Scholar 

  • Puccetti ES, Guller S, Orleth A, Bruggenolte N, Hoelzer D, Ottmann OG, Ruthardt M (2000) BCR-ABL mediates arsenic trioxide-induced apoptosis independently of its aberrant kinase activity. Cancer Res 60:3409–3413

    PubMed  CAS  Google Scholar 

  • Seol JG, Park WH, Kim ES, Jung CW, Hyun JM, Kim BK, Lee YY (1999) Effect of arsenic trioxide on cell cycle arrest in head and neck cancer cell-line PCI-1. Biochem Biophys Res Commun 265:400–404

    Article  PubMed  CAS  Google Scholar 

  • Alemany M, Levin J (2000) The effects of arsenic trioxide on human megakaryocytic leukemia cell lines with a comparison of its effects on other cell lineages. Leuk Lymphoma 38:153–163

    PubMed  CAS  Google Scholar 

  • Deaglio S, Canella D, Baj G, Arnulfo A, Waxman S, Malavasi F (2001) Evidence of an immunologic mechanism behind the therapeutic effects of arsenic trioxide on myeloma cells. Leuk Res 25:237–239

    Article  Google Scholar 

  • Tully DB, Collins BJ, Overstreet JD, Smith CS, Dinse GE, Mumtaz MM, Chapin RE (2000) Effects of arsenic, cadmium, chromium and lead on gene expression regulated by a battery of 13 different promoters in recombinant HepG2 cells. Toxicol Appl Pharmacol 168:79–90

    Article  PubMed  CAS  Google Scholar 

  • Lu T, Liu J, LeCluyse EL, Zhou YS, Cheng ML, Waalkes MP (2001) Application of cDNA microarray to the study of arsenic-induced liver diseases in the population of Guizhou, China. Toxicol Sci 59:185–192

    Article  PubMed  CAS  Google Scholar 

  • Harris CC (1991) Chemical and physical carcinogenesis: advances and perspectives. Cancer Res 51:5023s–5044s

    PubMed  CAS  Google Scholar 

  • Graham-Evans B, Colhy HHP, Yu H, Tchounwou PB (2004) Arsenic-induced genotoxic and cytotoxic effects in human keratinocytes, melanocytes, and dendritic cells. Int J Environ Res Public Health 1:83–89

    Article  PubMed  CAS  Google Scholar 

  • Stevens JJ, Graham B, Walker AM, Tchounwou PB, Rogers C (2010) The effects of arsenic trioxide on DNA synthesis and genotoxicity in human colon cancer cells. Int J Environ Res Public Health 7:2018–2032

    Article  PubMed  CAS  Google Scholar 

  • Walker AM, Stevens JJ, Ndebele K, Tchounwou PB (2010) Arsenic trioxide modulates DNA synthesis and apoptosis in lung carcinoma cells. Int J Environ Res Public Health 7: 1996–2007

    Article  PubMed  CAS  Google Scholar 

  • Yedjou CG, Tchounwou PB (2009) Modulation of p53, c-fos, RARE, cyclin A and cyclin D1 expression in human leukemia (HL-60) cells exposed to arsenic trioxide. Mol Cell Biochem 331:207–214

    Article  PubMed  CAS  Google Scholar 

  • Yedjou C, Sutton LM, Tchounwou PB (2008) Genotoxic mechanisms of arsenic trioxide effect in human Jurkat T-lymphoma cells. Metal Ions Biol Med 10:495–499

    Google Scholar 

  • Brown E, Yedjou C, Tchounwou PB (2008) Cytotoxicty and oxidative stress in human liver carcinoma cells exposed to arsenic trioxide. Metal Ions Biol Med 10:583–587

    Google Scholar 

  • Yedjou CG, Thuisseu L, Tchounwou C, Gomes M, Howard C, Tchounwou PB (2009) Ascorbic acid potentiation of arsenic trioxide anticancer activity against acute promyelocytic leukemia. Arch Drug Inf 2:59–65

    Article  PubMed  CAS  Google Scholar 

  • Yedjou C, Rogers C, Brown E, Tchounwou P (2008) Differential effect of ascorbic acid and N-acetyl-cysteine on arsenic trioxide-mediated oxidative stress in human leukemia (HL-60) cells. J Biochem Mol Toxicol 22:85–92

    Article  PubMed  CAS  Google Scholar 

  • Miller WH, Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanisms of action of arsenic trioxide. Cancer Res 62:3893–3903

    PubMed  CAS  Google Scholar 

  • Gesamp (1987) IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP joint group of experts on the scientific aspects of marine pollution: report of the seventeenth session, reports and studies No. 31. World Health Organization, Geneva, Switzerland

    Google Scholar 

  • Wilson DN (1988) Cadmium—market trends and influences. In: Cadmium association (ed) Cadmium 87, Proceedings of the 6th International Cadmium Conference, London, pp 9–16

    Google Scholar 

  • U.S. EPA (2006) Cadmium compounds. U.S. Environmental Protection Agency. Online available at http://www.epa.gov/ttnatw01/hlthef/cadmium.html

  • IARC (1993) Cadmium. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Paschal DC, Burt V, Caudill SP, Gunter EW, Pirkle JL, Sampson EJ, Miller DT, Jackson RJ (2000) Exposure of the U.S. population aged 6 years and older to cadmium: 1988–1994. Arch Environ Contam Toxicol 38:377–383

    Article  PubMed  CAS  Google Scholar 

  • ATSDR (2008) Draft toxicological profile for cadmium. Agency for Toxic Substances and Disease Registry, Atlanta, GA

    Google Scholar 

  • Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE, Williams DJ, Moore MR (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83

    Article  PubMed  CAS  Google Scholar 

  • Davison AG, Fayers PM, Taylor AJ, Venables KM, Darbyshire J, Pickering CA, Chettle DR, Franklin D, Guthrie CJ, Scott MC (1988) Cadmium fume inhalation and emphysema. Lancet 1:663–667

    Article  PubMed  CAS  Google Scholar 

  • Mascagni P, Consonni D, Bregante G, Chiappino G, Toffoletto F (2003) Olfactory function in workers exposed to moderate airborne cadmium levels. Neurotoxicology 24:717–724

    Article  PubMed  CAS  Google Scholar 

  • Åkesson A, Bjellerup P, Lundh T, Lidfeldt J, Nerbrand C, Samsioe G, Skerfving S, Vahter M (2006) Cadmium-induced effects on bone in a population-based study of women. Environ Health Perspect 114:830–834

    Article  PubMed  CAS  Google Scholar 

  • Gallagher CM, Kovach JS, Meliker JR (2008) Urinary cadmium and osteoporosis in U.S. women ≥50 years of age: NHANES 1988–1994 and 1999–2004. Environ Health Perspect 116:1338–1343

    Article  PubMed  CAS  Google Scholar 

  • Schutte R, Nawrot TS, Richart T, Thijs L, Vanderschueren D, Kuznetsova T, van Hecke E, Roels HA, Staessen JA (2008) Bone resorption and environmental exposure to cadmium in women: a population study. Environ Health Perspect 116:777–783

    Article  PubMed  CAS  Google Scholar 

  • Järup L, Berglund M, Elinder CG, Nordberg G, Vahter M (1998) Health effects of cadmium exposure—a review of the literature and a risk estimate. Scan J Work Environ Health 24(Suppl 1):1–51

    Google Scholar 

  • Wittman R, Hu H (2002) Cadmium exposure and nephropathy in a 28-year old female metals worker. Environ Health Perspect 110:1261–1266

    Article  PubMed  CAS  Google Scholar 

  • Becker K, Kaus S, Krause C, Lepom P, Schulz C, Seiwert M, Seifert B (2002) German Environmental Survey 1998 (GerES III): environmental pollutants in blood of the German population. Int J Hyg Environ Health 205:297–308

    Article  PubMed  Google Scholar 

  • Mannino DM, Holguin F, Greves HM, Savage-Brown A, Stock AL, Jones RL (2004) Urinary cadmium levels predict lower lung function in current and former smokers: data from the third national health and nutrition examination survey. Thorax 59:194–198

    Article  PubMed  CAS  Google Scholar 

  • Elinder CG, Järup L (1996) Cadmium exposure and health risks: recent findings. Ambio 25:370–373

    Google Scholar 

  • Baselt RC, Cravey RH (1995) Disposition of toxic drugs and chemicals in man, 4th edn. Year Book Medical Publishers, Chicago, IL, pp 105–107

    Google Scholar 

  • Baselt RC (2000) Disposition of toxic drugs and chemicals in man, 5th edn. Chemical Toxicology Institute, Foster City, CA

    Google Scholar 

  • Singhal RL, Merali Z, Hrdina PD (1976) Aspects of the biochemical toxicology of cadmium. Fed Proc 35:75–80

    PubMed  CAS  Google Scholar 

  • Waalkes MP (1995) Cadmium and carcinogenesis. In: Berthan G (ed) Handbook on metal–ligand interactions of biological fluids, vol 2. Dekker, New York, NY, pp 471–482

    Google Scholar 

  • Waalkes MP, Misra RR (1996) Cadmium carcinogenicity and genotoxicity. In: Chang LW, Magos L, Suzuli T (eds) Toxicology of metals. CRC, Boca Raton, FL, pp 231–243

    Google Scholar 

  • Waalkes MP, Rehm S (1992) Carcinogenicity of oral cadmium in the male Wistar (WF/NCr) rat: effect of chronic dietary zinc deficiency. Fundam Appl Toxicol 19:512–520

    Article  PubMed  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  PubMed  CAS  Google Scholar 

  • Mitra RS (1984) Protein synthesis in Escherichia coli during recovery from exposure to low levels of Cd2+. Appl Environ Microbiol 47:1012–1016

    PubMed  CAS  Google Scholar 

  • Blom A, Harder W, Matin A (1992) Unique and overlapping pollutant stress proteins of Escherichia coli. Appl Environ Microbiol 58:331–334

    PubMed  CAS  Google Scholar 

  • Ferianc P, Farewell S, Nyström T (1998) The cadmium-stress stimulon of Escherichia coli K-12. Microbiology 144:1045–1050

    Article  PubMed  CAS  Google Scholar 

  • Coogan TP, Bare RM, Waalkes MP (1992) Cadmium-induced DNA strand damage in cultured liver cells: reduction in cadmium genotoxicity following zinc pretreatment. Toxicol Appl Pharmacol 113:227–233

    Article  PubMed  CAS  Google Scholar 

  • Tsuzuki K, Sugiyama M, Haramaki N (1994) DNA single-strand breaks and cytotoxicity induced by chromate (VI), cadmium (II), and mercury (II) in hydrogen peroxide-resistant cell lines. Environ Health Perspect 102:341–342

    PubMed  CAS  Google Scholar 

  • Mukherjee S, Das SK, Kabiru W, Russell KR, Greaves K, Ademoyero AA, Rhaney F, Hills ER, Archibong AE (2002) Acute cadmium toxicity and male reproduction. Adv Reprod 6:143–155

    Google Scholar 

  • Rossman TG, Roy NK, Lin WC (1992) Is cadmium genotoxic? IARC Sci Publ 118:367–375

    PubMed  CAS  Google Scholar 

  • Smith JB, Dwyer SC, Smith L (1989) Lowering extracellular pH evokes inositol polyphosphate formation and calcium mobilization. J Biol Chem 264:8723–8728

    PubMed  CAS  Google Scholar 

  • Th'evenod F, Jones SW (1992) Cadmium block of calcium current in frog sympathetic neurons. Biophys J 63:162–168

    Article  Google Scholar 

  • Suszkiw J, Toth G, Murawsky M, Cooper GP (1984) Effects of Pb2+ and Cd2+ on acetylcholine release and Ca2+ movements in synaptosomes and subcellular fractions from rat brain and Torpedo electric organ. Brain Res 323:31–46

    Article  PubMed  CAS  Google Scholar 

  • Dally H, Hartwig A (1997) Induction and repair inhibition of oxidative DNA damage by nickel (II) and cadmium (II) in mammalian cells. Carcinogenesis 18:1021–1026

    Article  PubMed  CAS  Google Scholar 

  • Abshire MK, Devor DE, Diwan BA, Shaughnessy JD Jr, Waalkes MP (1996) In vitro exposure to cadmium in rat L6 myoblasts can result in both enhancement and suppression of malignant progression in vivo. Carcinogenesis 17:1349–1356

    Article  PubMed  CAS  Google Scholar 

  • Durnam DM, Palmiter RD (1981) Transcriptional regulation of the mouse metallothionein-I gene by heavy metals. J Biol Chem 256:5712–5716

    PubMed  CAS  Google Scholar 

  • Hwua Y, Yang J (1998) Effect of 3-aminotriazole on anchorage independence and mutagenicity in cadmium- and lead-treated diploid human fibroblasts. Carcinogenesis 19:881–888

    Article  PubMed  CAS  Google Scholar 

  • Landolph J (1994) Molecular mechanisms of transformation of CH3/10T1/2C1 8 mouse embryo cells and diploid human fibroblasts by carcinogenic metal compounds. Environ Health Perspect 102:119–125

    PubMed  CAS  Google Scholar 

  • Nishijo M, Tawara K, Honda R, Nakagawa H, Tanebe K, Saito S (2004) Relationship between newborn size and mother's blood cadmium levels, Toyama, Japan. Arch Environ Health 59:22–25

    Article  PubMed  CAS  Google Scholar 

  • Zhang YL, Zhao YC, Wang JX, Zhu HD, Liu QF, Fan YG, Wang NF, Zhao JH, Liu HS, Ou-Yang L, Liu AP, Fan TQ (2004) Effect of environmental exposure to cadmium on pregnancy outcome and fetal growth: a study on healthy pregnant women in China. J Environ Sci Health A Tox Hazard Subst Environ Eng 39:2507–2515

    Article  PubMed  CAS  Google Scholar 

  • Jacobs JA, Testa SM (2005) Overview of chromium (VI) in the environment: background and history. In: Guertin J, Jacobs JA, Avakian CP (eds) Chromium (VI) handbook. CRC, Boca Raton, FL, pp 1–22

    Google Scholar 

  • ATSDR (2008) Toxicological profile for chromium. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA

    Google Scholar 

  • IARC (1990) Chromium, nickel and welding, vol 49, IARC monographs on the evaluation of carcinogenic risks to humans. IARC Scientific Publications, IARC, Lyon, France

    Google Scholar 

  • U.S. EPA (1992) Integrated risk information system (IRIS). Environmental Criteria and Assessment Office, United States Environmental Protection Agency, Cincinnati, OH

    Google Scholar 

  • Velma V, Vutukuru SS, Tchounwou PB (2009) Ecotoxicology of hexavalent chromium in freshwater fish: a critical review. Rev Environ Health 24:129–145

    Article  PubMed  CAS  Google Scholar 

  • Cohen MD, Kargacin B, Klein CB, Costa M (1993) Mechanisms of chromium carcinogenicity and toxicity. Crit Rev Toxicol 23:255–281

    Article  PubMed  CAS  Google Scholar 

  • Norseth T (1981) The carcinogenicity of chromium. Environ Health Perspect 40:121–130

    Article  PubMed  CAS  Google Scholar 

  • Wang XF, Xing ML, Shen Y, Zhu X, Xu LH (2006) Oral administration of Cr(VI) induced oxidative stress, DNA damage and apoptotic cell death in mice. Toxicology 228:16–23

    Article  PubMed  CAS  Google Scholar 

  • Guertin J (2005) Toxicity and health effects of chromium (all oxidation states). In: Guertin J, Jacobs JA, Avakian CP (eds) Chromium (VI) handbook. CRC, Boca Raton, FL, pp 216–234

    Google Scholar 

  • OSHA (2006) Occupational exposure to hexavalent chromium. Occupational safety and health administration, Federal Register 71, Washington DC, pp 10099–10385

    Google Scholar 

  • Singh J, Pritchard DE, Carlisle DL, Mclean JA, Montaser A, Orenstein JM, Patierno SR (1999) Internalization of carcinogenic lead chromate particles by cultured normal human lung epithelial cells: formation of intracellular lead-inclusion bodies and induction of apoptosis. Toxicol Appl Pharmacol 161:240–248

    Article  PubMed  CAS  Google Scholar 

  • Langård S, Vigander T (1983) Occurrence of lung cancer in workers producing chromium pigments. Br J Ind Med 40:71–74

    PubMed  Google Scholar 

  • Costa M (1997) Toxicity and carcinogenicity of Cr(VI) in animal models and humans. Crit Rev Toxicol 27:431–442

    Article  PubMed  CAS  Google Scholar 

  • Shelnutt SR, Goad P, Belsito DV (2007) Dermatological toxicity of hexavalent chromium. Crit Rev Toxicol 37:375–387

    Article  PubMed  CAS  Google Scholar 

  • WHO/IPCS (1988) Environmental health criteria 61: chromium. World Health Organization, Geneva

    Google Scholar 

  • Chen TL, Wise SS, Kraus S, Shaffiey F, Levine K, Thompson DW, Romano T, O’Hara T, Wise JP (2009) Particulate hexavalent chromium is cytotoxic and genotoxic to the North Atlantic right whale (Eubalaena glacialis) lung and skin fibroblasts. Environ Mol Mutagen 50:387–393

    Article  CAS  Google Scholar 

  • Connett PH, Wetterhahn KE (1983) Metabolism of carcinogenic chromate by cellular constituents. Struct Bond 54:93–24

    Article  CAS  Google Scholar 

  • De Flora S, Bagnasco M, Serra D, Zanacchi P (1990) Genotoxicity of chromium compounds: a review. Mutat Res 238:99–172

    Article  PubMed  Google Scholar 

  • Dayan AD, Paine AJ (2001) Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Hum Exp Toxicol 20:439–451

    Article  PubMed  CAS  Google Scholar 

  • De Mattia G, Bravi MC, Laurenti O, De Luca O, Palmeri A, Sabatucci A, Mendico G, Ghiselli A (2004) Impairment of cell and plasma redox state in subjects professionally exposed to chromium. Am J Ind Med 46:120–125

    Article  PubMed  CAS  Google Scholar 

  • O’Brien TJ, Ceryak S, Patierno SR (2003) Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms. Mutat Res 533:3–36

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Na KJ (1991) Nephrotoxicity of sodium dichromate depending on the route of administration. Arch Toxicol 65:537–541

    Article  PubMed  CAS  Google Scholar 

  • Gumbleton M, Nicholls PJ (1988) Dose-response and time-response biochemical and histological study of potassium dichromate-induced nephrotoxicity in the rat. Food Chem Toxicol 26:37–44

    Article  PubMed  CAS  Google Scholar 

  • Bagchi D, Hassoun EA, Bagchi M, Muldoon D, Stohs SJ (1995) Oxidative stress induced by chronic administration of sodium dichromate (Cr-VI) to rats. Comp Biochem Physiol 110C: 281–287

    CAS  Google Scholar 

  • Bagchi D, Vuchetich PJ, Bagchi M, Hassoun EA, Tran MX, Tang L, Stohs SJ (1997) Induction of oxidative stress by chronic administration of sodium dichromate (chromium VI) and cadmium chloride (cadmium II) to rats. Free Radic Biol Med 22:471–478

    Article  PubMed  CAS  Google Scholar 

  • Gambelunghe A, Piccinini R, Ambrogi M, Villarini M, Moretti M, Marchetti C, Abbritti G, Muzi G (2003) Primary DNA damage in chrome-plating workers. Toxicology 188:187–195

    Article  PubMed  CAS  Google Scholar 

  • Goulart M, Batoreu MC, Rodrigues AS, Laires A, Rueff J (2005) Lipoperoxidation products and thiol antioxidants in chromium-exposed workers. Mutagenesis 20:311–315

    Article  PubMed  CAS  Google Scholar 

  • Wise JP Sr, Wise SS, Little JE (2002) The cytotoxicity and genotoxicity of particulate and soluble hexavalent chromium in human lung cells. Mutat Res 517:221–229

    Article  PubMed  CAS  Google Scholar 

  • Wise SS, Holmes AL, Ketterer ME, Hartsock WJ, Fomchenko E, Katsifis SP, Thompson WD, Wise JP Sr (2004) Chromium is the proximate clastogenic species for lead chromate-induced clastogenicity in human bronchial cells. Mutat Res 560:79–89

    Article  PubMed  CAS  Google Scholar 

  • Xie H, Wise SS, Holmes AL, Xu B, Wakeman T, Pelsue SC, Singh NP, Wise JP Sr (2005) Carcinogenic lead chromate induces DNA double-strand breaks in human lung cells. Mutat Res 586:160–172

    Article  PubMed  CAS  Google Scholar 

  • Zhitkovich A, Song Y, Quievryn G, Voitkun V (2001) Non-oxidative mechanisms are responsible for the induction of mutagenesis by reduction of Cr(VI) with cysteine: role of ternary DNA adducts in Cr(III)-dependent mutagenesis. Biochemistry 40:549–60

    Article  PubMed  CAS  Google Scholar 

  • Katz SA, Salem H (1993) The toxicology of chromium with respect to its chemical speciation: a review. J Appl Toxicol 13:217–224

    Article  PubMed  CAS  Google Scholar 

  • Patlolla AK, Armstrong N, Tchounwou PB (2008) Cytogenetic evaluation of potassium dichromate toxicity in bone marrow cells of Sprague-Dawley rats. Metal Ions Biol Med 10:353–358

    Google Scholar 

  • Velma V, Tchounwou PB (2010) Chromium-induced biochemical, genotoxic and histopathologic effects in liver and kidney of goldfish, Carassius auratus. Mutat Res 698:43–51

    Article  PubMed  CAS  Google Scholar 

  • Norseth T (1986) The carcinogenicity of chromium and its salts. Br J Ind Med 3:649–651

    Google Scholar 

  • Gabby PN (2006) Lead. In: Mineral commodity summaries, U.S. Geological Survey. Reston, VA. Online available at http://minerals.usgs.gov/minerals/pubs/commodity/lead/lead_mcs05.pdf

  • Gabby PN (2003) “Lead.” Environmental defense, “Alternatives to Lead-Acid Starter Batteries,” pollution prevention fact sheet. Online available at http://www.cleancarcampaign.org/FactSheet_BatteryAlts.pdf

  • CDC (1991) Preventing lead poisoning in young children: a statement by the centers for disease control. Centers for Disease Control and Prevention, Atlanta, GA

    Google Scholar 

  • Jacobs DE, Clickner RP, Zhou JY, Viet SM, Marker DA, Rogers JW, Zeldin DC, Broene P, Friedman W (2002) The prevalence of lead-based paint hazards in U.S. housing. Environ Health Perspect 110:A599–A606

    Article  PubMed  CAS  Google Scholar 

  • Farfel MR, Chisolm JJ Jr (1991) An evaluation of experimental practices for abatement of residential lead-based paint: report on a pilot project. Environ Res 55:199–212

    Article  PubMed  CAS  Google Scholar 

  • CDC (2001) Managing elevated blood lead levels among young children: recommendations from the advisory committee on childhood lead poisoning prevention. Centers for Disease Control and Prevention, Atlanta, GA

    Google Scholar 

  • Lanphear BP, Matte TD, Rogers J, Clickner RP, Dietz B, Bornschein RL, Succop P, Mahaffey KR, Dixon S, Galke W, Rabinowitz M, Farfel M, Rohde C, Schwartz J, Ashley P, Jacobs DE (1998) The contribution of lead-contaminated house dust and residential soil to children’s blood lead levels. A pooled analysis of 12 epidemiologic studies. Environ Res 79:51–68

    Article  PubMed  CAS  Google Scholar 

  • Charney E, Sayre J, Coulter M (1980) Increased lead absorption in inner city children: where does the lead come from? Pediatrics 6:226–231

    Google Scholar 

  • ATSDR (1999) Toxicological profile for Lead. Public Health Service, U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Atlanta, GA

    Google Scholar 

  • ATSDR (1992) Case studies in environmental medicine—Lead toxicity. Public Health Service, U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Atlanta, GA

    Google Scholar 

  • Flora SJS, Flora GJS, Saxena G (2006) Environmental occurrence, health effects and management of lead poisoning. In: Cascas SB, Sordo J (eds) Lead: chemistry, analytical aspects, environmental impacts and health effects. Elsevier, The Netherlands, pp 158–228

    Google Scholar 

  • Pirkle JL, Brady DJ, Gunter EW, Kramer RA, Paschal DC, Flegal KM, Matte TD (1994) The decline in blood lead levels in the United States: The National Health and Nutrition Examination Surveys (NHANES). J Am Med Assoc 272:284–291

    Article  CAS  Google Scholar 

  • Pirkle JL, Kaufmann RB, Brody DJ, Hickman T, Gunter EW, Paschal DC (1998) Exposure of the U.S. population to lead: 1991–1994. Environ Health Perspect 106:745–750

    Article  PubMed  CAS  Google Scholar 

  • U.S. EPA (2002) Lead compounds. Technology transfer network—air toxics website. Online available at http://www.epa.gov/cgi-bin/epaprintonly.cgi

  • Kaul B, Sandhu RS, Depratt C, Reyes F (1999) Follow-up screening of lead-poisoned children near an auto battery recycling plant, Haina, Dominican Republic. Environ Health Perspect 107:917–920

    Article  PubMed  CAS  Google Scholar 

  • Ong CN, Phoon WO, Law HY, Tye CY, Lim HH (1985) Concentrations of lead in maternal blood, cord blood, and breast milk. Arch Dis Child 60:756–759

    Article  PubMed  CAS  Google Scholar 

  • Corpas I, Gaspar I, Martinez S, Codesal J, Candelas S, Antonio MT (1995) Testicular alterations in rats due to gestational and early lactational administration of lead. Report Toxicol 9:307–313

    Article  CAS  Google Scholar 

  • Andrews KW, Savitz DA, Hertz-Picciotto I (1994) Prenatal lead exposure in relation to gestational age and birth weight: a review of epidemiologic studies. Am J Ind Med 26:13–32

    Article  PubMed  CAS  Google Scholar 

  • Huel G, Tubert P, Frery N, Moreau T, Dreyfus J (1992) Joint effect of gestational age and maternal lead exposure on psychomotor development of the child at six years. Neurotoxicology 13:249–254

    PubMed  CAS  Google Scholar 

  • Litvak P, Slavkovich V, Liu X, Popovac D, Preteni E, Capuni-Paracka S, Hadzialjevic S, Lekic V, Lolacono N, Kline J, Graziano J (1998) Hyperproduction of erythropoietin in nonanemic lead-exposed children. Environ Health Perspect 106:361–364

    Article  Google Scholar 

  • Amodio-Cocchieri R, Arnese A, Prospero E, Roncioni A, Barulfo L, Ulluci R, Romano V (1996) Lead in human blood form children living in Campania, Italy. J Toxicol Environ Health 47:311–320

    Article  PubMed  CAS  Google Scholar 

  • Hertz-Picciotto I (2000) The evidence that lead increases the risk for spontaneous abortion. Am J Ind Med 38:300–309

    Article  PubMed  CAS  Google Scholar 

  • Apostoli P, Kiss P, Stefano P, Bonde JP, Vanhoorne M (1998) Male reproduction toxicity of lead in animals and humans. Occup Environ Med 55:364–374

    Article  PubMed  CAS  Google Scholar 

  • Flora SJS, Saxena G, Gautam P, Kaur P, Gill KD (2007) Lead induced oxidative stress and alterations in biogenic amines in different rat brain regions and their response to combined administration of DMSA and MiADMSA. Chem Biol Interact 170:209–220

    Article  PubMed  CAS  Google Scholar 

  • Hermes-Lima M, Pereira B, Bechara EJ (1991) Are free radicals involved in lead poisoning? Xenobiotica 8:1085–1090

    Article  Google Scholar 

  • Jiun YS, Hsien LT (1994) Lipid peroxidation in workers exposed to lead. Arch Environ Health 49:256–259

    Article  PubMed  CAS  Google Scholar 

  • Bechara EJ, Medeiros MH, Monteiro HP, Hermes-Lima M, Pereira B, Demasi M (1993) A free radical hypothesis of lead poisoning and inborn porphyrias associated with 5-aminolevulinic acid overload. Quim Nova 16:385–392

    CAS  Google Scholar 

  • Yedjou CG, Steverson M, Paul Tchounwou PB (2006) Lead nitrate-induced oxidative stress in human liver carcinoma (HepG2) cells. Metal Ions Biol Med 9:293–297

    CAS  Google Scholar 

  • Yedjou CG, Milner J, Howard C, Tchounwou PB (2010) Basic apoptotic mechanisms of lead toxicity in human leukemia (HL-60) cells. Int J Environ Res Public Health 7:2008–2017

    Article  PubMed  CAS  Google Scholar 

  • Goldstein G (1993) Evidence that lead acts as a calcium substitute in second messenger metabolism. Neurotoxicology 14:97–102

    PubMed  CAS  Google Scholar 

  • Simons T (1993) Lead–calcium interactions in cellular lead toxicity. Neurotoxicology 14: 77–86

    PubMed  CAS  Google Scholar 

  • Vijverberg HPM, Oortgiesen M, Leinders T, van Kleef RGDM (1994) Metal interactions with voltage- and receptor-activated ion channels. Environ Health Perspect 102:153–158

    PubMed  CAS  Google Scholar 

  • Schanne FA, Long GJ, Rosen JF (1997) Lead induced rise in intracellular free calcium is mediated through activation of protein kinase C in osteoblastic bone cells. Biochim Biophys Acta 1360:247–254

    Article  PubMed  CAS  Google Scholar 

  • Waalkes MP, Hiwan BA, Ward JM, Devor DE, Goyer RA (1995) Renal tubular tumors and atypical hyperplasias in B6C3F, mice exposed to lead acetate during gestation and lactation occur with minimal chronic nephropathy. Cancer Res 55:5265–5271

    PubMed  CAS  Google Scholar 

  • Goyer RA (1993) Lead toxicity: current concerns. Environ Health Prospect 100:177–187

    Article  CAS  Google Scholar 

  • IARC (1987) Overall evaluation of carcinogenicity: an updating of monographs. IARC monographs on the evaluation of carcinogenic risks to humans, vols 1–42, Suppl 7. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Yang JL, Wang LC, Chamg CY, Liu TY (1999) Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxy-deoxyguanosine adduct by lead acetate. Environ Mol Mutagen 33:194–201

    Article  PubMed  CAS  Google Scholar 

  • Lin RH, Lee CH, Chen WK, Lin-Shiau SY (1994) Studies on cytotoxic and genotoxic effects of cadmium nitrate and lead nitrate in Chinese hamster ovary cells. Environ Mol Mutagen 23:143–149

    Article  PubMed  CAS  Google Scholar 

  • Dipaolo JA, Nelson Rh, Casto BC (1978) In-vitro neoplastic transformation of Syrian hamster cell by lead acetate and its relevance to environmental carcinogenesis. Br J Cancer 38:452–455

    Article  PubMed  CAS  Google Scholar 

  • Roy N, Rossman T (1992) Mutagenesis and comutagenesis by lead compounds. Mutat Res 298:97–103

    Article  PubMed  CAS  Google Scholar 

  • Wise JP, Orenstein JM, Patierno SR (1993) Inhibition of lead chromate clastogenesis by ascorbate: relationship to particle dissolution and uptake. Carcinogenesis 14:429–434

    Article  PubMed  CAS  Google Scholar 

  • Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury-current exposures and clinical manifestations. N Engl J Med 349:1731–1737

    Article  PubMed  CAS  Google Scholar 

  • Guzzi G, LaPorta CAM (2008) Molecular mechanisms triggered by mercury. Toxicology 244: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Dopp E, Hartmann LM, Florea AM, Rettenmier AW, Hirner AV (2004) Environmental distribution, analysis, and toxicity of organometal (loid) compounds. Crit Rev Toxicol 34: 301–333

    Article  PubMed  CAS  Google Scholar 

  • Sarkar BA (2005) Mercury in the environment: effects on health and reproduction. Rev Environ Health 20:39–56

    PubMed  Google Scholar 

  • Zahir A, Rizwi SJ, Haq SK, Khan RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 20:351–360

    Article  PubMed  CAS  Google Scholar 

  • Holmes P, Hames KAF, Levy LS (2009) Is low-level mercury exposure of concern to human health? Sci Total Environ 408:171–182

    Article  PubMed  CAS  Google Scholar 

  • Tchounwou PB, Ayensu WK, Ninashvilli N, Sutton D (2003) Environmental exposures to mercury and its toxicopathologic implications for public health. Environ Toxicol 18: 149–175

    Article  PubMed  CAS  Google Scholar 

  • U.S. EPA (1997) Mercury study report to congress. Online available at http://www.epa.gov/mercury/report.htm

  • Sanfeliu C, Sebastia J, Cristofol R, Rodriquez-Farre E (2003) Neurotoxicity of organomercurial compounds. Neurotox Res 5:283–305

    Article  PubMed  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity, and oxidative stress. Curr Med Chem 12:1161–1208

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Rhodes CJ, Monocol J, Izakovic-Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  PubMed  CAS  Google Scholar 

  • Shenker BJ, Guo TL, Shapiro IM (2000) Mercury-induced apoptosis in human lymphoid cells: evidence that the apoptotic pathway is mercurial species dependent. Environ Res 84:89–99

    Article  PubMed  CAS  Google Scholar 

  • Palmeira CM, Madeira VMC (1997) Mercuric chloride toxicity in rat liver mitochondria and isolated hepatocytes. Environ Toxicol Pharmacol 3:229–235

    Article  PubMed  CAS  Google Scholar 

  • Lund BO, Miller DM, Woods JS (1991) Mercury induced H2O2 formation and lipid peroxidation in vitro in rat kidney mitochondria. Biochem Pharmacol 42:S181–S187

    Article  PubMed  CAS  Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662

    Article  PubMed  CAS  Google Scholar 

  • Sunja Kim S, Dayani L, Rosenberg PA, Li J (2010) RIP1 kinase mediates arachidonic acid-induced oxidative death of oligodendrocyte precursors. Int Physiol Pathophysiol Pharmacol 2:137–147

    Google Scholar 

  • Lash LH, Putt DA, Hueni SE, Payton SG, Zwicki J (2007) Interactive toxicity of inorganic mercury and trichloroethylene in rat and human proximal tubules (Effects of apoptosis, necrosis, and glutathione status). Toxicol Appl Pharmacol 221:349–362

    Article  PubMed  CAS  Google Scholar 

  • Rooney JPK (2007) The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology 234:145–156

    Article  PubMed  CAS  Google Scholar 

  • Agarwal R, Goel SK, Chandra R, Behari JR (2010) Role of viamin E in preventing acute mercury toxicity in rat. Environ Toxicol Pharmacol 29:70–78

    Article  PubMed  CAS  Google Scholar 

  • Leaner VD, Donninger H, Birrer MJ (2007) Transcription factors as targets for cancer therapy: AP-1 a potential therapeutic target. Curr Cancer Therap Rev 3:1–6

    Article  CAS  Google Scholar 

  • Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21:361–370

    Article  PubMed  CAS  Google Scholar 

  • Zalups RK, Koropatnik J (2000) Molecular biology and toxicology of metals. Taylor & Francis, London

    Google Scholar 

  • Magos L, Clarkson TW (2006) Overview of the clinical toxicity of mercury. Ann Clin Biochem 43:257–268

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Izakovic M, Mazur M, Rhodes CJ, Tesler J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:79–110

    Article  Google Scholar 

  • Crespo-Lopez MR, Macedo GL, Pereira SID, Arrifano GPF, Picano-Dinc DLW, doNascimento JLM, Herculano AM (2009) Mercury and human genotoxicity: critical considerations and possible molecular mechanisms. Pharmacol Res 60:212–220

    Article  PubMed  CAS  Google Scholar 

  • Ogura H, Takeuchi T, Morimoto KA (1996) A comparison of the 8-hydroxyl-deoxyguanosine, chromosome aberrations and micronucleus techniques for the assessment of the genotoxicity of mercury compounds in human blood lymphocytes. Mutat Res 340:175–182

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Sato EF, Nishikawa M, Park AM, Kari Y, Imada I, Utsumi K (2003) Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem 10: 2495–2505

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro MCN, Macchi BM, Vieira JLF, Oikawa T, Amoras WW, Santos EO (2008) Mercury exposure and antioxidant defenses in women: a comparative study in the Amazon. Environ Res 107:53–59

    Article  PubMed  CAS  Google Scholar 

  • Amorim MI, Mergler D, Bahia MO, Miranda H, Lebel J (2000) Cytogenetic damage related to low levels of methylmercury contamination in the Brazilian Amazon. Ann Acad Bras Cienc 72:497–507

    Article  CAS  Google Scholar 

  • Rana SVS (2008) Metals and apoptosis: recent developments. J Trace Elem Med Biol 22: 262–284

    Article  PubMed  CAS  Google Scholar 

  • López Alonso M, Prieto Montaña F, Miranda M, Castillo C, Hernández J, Luis Benedito J (2004) Interactions between toxic (As, Cd, Hg and Pb) and nutritional essential (Ca, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) elements in the tissues of cattle from NW Spain. Biometals 17:389–397

    Article  PubMed  Google Scholar 

  • Abdulla M, Chmielnicka J (1990) New aspects on the distribution and metabolism of essential trace elements after dietary exposure to toxic metals. Biol Trace Elem Res 23: 25–53

    Article  CAS  Google Scholar 

  • Wang G, Fowler BA (2008) Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic. Toxicol Appl Pharmacol 233:92–99

    Article  PubMed  CAS  Google Scholar 

  • Nordberg GF, Jin T, Hong F, Zhang A, Buchet JP, Bernard A (2005) Biomarkers of cadmium and arsenic interactions. Toxicol Appl Pharmacol 206:191–197

    Article  PubMed  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4