A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/978-1-60761-993-2_3 below:

Pharmacology of Opioid Drugs | SpringerLink

  • Serturner FWA (1805) J Pharmazie 13.234. (cited by Eddy and May [4]).

    Google Scholar 

  • Gulland JM, Robinson R (1925) Constitution of codeine and thebaine. Mem Proc Manchester Lit Phil Soc 69:79–86

    CAS  Google Scholar 

  • Gates M, Tschudi G (1956) The synthesis of morphine. J Am Chem Soc 78:1380–1393

    Article  CAS  Google Scholar 

  • Eddy NB, May EL (1973) The search for a better analgesic. Science 181:407–414

    Article  PubMed  CAS  Google Scholar 

  • Brownstein MJ (1993) A brief history of opiates, opioid peptides, and opioid receptors. Proc Natl Acad Sci USA 90:5391–5393

    Article  PubMed  CAS  Google Scholar 

  • Wikler A (1950) Sites and mechanisms of action of morphine and related drugs in the central nervous system. J Pharmacol Exp Ther 100:435–506

    PubMed  CAS  Google Scholar 

  • Lewis JW, Bentley KW, Cowan A (1971) Narcotic analgesics and antagonists. Ann Rev Pharmacol 11:241–270

    Article  PubMed  CAS  Google Scholar 

  • Martin WR (1988) The evolution of concepts of opioid receptors. In: Pasternak GW (ed) The opiate receptors. Humana Press, Clifton, pp 3–22

    Chapter  Google Scholar 

  • Andrews HL, Himmelsbach CK (1944) Relation of the intensity of the morphine abstinence syndrome to dosage. J Pharmacol Exp Ther 81:288–293

    CAS  Google Scholar 

  • Dole VP, Nyswander ME, Kreek MJ (1966) Narcotic blockade. Arch Int Med 118:304–309

    Article  CAS  Google Scholar 

  • Beckett AH, Casy AF (1954) Synthetic analgesics: sterochemical considerations. J Pharm Pharmacol 6:986–1001

    Article  PubMed  CAS  Google Scholar 

  • Portoghese PS (1965) A new concept on the mode of interaction of narcotic analgesics with receptors. J Med Chem 8:609–616

    Article  PubMed  CAS  Google Scholar 

  • Portoghese PS (1966) Stereochemical factors and receptor interactions associated with narcotic analgesics. J Pharm Sci 55:865–887

    Article  PubMed  CAS  Google Scholar 

  • Gero A, Capetola RJ (1976) Exploration of drug action on a morphine receptor by methods of enzyme kinetics. J Theor Biol 61:129–142

    Article  PubMed  CAS  Google Scholar 

  • Goldstein A, Sheehan P (1969) Tolerance to opioid narcotics. I. Tolerance to the “running fit” caused by levorphanol in the mouse. J Pharmacol Exp Ther 169:175–184

    PubMed  CAS  Google Scholar 

  • Dingledine R, Goldstein A (1973) Lethality of the morphinan isomers levorphanol and dextrorphan. Br J Pharmacol 48:718–720

    Article  PubMed  CAS  Google Scholar 

  • Unna K (1943) Antagonistic effect of N-allylnormorphine upon morphine. J Pharmacol Exp Ther 79:27–31

    CAS  Google Scholar 

  • Lasagna L, Beecher HK (1954) Analgesic effectiveness of nalorphine and nalorphine–morphine combinations in man. J Pharmacol Exp Ther 112:356–363

    PubMed  CAS  Google Scholar 

  • Houde RW, Wallenstein SL (1956) Clinical studies of morphine–nalorphine combinations. Fed Proc 15:440–441

    Google Scholar 

  • Foldes FF, Lunn JN, Moore J et al (1963) N-allylnoroxy–morphone: a new potent narcotic antagonist. Am J Med Sci 245:23–30

    Article  PubMed  CAS  Google Scholar 

  • Jasinski DR, Martin WR, Haertzen CA (1967) The human pharmacology and abuse potential of N-allylnoroxymorphone (naloxone). J Pharmacol Exp Ther 157:420–426

    PubMed  CAS  Google Scholar 

  • Beckett AH, Casy AF, Harper NJ (1956) Analgesics and their antagonists: some steric and chemical considerations. III. The influence of the basic group on the biological response. J Pharm Pharmacol 8:874–883

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg P (2006) Physiological and pharmacological investigations of small intestinal peristalsis. Translation of the article “Physiologische und pharmakologische Versuche uber die Dunndarmperistaltik,” Arch Exp Pathol Pharmakol 81:55–129, 1917. Naunyn–Schmiedebergs Arch Pharmacol 373:101–133

    Google Scholar 

  • Trendelenburg P (1917) Physiologische und Pharmkologische Versuche uber die Dunndarmperistaltik. Naunyn–Schmiedeberg’s Arch Path Pharmak 81:55–128

    Google Scholar 

  • Schaumann O, Giovannini M, Jochum K (1952) Morphinlike analgesics and intestinal motions. I. Spasmolysis and peristalsis. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 215:460–468

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg U (1957) The action of morphine on the superior cervical ganglion and on the nictitating membrane of the cat. Br J Pharmacol Chemother 12:79–85

    Article  PubMed  CAS  Google Scholar 

  • Kosterlitz HW, Robinson JA (1957) Inhibition of the peristaltic reflex of the isolated guinea–pig ileum. J Physiol 136:249–262

    PubMed  CAS  Google Scholar 

  • Paton WDM (1957) The action of morphine and related substances on contraction and on acetylcholine output of coaxially stimulated guinea-pig ileum. Br J Pharmacol 12:119–124

    CAS  Google Scholar 

  • Cox BM, Weinstock M (1966) The effect of analgesic drugs on the release of acetylcholine from electrically stimulated guinea-pig ileum. Br J Pharmacol Chemother 27:81–92

    Article  PubMed  CAS  Google Scholar 

  • Kosterlitz HW, Watt AJ (1968) Kinetic parameters of narcotic agonists and antagonists, with particular reference to N-allylnoroxymorphone (naloxone). Br J Pharmacol Chemother 33:266–276

    Article  PubMed  CAS  Google Scholar 

  • Goldstein A, Lowney LI, Pal BK (1971) Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain. Proc Natl Acad Sci USA 68:1742–1747

    Article  PubMed  CAS  Google Scholar 

  • Pert CB, Snyder SH (1973) Opiate receptor: demonstration in nervous tissue. Science 179:1011–1014

    Article  PubMed  CAS  Google Scholar 

  • Terenius L (1973) Stereospecific uptake of narcotic analgesics by a subcellular fraction of the guinea-pig ileum. Uppsala J Med Sci 78:150–152

    Article  CAS  Google Scholar 

  • Terenius L (1973) Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol Toxicol 32:317–320

    Article  CAS  Google Scholar 

  • Simon EJ, Hiller JM, Edelman I (1973) Stereospecific binding of the potent narcotic analgesic [3H]etorphine to rat-brain homogenate. Proc Natl Acad Sci USA 70:1947–1949

    Article  PubMed  CAS  Google Scholar 

  • Collier HOJ (1972) Pharmacological mechanisms of drug dependence. Pharmacol Future Man 1:65–76

    Google Scholar 

  • Snyder SH, Matthysse S (1975) Opiate receptor mechanisms. MIT Press, Cambridge

    Google Scholar 

  • Terenius L, Wahlstrom A (1975) Search for an endogenous ligand for the opiate receptor. Acta Physiol Scand 94:74–81

    Article  PubMed  CAS  Google Scholar 

  • Pasternak GW, Wilson HA, Snyder SH (1975) Differential effects of protein-modifying reagants on receptor binding of opiate agonists and antagonists. Mol Pharmacol 11:340–351

    CAS  PubMed  Google Scholar 

  • Hughes J (1975) Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine. Brain Res 88:295–308

    Article  CAS  PubMed  Google Scholar 

  • Hughes J, Smith TW, Kosterlitz HW et al (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–579

    Article  PubMed  CAS  Google Scholar 

  • Cox BM, Opheim KE, Teschemacher H et al (1975) A peptide-like substance from pituitary that acts like morphine. 2. Purification and properties. Life Sci 16:1777–1782

    Article  PubMed  CAS  Google Scholar 

  • Teschemacher H, Opheim KE, Cox BM et al (1975) A peptide-like substance from pituitary that acts like morphine. I. Isolation. Life Sci 16:1771–1775

    Article  PubMed  CAS  Google Scholar 

  • Bradbury AF, Smyth DG, Snell CR (1976) Prohormones of beta-melanotropin (beta-melanocyte-stimulating hormone, beta-MSH) and corticotropin (adrenocorticotropic hormone, ACTH): structure and activation. Ciba Found Symp 41:61–75

    PubMed  CAS  Google Scholar 

  • Cox BM, Gentleman S, Su TP et al (1976) Further characterization of morphine-like peptides (endorphins) from pituitary. Brain Res 115:285–296

    Article  PubMed  CAS  Google Scholar 

  • Goldstein A, Fischli W, Lowney LI et al (1981) Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. Proc Natl Acad Sci USA 78:7219–7223

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S, Inoue A, Kita T et al (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin-B-lipotropin precursor. Nature 278:423–427

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Furutani Y, Takahashi H et al (1982) Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature 295:202–206

    Article  PubMed  CAS  Google Scholar 

  • Kakidani H, Furutani Y, Takahashi H et al (1982) Cloning and sequence analysis of cDNA for porcine B-neo-endorphin/dynorphin precursor. Nature 298:245–249

    Article  PubMed  CAS  Google Scholar 

  • Martin WR (1967) Opioid antagonists. Pharmacol Rev 19:463–521

    PubMed  CAS  Google Scholar 

  • Martin WR, Eades CG, Thompson JA et al (1976) The effects of morphine and nalorphine–like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532

    PubMed  CAS  Google Scholar 

  • Lord JAH, Waterfield AA, Hughes J et al (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267:495–499

    Article  PubMed  CAS  Google Scholar 

  • Chang K-J, Miller RJ, Cuatrecasas P (1978) Interaction of enkephalin with opiate receptors in intact cultured cells. Mol Pharmacol 14:961–970

    PubMed  CAS  Google Scholar 

  • Chang K-J, Cuatrecasas P (1979) Multiple opiate receptors. J Biol Chem 254:2610–2618

    PubMed  CAS  Google Scholar 

  • Mollereau C, Parmentier M, Mailleux P et al (1994) ORL-1, a novel member of the opioid family: cloning, functional expression and localization. FEBS Lett 341:33–38

    Article  PubMed  CAS  Google Scholar 

  • Pan Y-X, Cheng J, Xu J et al (1994) Cloning, expression and classification of a Κ3-related opioid receptor using antisense oligodeoxynucleotides. Reg Peptides 54:217–218

    Article  CAS  Google Scholar 

  • Pan Y-X, Cheng J, Xu J et al (1995) Cloning and functional characterization through antisense mapping of a Κ3-related opioid receptor. Mol Pharmacol 47:1180–1188

    PubMed  CAS  Google Scholar 

  • Bunzow JR, Saez C, Mortrud M et al (1994) Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a μ, δ, or Κ opioid receptor type. FEBS Lett 347:284–288

    Article  PubMed  CAS  Google Scholar 

  • Meunier JC, Mollereau C, Toll L et al (1995) Isolation and structure of the endogenous agonist of the opioid receptor like ORL1 receptor. Nature 377:532–535

    Article  PubMed  CAS  Google Scholar 

  • Reinscheid RK, Nothacker HP, Bourson A et al (1995) Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science 270:792–794

    Article  PubMed  CAS  Google Scholar 

  • Mollereau C, Simons MJ, Soularue P et al (1996) Structure, tissue distribution, and chromosomal localization of the prepronociceptin gene. Proc Natl Acad Sci USA 93:8666–8670

    Article  PubMed  CAS  Google Scholar 

  • Nothacker HP, Reinscheid RK, Mansour A et al (1996) Primary structure and tissue distribution of the orphanin FQ precursor. Proc Natl Acad Sci USA 93:8677–8682

    Article  PubMed  CAS  Google Scholar 

  • Pert A, Yaksh TL (1974) Sites of morphine induced analgesia in primate brain: relation to pain pathways. Brain Res 80:135–140

    Article  PubMed  CAS  Google Scholar 

  • Kuhar MJ, Pert CB, Snyder SH (1973) Regional distribution of opiate receptor binding in monkey and human brain. Nature 245:447–450

    Article  PubMed  CAS  Google Scholar 

  • Pert CB, Kuhar MJ, Snyder SH (1976) Opiate receptor: autoradiographic localization in rat brain. Proc Natl Acad Sci USA 73:3729–3733

    Article  PubMed  CAS  Google Scholar 

  • Atweh SF, Kuhar MJ (1977) Autoradiographic localization of opiate receptors in rat brain. II. The brain stem. Brain Res 129:1–12

    Article  PubMed  CAS  Google Scholar 

  • Atweh SF, Kuhar MJ (1977) Autoradiographic localization of opiate receptors in rat brain. III. The telencephalon. Brain Res 134:393–405

    Article  PubMed  CAS  Google Scholar 

  • Atweh SF, Kuhar MJ (1977) Autoradiographic localization of opiate receptors in rat brain. I. Spinal cord and lower medulla. Brain Res 124:53–67

    Article  PubMed  CAS  Google Scholar 

  • Goodman RR, Snyder SH, Kuhar MJ et al (1980) Differentiation of delta and mu opiate receptor localizations by light microscopic autoradiography. Proc Natl Acad Sci USA 77:6239–6243

    Article  PubMed  CAS  Google Scholar 

  • Foote RW, Maurer R (1982) Autoradiographic localization of opiate Κ-receptors in the guinea-pig brain. Eur J Pharmacol 85:99–103

    Article  PubMed  CAS  Google Scholar 

  • Goodman RR, Snyder SH (1982) Κ opiate receptors localized by autoradiography to deep layers of cerebral cortex: relation to sedative effects. Proc Natl Acad Sci USA 79:5703–5707

    Article  PubMed  CAS  Google Scholar 

  • Goodman RR, Pasternak GW (1985) Visualization of mu1 opiate receptors in rat brain using a computerized autoradiographic subtraction technique. Proc Natl Acad Sci USA 82:6667–6671

    Article  PubMed  CAS  Google Scholar 

  • Arvidsson U, Riedl M, Chakrabarti S et al (1995) The Κ-opioid receptor is primarily postsynaptic: combined immunohistochemical localization of the receptor and endogenous opioids. Proc Natl Acad Sci USA 92:5062–5066

    Article  PubMed  CAS  Google Scholar 

  • Anton B, Husain M, Kaufman D et al (1994) Localization of µ, d, and Κ opioid receptor mRNAs in human brain. Reg Peptides 54:11–12

    Article  CAS  Google Scholar 

  • Delfs JM, Yu L, Reisine T et al (1994) The distribution and regulation of mu opioid receptor mRNA in rat basal ganglia. Reg Peptides 54:79–80

    Article  Google Scholar 

  • Drake CT, Patterson TA, Simmons ML et al (1994) Distribution of Κ opioid receptor-like immunoreactivity in guinea-pig hippocampal formation. Reg Peptides 54:89–90

    Article  CAS  Google Scholar 

  • Mansour A, Fox CA, Burke S et al (1994) µ, d, and Κ opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol 350:412–438

    Article  PubMed  CAS  Google Scholar 

  • Arvidsson U, Riedl M, Chakrabarti S et al (1995) Distribution and targeting of a d-opioid receptor (MOR1) in brain and spinal cord. J Neurosci 15:3328–3341

    PubMed  CAS  Google Scholar 

  • Bausch SB, Patterson TA, Appleyard SM et al (1995) Immunocytochemical localization of d opioid receptors in mouse brain. J Chem Neuroanat 8:175–189

    Article  PubMed  CAS  Google Scholar 

  • Elde R, Arvidsson U, Riedl M et al (1995) Distribution of neuropeptide receptors: new views of peptidergic neurotransmission made possible by antibodies to opioid receptors. Ann NY Acad Sci 757:390–404

    Article  PubMed  CAS  Google Scholar 

  • Mansour A, Fox CA, Burke S et al (1995) Immunohistochemical localization of the cloned d-opioid receptor in the rat CNS. J Chem Neuroanat 8:283–305

    Article  PubMed  CAS  Google Scholar 

  • Mansour A, Fox CA, Burke S et al (1994) Immunohistochemical localization of the µ opioid receptors. Reg Peptides 54:179–180

    Article  CAS  Google Scholar 

  • Henriksen G, Willoch F (2008) Imaging of opioid receptors in the central nervous system. Brain 131:1171–1196

    Article  PubMed  Google Scholar 

  • Frost JJ, Wagner HN Jr, Dannals RF et al (1985) Imaging opiate receptors in the human brain by positron tomography. J Comput Assist Tomogr 9:231–236

    Article  PubMed  CAS  Google Scholar 

  • Jones AK, Qi LY, Fujirawa T et al (1991) In vivo distribution of opioid receptors in man in relation to the cortical projections of the medial and lateral pain systems measured with positron emission tomography. Neurosci Lett 126:25–28

    Article  PubMed  CAS  Google Scholar 

  • Jones AK, Cunningham VJ, Ha-Kawa S et al (1994) Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumatoid arthritis. Br J Rheumatol 33:909–916

    Article  PubMed  CAS  Google Scholar 

  • Armstrong D, Dry RM, Keele CA et al (1953) Observations on chemical excitants of cutaneous pain in man. J Physiol 120:326–351

    PubMed  CAS  Google Scholar 

  • Lim RK, Guzman F, Rodgers DW et al (1964) Site of action of narcotic and non-narcotic analgesics determined by blocking bradykinin-evoked visceral pain. Arch Int Pharmacodyn Ther 152:25–58

    PubMed  CAS  Google Scholar 

  • Tsou K, Jang CS (1964) Studies on the sites of analgesic action of morphine intracerebral microinjection. Sci Sin 7:1099–1109

    Google Scholar 

  • Herz A, Albus K, Metys J et al (1970) On the central sites for the antinociceptive action of morphine and fentanyl. Neuropharmacology 9:539–551

    Article  PubMed  CAS  Google Scholar 

  • Osborne PB, Vaughan CW, Wilson HI et al (1996) Opioid inhibition of rat periaqueductal grey neurones with identified projections to rostral ventromedial medulla in vitro. J Physiol 490:383–389

    PubMed  CAS  Google Scholar 

  • Satoh M, Takagi H (1971) Enhancement by morphine of the central descending inhibitory influence on spinal sensory transmission. Eur J Pharmacol 14:60–65

    Article  Google Scholar 

  • Dey PK, Feldberg W (1976) Analgesia produced by morphine when acting from the liquor space. Br J Pharmacol 58:383–393

    Article  PubMed  CAS  Google Scholar 

  • Akaike A, Shibata T, Satoh M et al (1978) Analgesia induced by microinjection of morphine into, and electrical stimulation of, the nucleus reticularis paragigantocellularis of rat medulla oblongata. Neuropharmacology 17:775–778

    Article  PubMed  CAS  Google Scholar 

  • Fields HL, Heinricher MM, Mason P (1991) Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 14:219–245

    Article  PubMed  CAS  Google Scholar 

  • Pan ZZ, Tershner SA, Fields HL (1997) Cellular mechanism for anti-analgesic action of agonists of the µ-opioid receptor. Nature 389:382–385

    Article  PubMed  CAS  Google Scholar 

  • Pan ZZ, Hirakawa N, Fields HL (2000) A cellular mechanism for the bidirectional pain-modulating actions of orphanin FQ/nociceptin. Neuron 26:515–522

    Article  PubMed  CAS  Google Scholar 

  • Yaksh TL, Rudy TA (1977) Studies on the direct spinal action of narcotics in the production of analgesia in the rat. J Pharmacol Exp Ther 202:411–428

    PubMed  CAS  Google Scholar 

  • Wang JK, Nauss LA, Thomas JE (1979) Pain relief by intrathecally applied morphine in man. Anesthesiology 50:149–151

    Article  PubMed  CAS  Google Scholar 

  • Yaksh TL, Jessell TM, Gamse R et al (1980) Intrathecal morphine inhibits substance P release from mammalian spinal cord in vivo. Nature 286:155–157

    Article  PubMed  CAS  Google Scholar 

  • Aicher SA, Sharma S, Cheng PY et al (2000) Dual ultrastructural localization of m-opiate receptors and substance P in the dorsal horn. Synapse 36:12–20

    Article  PubMed  CAS  Google Scholar 

  • D’Mello R, Dickenson AH (2008) Spinal cord mechanisms of pain. Br J Anaesth 101:8–16

    Article  PubMed  Google Scholar 

  • Iadarola MJ, Douglass J, Civelli O et al (1988) Differential activation of spinal cord dynorphin and enkephalin neurons during hyperalgesia: evidence using cDNA hybridization. Brain Res 455:205–212

    Article  PubMed  CAS  Google Scholar 

  • Vanderah TW, Laughlin T, Lashbrook JM et al (1996) Single intrathecal injections of dynorphin A or des-Tyr-dynorphins produce long-lasting allodynia in rats: blockade by MK-801 but not naloxone. Pain 68:275–281

    Article  PubMed  CAS  Google Scholar 

  • Gardell LR, Ibrahim M, Wang R et al (2004) Mouse strains that lack spinal dynorphin upregulation after peripheral nerve injury do not develop neuropathic pain. Neuroscience 123:43–52

    Article  PubMed  CAS  Google Scholar 

  • Lamotte C, Pert CB, Snyder SH (1976) Opiate receptor binding in primate spinal cord: distribution and changes after dorsal root section. Brain Res 112:407–412

    Article  PubMed  CAS  Google Scholar 

  • Stein C, Hassan AH, Przewlocki R et al (1990) Opioids from immunocytes interact with receptors on sensory nerves to inhibit nociception in inflammation. Proc Natl Acad Sci USA 87:5935–5939

    Article  PubMed  CAS  Google Scholar 

  • Mousa SA, Straub RH, Schafer M et al (2007) Beta-endorphin, Met-enkephalin and corresponding opioid receptors within synovium of patients with joint trauma, osteoarthritis and rheumatoid arthritis. Ann Rheum Dis 66:871–879

    Article  PubMed  CAS  Google Scholar 

  • Yeung JC, Rudy TA (1980) Multiplicative interaction between narcotic agonisms expressed at spinal and supraspinal sites of antinociceptive action as revealed by concurrent intrathecal and intracerebroventricular injections of morphine. J Pharmacol Exp Ther 215:633–642

    PubMed  CAS  Google Scholar 

  • Rossi GC, Pasternak GW, Bodnar RJ (1993) Synergistic brainstem interactions for morphine analgesia. Brain Res 624:171–180

    Article  PubMed  CAS  Google Scholar 

  • Kolesnikov YA, Jain S, Wilson R et al (1996) Peripheral morphine analgesia: synergy with central sites and a target of morphine tolerance. J Pharmacol Exp Ther 279:502–506

    PubMed  CAS  Google Scholar 

  • Janssen PA (1965) The evolution of the butyrophenones, haloperidol, and trifluperidol, from meperidine-like 4-phenylpiperidines. Int Rev Neurobiol 8:221–263

    Article  PubMed  CAS  Google Scholar 

  • Monnier M, Sauer R, Hatt AM (1970) The activating effect of histamine on the central nervous system. Int Rev Neurobiol 12:265–305

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Chiang C, Alexinsky T (1991) Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Prog Brain Res 88:501–520

    Article  PubMed  CAS  Google Scholar 

  • Peyron C, Tighe DK, van den Pol AN et al (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015

    PubMed  CAS  Google Scholar 

  • Aghajanian GK (1982) Central noradrenergic neurons: a locus for the functional interplay between alpha-2 adrenoceptors and opiate receptors. J Clin Psychiatry 43:20–24

    PubMed  CAS  Google Scholar 

  • North RA, Williams JT (1985) On the potassium conductance increased by opioids in rat locus coeruleus neurones. J Physiol 364:265–280

    PubMed  CAS  Google Scholar 

  • Aghajanian GK (1978) Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by clonidine. Nature 276:186–188

    Article  PubMed  CAS  Google Scholar 

  • Kilduff TS, Peyron C (2000) The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci 23:359–365

    Article  PubMed  CAS  Google Scholar 

  • Georgescu D, Zachariou V, Barrot M et al (2003) Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J Neurosci 23:3106–3111

    PubMed  CAS  Google Scholar 

  • Li Y, van den Pol AN (2008) µ-opioid receptor–mediated depression of the hypothalamic hypocretin/orexin arousal system 1. J Neurosci 28:2814–2819

    Article  PubMed  CAS  Google Scholar 

  • Huang ZL, Qu WM, Li WD et al (2001) Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci USA 98:9965–9970

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Bendor J, Hofmann L et al (2006) µ-opioid receptor and orexin/hypocretin mRNA levels in the lateral hypothalamus and striatum are enhanced by morphine withdrawal. J Endocrinol 191:137–145

    Article  PubMed  CAS  Google Scholar 

  • Pattinson KT (2008) Opioids and the control of respiration. Br J Anaesth 100:747–758

    Article  PubMed  CAS  Google Scholar 

  • Weil JV, McCullough RE, Kline JS et al (1975) Diminished ventilatory response to hypoxia and hypercapnia after morphine in normal man. N Engl J Med 292:1103–1106

    Article  PubMed  CAS  Google Scholar 

  • Wharton J, Polak JM, Pearse AGE et al (1980) Enkephalin-, VIP- and substance P-like immunoreactivity in the carotid body. Nature 284:269–271

    Article  PubMed  CAS  Google Scholar 

  • Poole SL, Deuchars J, Lewis DI et al (2007) Subdivision-specific responses of neurons in the nucleus of the tractus solitarius to activation of µ-opioid receptors in the rat. J Neurophysiol 98:3060–3071

    Article  PubMed  CAS  Google Scholar 

  • Ling GSF, Spiegel K, Nishimura S et al (1983) Dissociation of morphine’s analgesic and respiratory depressant actions. Eur J Pharmacol 86:487–488

    Article  PubMed  CAS  Google Scholar 

  • Ling GSF, Spiegel K, Lockhart SH et al (1985) Separation of opioid analgesia from respiratory depression: evidence for different receptor mechanisms. J Pharmacol Exp Ther 232:149–155

    PubMed  CAS  Google Scholar 

  • Mutolo D, Bongianni F, Cinelli E et al (2008) Modulation of the cough reflex by antitussive agents within the caudal aspect of the nucleus tractus solitarii in the rabbit. Am J Physiol Regul Integr Comp Physiol 295:R243–R251

    Article  PubMed  CAS  Google Scholar 

  • Editorial (1969) Pharmacology and the punter. Nature 222:111–111

    Google Scholar 

  • Judson BA, Goldstein A (1978) Genetic control of opiate-induced locomotor activity in mice. J Pharmacol Exp Ther 206:56–60

    PubMed  CAS  Google Scholar 

  • Michael-Titus A, Dourmap N, Costentin J (1989) µ and delta opioid receptors control differently the horizontal and vertical components of locomotor activity in mice. Neuropeptides 13:235–242

    Article  PubMed  CAS  Google Scholar 

  • Beleskin DB, Samardzic R, Krstic SK (1982) β-Endorphin-induced psychomotor excitation in the cat. Physiol Behav 28:195–197

    Article  PubMed  CAS  Google Scholar 

  • Borison HL (1989) Area postrema: chemoreceptor circumventricular organ of the medulla oblongata. Prog Neurobiol 32:351–390

    Article  PubMed  CAS  Google Scholar 

  • Carpenter DO, Briggs DB, Strominger N (1984) Peptide-induced emesis in dogs. Br Brain Res 11:277–281

    Article  CAS  Google Scholar 

  • Bhandari P, Bingham S, Andrews PL (1992) The neuropharmacology of loperamide-induced emesis in the ferret: the role of the area postrema, vagus, opiate, and 5-HT3 receptors. Neuropharmacology 31:735–742

    Article  PubMed  CAS  Google Scholar 

  • Wynn RL, Essien E, Thut PD (1993) The effects of different antiemetic agents on morphine-induced emesis in ferrets. Eur J Pharmacol 241:47–54

    Article  PubMed  CAS  Google Scholar 

  • Howlett TA, Rees LH (1986) Endogenous opioid peptides and hypothalamo-pituitary function. Annu Rev Physiol 48:527–536

    Article  PubMed  CAS  Google Scholar 

  • Cicero TJ, Meyer ER, Gabriel SM et al (1980) Morphine exerts testosterone-like effects in the hypothalamus of the castrated male rat. Brain Res 202:151–164

    PubMed  CAS  Google Scholar 

  • Burks TF, Long JP (1967) Release of intestinal 5-hydroxytryptamine by morphine and related agents. J Pharmacol Exp Ther 156:267–276

    PubMed  CAS  Google Scholar 

  • Burks TF (1973) Mediation by 5-hydroxytryptamine of morphine stimulant actions in dog intestine. J Pharmacol Exp Ther 185:530–539

    PubMed  CAS  Google Scholar 

  • Heyman JS, Williams CL, Burks TF et al (1988) Dissociation of opioid antinociception and central gastrointestinal propulsion in the mouse: studies with naloxonazine. J Pharmacol Exp Ther 245:238–243

    PubMed  CAS  Google Scholar 

  • Paul D, Pasternak GW (1988) Differential blockade by naloxonazine of two d opiate actions: analgesia and inhibition of gastrointestinal transit. Eur J Pharmacol 149:403–404

    Article  PubMed  CAS  Google Scholar 

  • Dragonetti M, Bianchetti A, Sacilotto R et al (1983) Levallorphan methyl iodide (SR 58002), a potent narcotic antagonist with peripheral selectivity superior to that of other quaternary compounds. Life Sci 33(Suppl 1):477–480

    Article  CAS  PubMed  Google Scholar 

  • Fukuda H, Suenaga K, Tsuchida D et al (2006) The selective µ-opioid receptor antagonist, alvimopan, improves delayed GI transit of postoperative ileus in rats. Brain Res 1102:63–70

    Article  PubMed  CAS  Google Scholar 

  • Thomas J, Karver S, Cooney GA et al (2008) Methylnaltrexone for opioid–induced constipation in advanced illness. N Engl J Med 358:2332–2343

    Article  PubMed  CAS  Google Scholar 

  • Cox BM, Rosenberger JG, Douglass J (1987) Chromatographic characterization of dynorphin and [Leu5]enkephalin immunoreactivity in guinea pig and rat testis. Reg Peptides 19:1–12

    Article  CAS  Google Scholar 

  • Sheehan MJ, Hayes AG, Tyers MB (1988) Lack of evidence for ε-opioid receptors in the rat vas deferens. Eur J Pharmacol 154:237–245

    Article  PubMed  CAS  Google Scholar 

  • Weihe E, McKnight AT, Corbett AD et al (1985) Proenkephalin- and prodynorphin- derived opioid peptides in guinea-pig heart. Neuropeptides 5:453–456

    Article  PubMed  CAS  Google Scholar 

  • Gross GJ (2003) Role of opioids in acute and delayed preconditioning 294. J Mol Cell Cardiol 35:709–718

    Article  PubMed  CAS  Google Scholar 

  • Zatta AJ, Kin H, Yoshishige D et al (2008) Evidence that cardioprotection by postconditioning involves preservation of myocardial opioid content and selective opioid receptor activation. Am J Physiol Heart Circ Physiol 294:H1444–H1451

    Article  PubMed  CAS  Google Scholar 

  • Varvel JR, Shafer SL, Hwang SS et al (1989) Absorption characteristics of transdermally administered fentanyl. Anesthesiology 70:928–934

    Article  PubMed  CAS  Google Scholar 

  • Miller JW, Anderson HH (1954) The effect of N-demethylation on certain pharmacologic actions of morphine, codeine, and meperidine in the mouse. J Pharmacol Exp Ther 112:191–196

    PubMed  CAS  Google Scholar 

  • Christrup LL (1997) Morphine metabolites. Acta Anaesthesiol Scand 41:116–122

    Article  PubMed  CAS  Google Scholar 

  • Ramirez J, Innocenti F, Schuetz EG et al (2004) CYP2B6, CYP3A4, and CYP2C19 are responsible for the in vitro N-demethylation of meperidine in human liver microsomes. Drug Metab Dispos 32:930–936

    PubMed  CAS  Google Scholar 

  • Ferrari A, Coccia CP, Bertolini A et al (2004) Methadone – metabolism, pharmacokinetics and interactions. Pharmacol Res 50:551–559

    Article  PubMed  CAS  Google Scholar 

  • Sindrup SH, Brosen K (1995) The pharmacogenetics of codeine hypoalgesia. Pharmacogenetics 5:335–346

    Article  PubMed  CAS  Google Scholar 

  • Paul D, Standifer KM, Inturrisi CE et al (1989) Pharmacological characterization of morphine-6B-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther 251:477–483

    PubMed  CAS  Google Scholar 

  • Thompson SJ, Koszdin K, Bernards CM (2000) Opiate-induced analgesia is increased and prolonged in mice lacking P-glycoprotein. Anesthesiology 92:1392–1399

    Article  PubMed  CAS  Google Scholar 

  • Hamabe W, Maeda T, Kiguchi N et al (2007) Negative relationship between morphine analgesia and P-glycoprotein expression levels in the brain. J Pharmacol Sci 105:353–360

    Article  PubMed  CAS  Google Scholar 

  • Kalvass JC, Olson ER, Cassidy MP et al (2007) Pharmacokinetics and pharmacodynamics of seven opioids in P-glycoprotein–competent mice: assessment of unbound brain EC50, u and correlation of in vitro, preclinical, and clinical data. J Pharmacol Exp Ther 323:346–355

    Article  PubMed  CAS  Google Scholar 

  • Aquilante CL, Letrent SP, Pollack GM et al (1999) Increased brain P-glycoprotein in morphine tolerant rats. Life Sci 66:L47–L51

    Article  Google Scholar 

  • King M, Su W, Chang A et al (2001) Transport of opioids from the brain to the periphery by P-glycoprotein: peripheral actions of central drugs. Nat Neurosci 4:268–274

    Article  PubMed  CAS  Google Scholar 

  • Schinkel AH, Wagenaar E, Mol CAAM et al (1996) P-glycoprotein in the blood–barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 97:2517–2524

    Article  PubMed  CAS  Google Scholar 

  • Ross JR, Riley J, Taegetmeyer AB et al (2008) Genetic variation and response to morphine in cancer patients: catechol-O-methyltransferase and multidrug resistance-1 gene polymorphisms are associated with central side effects. Cancer 112:1390–1403

    Article  PubMed  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4