A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/978-1-4939-7704-8_3 below:

Systems Biology Methods for Alzheimer’s Disease Research Toward Molecular Signatures, Subtypes, and Stages and Precision Medicine: Application in Cohort Studies and Trials

  • Castrillo JI, Oliver SG (2011) Yeast systems biology. Methods and protocols. Methods in molecular biology 759 (MiMB series. Editor-in-chief. Prof. John M. Walker). Humana Press/Springer, New York

    Google Scholar 

  • Castrillo JI, Oliver SG (2016a) Alzheimer’s as a systems-level disease involving the interplay of multiple cellular networks. Methods Mol Biol 1303:3–48

    Article  PubMed  Google Scholar 

  • Castrillo JI, Oliver SG (2016b) Systems biology of Alzheimer’s disease. Methods in molecular biology (MiMB) series. Humana Press/Springer, New York

    Book  Google Scholar 

  • Chen R, Mias GI, Li-Pook-Than J et al (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148:1293–1307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castrillo JI, Pir P, Oliver SG (2013) Yeast systems biology: towards a systems understanding of regulation of eukaryotic networks in complex diseases and biotechnology. In: Walhout M, Vidal M, Dekker J (eds) Handbook of systems biology. Elsevier, New York, pp 343–365

    Chapter  Google Scholar 

  • Walhout M, Vidal M, Dekker J (2013) Handbook of systems biology. Elsevier, New York

    Google Scholar 

  • Kosik KS (2015) Personalized medicine for effective Alzheimer disease treatment. JAMA Neurol 72:497–498

    Article  PubMed  Google Scholar 

  • Montine TJ, Montine KS (2015) Precision medicine: clarity for the clinical and biological complexity of Alzheimer’s and Parkinson’s diseases. J Exp Med 212:601–605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovacs GG (2016) Molecular pathological classification of neurodegenerative diseases: turning towards precision medicine. Int J Mol Sci 17:pii: E189

    Article  CAS  Google Scholar 

  • Reitz C (2016) Toward precision medicine in Alzheimer’s disease. Ann Transl Med 4:107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swanton C, Soria JC, Bardelli A et al (2016) Consensus on precision medicine for metastatic cancers: a report from the MAP conference. Ann Oncol 27:1443–1448

    Article  PubMed  CAS  Google Scholar 

  • Hampel H, O’Bryant SE, Castrillo JI et al (2016) Precision medicine - the golden gate to detect, prevent and cure Alzheimer’s disease. J Prev Alz Dis 3:243–259

    CAS  Google Scholar 

  • Hampel H, O’Bryant SE, Durrleman S, Alzheimer Precision Medicine Initiative et al (2017) A precision medicine initiative for Alzheimer’s disease: the road ahead to biomarker-guided integrative disease modeling. Climacteric 20:107–118

    Article  PubMed  CAS  Google Scholar 

  • Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372:793–795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    Article  PubMed  CAS  Google Scholar 

  • Berg J (2016) Gene-environment interplay. Science 354:15

    Article  PubMed  CAS  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  PubMed  CAS  Google Scholar 

  • Castrillo JI, Oliver SG (2006) Metabolomics and systems biology in Saccharomyces cerevisiae. In: Karl Esser K (ed) The mycota. A comprehensive treatise on fungi as experimental systems for basic and applied research, Fungal genomics, vol XIII. Springer, New York, pp 3–18

    Google Scholar 

  • Castrillo JI, Oliver SG (2014) Yeast as a model for systems Biology studies on complex Diseases. In: Nowrousian M (ed) The mycota. A comprehensive treatise on fungi as experimental systems for basic and applied research. Fungal genomics, 2nd edn (Karl Esser, Series Editor). Springer, Berlin, pp 3–30

    Google Scholar 

  • Hampel H, Frank R, Broich K et al (2010) Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 9:560–574

    Article  PubMed  CAS  Google Scholar 

  • Hampel H, Lista S, Khachaturian ZS (2012) Development of biomarkers to chart all Alzheimer’s disease stages: the royal road to cutting the therapeutic Gordian Knot. Alzheimers Dement 8:312–336

    Article  PubMed  CAS  Google Scholar 

  • Hampel H, Lista S (2013) Use of biomarkers and imaging to assess pathophysiology, mechanisms of action and target engagement. J Nutr Health Aging 17:54–63

    Article  PubMed  CAS  Google Scholar 

  • Hampel H, Lista S, Teipel SJ et al (2014) Perspective on future role of biological markers in clinical therapy trials of Alzheimer’s disease: a long-range point of view beyond 2020. Biochem Pharmacol 88:426–449

    Article  PubMed  CAS  Google Scholar 

  • Lista S, Emanuele E (2011) Role of amyloid β1-42 and neuroimaging biomarkers in Alzheimer’s disease. Biomark Med 5:411–413

    Article  PubMed  CAS  Google Scholar 

  • Lista S, Garaci FG, Ewers M et al (2014) CSF Aβ1-42 combined with neuroimaging biomarkers in the early detection, diagnosis and prediction of Alzheimer’s disease. Alzheimers Dement 10:381–392

    Article  PubMed  Google Scholar 

  • Zetzsche T, Rujescu D, Hardy J, Hampel H (2010) Advances and perspectives from genetic research: development of biological markers in Alzheimer’s disease. Expert Rev Mol Diagn 10:667–690

    Article  PubMed  CAS  Google Scholar 

  • Bertram L, Hampel H (2011) The role of genetics for biomarker development in neurodegeneration. Prog Neurobiol 95:501–504

    Article  PubMed  CAS  Google Scholar 

  • Hampel H, Lista S (2012) Alzheimer disease: from inherited to sporadic AD-crossing the biomarker bridge. Nat Rev Neurol 8:598–600

    Article  PubMed  Google Scholar 

  • Lista S, O’Bryant SE, Blennow K et al (2015) Biomarkers in sporadic and familial Alzheimer’s disease. J Alzheimers Dis 47:291–317

    Article  PubMed  Google Scholar 

  • Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6:131–144

    Article  PubMed  CAS  Google Scholar 

  • Blennow K, Dubois B, Fagan AM et al (2015) Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer’s disease. Alzheimers Dement 11:58–69

    Article  PubMed  Google Scholar 

  • Ghidoni R, Benussi L, Paterlini A et al (2011) Cerebrospinal fluid biomarkers for Alzheimer’s disease: the present and the future. Neurodegener Dis 8:413–420

    Article  PubMed  CAS  Google Scholar 

  • Ewers M, Mattsson N, Minthon L et al (2015) CSF biomarkers for the differential diagnosis of Alzheimer’s disease: a large-scale international multicenter study. Alzheimers Dement 11:1306–1315

    Article  PubMed  Google Scholar 

  • Lista S, Faltraco F, Prvulovic D, Hampel H (2013) Blood and plasma-based proteomic biomarker research in Alzheimer’s disease. Prog Neurobiol 101–102:1–17

    Article  PubMed  CAS  Google Scholar 

  • Lista S, Faltraco F, Hampel H (2013) Biological and methodical challenges of blood-based proteomics in the field of neurological research. Prog Neurobiol 101–102:18–34

    Article  PubMed  CAS  Google Scholar 

  • O’Bryant SE, Lista S, Rissman RA et al (2015) Comparing biological markers of Alzheimer’s disease across blood fraction and platforms: comparing apples to oranges. Alzheimers Dement (Amst) 3:27–34

    Google Scholar 

  • O’Bryant SE, Gupta V, Henriksen K, STAR-B and BBBIG Working Groups et al (2015) Guidelines for the standardization of preanalytic variables for blood-based biomarker studies in Alzheimer’s disease research. Alzheimers Dement 11:549–560

    Article  PubMed  Google Scholar 

  • O’Bryant SE, Mielke MM, Rissman RA et al (2017) Biofluid based biomarker professional interest area. Blood-based biomarkers in Alzheimer disease: current state of the science and a novel collaborative paradigm for advancing from discovery to clinic. Alzheimers Dement 13:45–58

    Article  PubMed  Google Scholar 

  • Ewers M, Sperling RA, Klunk WE et al (2011) Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia. Trends Neurosci 34:430–442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teipel SJ, Grothe M, Lista S et al (2013) Relevance of magnetic resonance imaging for early detection and diagnosis of Alzheimer disease. Med Clin North Am 97:399–424

    Article  PubMed  Google Scholar 

  • Villa A (2016) Book review (Systems biology of Alzheimer’s disease. Castrillo JI, Oliver SG (eds). Humana, Springer, New York, 2016). J Alzheimers Dis 50(4):1255–1256

    Article  Google Scholar 

  • Braak H, Braak E, Bohl J, Bratzke H (1998) Evolution of Alzheimer’s disease related cortical lesions. J Neural Transm Suppl 54:97–106

    Article  PubMed  CAS  Google Scholar 

  • Yankner BA, Lu T, Loerch P (2008) The aging brain. Annu Rev Pathol 3:41–66

    Article  PubMed  CAS  Google Scholar 

  • Wood H (2014) Alzheimer disease: functional connectivity changes show similar trajectories in autosomal dominant and sporadic Alzheimer disease. Nat Rev Neurol 10:483

    Article  PubMed  Google Scholar 

  • Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403

    Article  PubMed  CAS  Google Scholar 

  • Acosta-Baena N, Sepulveda-Falla D, Lopera-Gómez CM et al (2011) Pre-dementia clinical stages in presenilin 1 E280A familial early-onset Alzheimer’s disease: a retrospective cohort study. Lancet Neurol 10:213–220

    Article  PubMed  CAS  Google Scholar 

  • Waring SC, Rosenberg RN (2008) Genome-wide association studies in Alzheimer disease. Arch Neurol 65:329–334

    Article  PubMed  Google Scholar 

  • Alzheimer’s Society UK (2014) What is Alzheimer’s disease? Alzheimers.org.uk. https://www.alzheimers.org.uk/download/downloads/id/3379/what_is_alzheimers_disease.pdf

  • Strittmatter WJ, Saunders AM, Schmechel D et al (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90:1977–1981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guerreiro R, Brás J, Hardy J (2013) SnapShot: genetics of Alzheimer’s disease. Cell 155:968–968.e1

    Article  PubMed  CAS  Google Scholar 

  • Budson AE, Kowall NW (2011) The handbook of Alzheimer’s disease and other dementias. Willey-Blackwell, New York

    Book  Google Scholar 

  • Eisenstein M (2011) Genetics: finding risk factors. Nature 475:S20–S22. http://www.nature.com/nature/journal/v475/n7355_supp/full/475S20a.html

    Article  PubMed  CAS  Google Scholar 

  • Benitez BA, Jin SC, Guerreiro R et al (2014) Missense variant in TREML2 protects against Alzheimer’s disease. Neurobiol Aging 35:1510.e19–1510.e26

    Article  CAS  Google Scholar 

  • St George-Hyslop PH, Petit A (2005) Molecular biology and genetics of Alzheimer’s disease. C R Biol 328:119–130

    Article  PubMed  CAS  Google Scholar 

  • Morgan K, Carrasquillo MM (2013) Genetic variants in Alzheimer’s disease. Springer, New York

    Book  Google Scholar 

  • Karch CM, Cruchaga C, Goate AM (2014) Alzheimer’s disease genetics: from the bench to the clinic. Neuron 83:11–26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Novarino G, Fenstermaker AG, Zaki MS et al (2014) Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science 343:506–511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanzi RE (2014) Decoding Alzheimer’s in the age of genome-wide analyses. Mol Neurodeg 8(Suppl 1):O1

    Google Scholar 

  • Bertram L (2016) Next generation sequencing in Alzheimer’s disease. Methods Mol Biol 1303:281–297

    Article  PubMed  Google Scholar 

  • Jin SC, Benitez BA, Deming Y, Cruchaga C (2016) Pooled-DNA sequencing for elucidating new genomic risk factors, rare variants underlying Alzheimer’s disease. Methods Mol Biol 1303:299–314

    Article  PubMed  Google Scholar 

  • Szigeti K (2016) New genome-wide methods for elucidation of candidate copy number variations (CNVs) contributing to Alzheimer’s disease heritability. Methods Mol Biol 1303:315–326

    Article  PubMed  Google Scholar 

  • Rader DJ, Damrauer SM (2016) “Pheno”menal value for human health. Science 354:1534–1536

    Article  PubMed  CAS  Google Scholar 

  • Huddleston J, Chaisson MJ, Meltz Steinberg K et al (2017) Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Res 27:677–685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seo JS, Rhie A, Kim J et al (2016) De novo assembly and phasing of a Korean human genome. Nature 538:243–247

    Article  PubMed  CAS  Google Scholar 

  • Chiang C, Scott AJ, Davis JR et al (2017) The impact of structural variation on human gene expression. Nat Genet 49(5):692–699. https://doi.org/10.1038/ng.3834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weisenfeld NI, Kumar V, Shah P et al (2017) Direct determination of diploid genome sequences. Genome Res 27(5):757–767. https://doi.org/10.1101/gr.214874.116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bickhart DM, Rosen BD, Koren S et al (2017) Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat Genet 49:643–650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Worley KC (2017) A golden goat genome. Nat Genet 49:485–486

    Article  PubMed  CAS  Google Scholar 

  • Dudchenko O, Batra SS, Omer AD et al (2017) De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356(6333):92–95. https://doi.org/10.1126/science.aal3327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Check Hayden E (2016) A radical revision of human genetics. Nature 53:154–157

    Google Scholar 

  • Patra B, Kon Y, Yadav G et al (2017) A genome wide dosage suppressor network reveals genomic robustness. Nucleic Acids Res 45:255–270

    Article  PubMed  CAS  Google Scholar 

  • Lek M, Karczewski KJ, Minikel EV, Exome Aggregation Consortium et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cummings BB, Marshall JL, Tukiainen T et al (2017) Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci Transl Med 9(386). https://doi.org/10.1126/scitranslmed.aal5209

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker-Nigh AT, Mawuenyega KG, Bollinger JG et al (2016) Human central nervous system (CNS) ApoE isoforms are increased by age, differentially altered by amyloidosis, and relative amounts reversed in the CNS compared with plasma. J Biol Chem 291:27204–27218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang YA, Zhou B, Wernig M, Südhof TC (2017) ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Aβ secretion. Cell 168:427–441.e21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klann TS, Black JB, Chellappan M et al (2017) CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat Biotechnol 35:561–568. https://doi.org/10.1038/nbt.3853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McConnell MJ, Moran JV, Abyzov A, The Brain Somatic Mosaicism Network et al (2017) Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network. Science 356(6336). https://doi.org/10.1126/science.aal1641

  • Van der Flier WM (2016) Clinical heterogeneity in familial Alzheimer’s disease. Lancet Neurol 15:1296–1298

    Article  PubMed  Google Scholar 

  • Hatami A, Monjazeb S, Milton S, Glabe CG (2017) Familial Alzheimer’s disease mutations within the amyloid precursor protein alter the aggregation and conformation of the amyloid-β peptide. J Biol Chem 292:3172–3185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Senthil G, Dutka T, Bingaman L, Lehner T (2017) Genomic resources for the study of neuropsychiatric disorders. Mol Psychiatry 22:1659–1663. https://doi.org/10.1038/mp.2017.29

    Article  PubMed  CAS  Google Scholar 

  • Litton JE (2017) We must urgently clarify data-sharing rules. Nature 541:437

    Article  PubMed  CAS  Google Scholar 

  • Editorial (2016) The power of big data must be harnessed for medical progress. Nature 539:467–468

    Google Scholar 

  • Auffray C, Balling R, Barroso I et al (2016) Making sense of big data in health research: towards an EU action plan. Genome Med 8:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dubois B, Feldman HH, Jacova C et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13:614–629

    Article  PubMed  Google Scholar 

  • Mar J, Soto-Gordoa M, Arrospide A, Moreno-Izco F, Martínez-Lage P (2015) Fitting the epidemiology and neuropathology of the early stages of Alzheimer’s disease to prevent dementia. Alzheimers Res Ther 7(1):2. https://doi.org/10.1186/s13195-014-0079-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Jack CR Jr, Bennett DA, Blennow K et al (2016) A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87:539–547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jack CR Jr, Wiste HJ, Weigand SD et al (2017) Age-specific and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50–95 years: a cross-sectional study. Lancet Neurol 16:435–444. https://doi.org/10.1016/S1474-4422(17)30077-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson KA, Minoshima S, Bohnen NI et al (2013) Appropriate use criteria for amyloid PET: a report of the amyloid imaging task force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. Alzheimers Dement 9:e-1–e16

    Article  Google Scholar 

  • Mak E, Gabel S, Mirette H et al (2016) Structural neuroimaging in preclinical dementia: from microstructural deficits and grey matter atrophy to macroscale connectomic changes. Ageing Res Rev 35:250–264. https://doi.org/10.1016/j.arr.2016.10.001

    Article  PubMed  Google Scholar 

  • Nichols TE, Das S, Eickhoff SB et al (2017) Best practices in data analysis and sharing in neuroimaging using MRI. Nat Neurosci 20:299–303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sepulcre J, Masdeu JC (2016) Advanced neuroimaging methods towards characterization of early stages of Alzheimer’s disease. Methods Mol Biol 1303:509–519

    Article  PubMed  Google Scholar 

  • Masdeu JC (2017) Future directions in imaging neurodegeneration. Curr Neurol Neurosci Rep 17:9

    Article  PubMed  CAS  Google Scholar 

  • Sepulcre J, Grothe MJ, Sabuncu M et al (2017) Hierarchical organization of tau and amyloid deposits in the cerebral cortex. JAMA Neurol 74:813–820. https://doi.org/10.1001/jamaneurol.2017.0263

    Article  PubMed  PubMed Central  Google Scholar 

  • Vemuri P, Schöll M (2017) Linking amyloid-β and tau deposition in Alzheimer disease. JAMA Neurol 74:766–768. https://doi.org/10.1001/jamaneurol.2017.0323

    Article  PubMed  Google Scholar 

  • Matsuda H, Asada T, Tokumaru AM (2017) Neuroimaging diagnosis for Alzheimer’s disease and other dementias. Springer, Tokyo

    Book  Google Scholar 

  • Fan Z, Brooks DJ, Okello A, Edison P (2017) An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain 140:792–803. https://doi.org/10.1093/brain/aww349

    Article  PubMed  PubMed Central  Google Scholar 

  • Pickett EK, Henstridge CM, Allison E et al (2017) Spread of tau down neural circuits precedes synapse and neuronal loss in the rTgTauEC mouse model of early Alzheimer’s disease. Synapse. https://doi.org/10.1002/syn.21965

  • Brosch JR, Farlow MR, Risacher SL, Apostolova LG (2017) Tau imaging in Alzheimer’s disease diagnosis and clinical trials. Neurotherapeutics 14:62–68

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Benzinger TL, Su Y et al (2016) Evaluation of tau imaging in staging Alzheimer disease and revealing interactions between β-amyloid and tauopathy. JAMA Neurol 73:1070–1077

    Article  PubMed  PubMed Central  Google Scholar 

  • Park JY, Na HK, Kim S, The Alzheimer’s Disease Neuroimaging Initiative et al (2017) Robust identification of Alzheimer’s disease subtypes based on cortical atrophy patterns. Sci Rep 7:43270

    Article  PubMed  PubMed Central  Google Scholar 

  • Ossenkoppele R, Schonhaut DR, Schöll M et al (2016) Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 139:1551–1567

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia C, Makaretz SJ, Caso C et al (2017) Association of in vivo [18F]AV-1451 tau PET imaging results with cortical atrophy and symptoms in typical and atypical Alzheimer disease. JAMA Neurol 74:427–436. https://doi.org/10.1001/jamaneurol.2016.5755

    Article  PubMed  PubMed Central  Google Scholar 

  • Masdeu JC (2017b) Tau and cortical thickness in Alzheimer disease. JAMA Neurol 74:390–392. https://doi.org/10.1001/jamaneurol.2016.5701

    Article  PubMed  Google Scholar 

  • Qian J, Hyman BT, Betensky RA (2017) Neurofibrillary tangle stage and the rate of progression of Alzheimer symptoms: Modeling using an autopsy cohort and application to clinical trial design. JAMA Neurol 74:540–548. https://doi.org/10.1001/jamaneurol.2016.5953

    Article  PubMed  PubMed Central  Google Scholar 

  • Perneczky R, Tene O, Attems J et al (2016) Is the time ripe for new diagnostic criteria of cognitive impairment due to cerebrovascular disease? Consensus report of the international congress on vascular dementia working group. BMC Med 14:162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan J, Li QX, Evin G (2016) Effects of mild and severe oxidative stress on BACE1 expression and APP amyloidogenic processing. Methods Mol Biol 1303:101–116

    Article  PubMed  Google Scholar 

  • García-Osta A, Cuadrado-Tejedor M (2016) Advanced assay monitoring APP-carboxyl-terminal fragments as markers of APP processing in Alzheimer disease mouse models. Methods Mol Biol 1303:117–123

    Article  PubMed  Google Scholar 

  • Pinotsi D, Kaminski Schierle GS, Kaminski CF (2016) Optical super-resolution imaging of β-amyloid aggregation in vitro and in vivo: method and techniques. Methods Mol Biol 1303:125–141

    Article  PubMed  Google Scholar 

  • Rábano A, Cuadros R, Merino-Serráis P et al (2016) Protocols for monitoring the development of tau pathology in Alzheimer’s disease. Methods Mol Biol 1303:143–160

    Article  PubMed  Google Scholar 

  • Kaufman SK, Sanders DW, Thomas TL et al (2016) Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo. Neuron 92:796–812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hetz C, Mollereau B (2014) Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 15:233–249

    Article  PubMed  CAS  Google Scholar 

  • Streeter A, Menzies FM, Rubinsztein DC (2016) LC3-II tagging and western blotting for monitoring autophagic activity in mammalian cells. Methods Mol Biol 1303:161–170

    Article  PubMed  Google Scholar 

  • Feng T, Tammineni P, Agrawal C et al (2017) Autophagy-mediated regulation of BACE1 protein trafficking and degradation. J Biol Chem 292:1679–1690

    Article  PubMed  CAS  Google Scholar 

  • Grimm A, Schmitt K, Eckert A (2016) Advanced mitochondrial respiration assay for evaluation of mitochondrial dysfunction in Alzheimer’s disease. Methods Mol Biol 1303:171–183

    Article  PubMed  Google Scholar 

  • Gomez-Nicola D, Perry VH (2016) Analysis of microglial proliferation in Alzheimer’s disease. Methods Mol Biol 1303:185–193

    Article  PubMed  Google Scholar 

  • Masters SL, O’Neill LA (2011) Disease-associated amyloid and misfolded protein aggregates activate the inflammasome. Trends Mol Med 17:276–282

    Article  PubMed  CAS  Google Scholar 

  • McManus RM, Heneka MT (2017) Role of neuroinflammation in neurodegeneration: new insights. Alzheimers Res Ther 9:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jessen NA, Munk AS, Lundgaard I, Nedergaard M (2015) The glymphatic system: a beginner’s guide. Neurochem Res 40:2583–2599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeppenfeld DM, Simon M, Haswell JD et al (2017) Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol 74:91–99

    Article  PubMed  Google Scholar 

  • Tosto G, Reitz C (2016) Use of “omics” technologies to dissect neurologic disease. Handb Clin Neurol 138:91–106

    Article  PubMed  CAS  Google Scholar 

  • Chen BJ, Mills JD, Janitz C, Janitz M (2016) RNA-sequencing to elucidate early patterns of dysregulation underlying the onset of Alzheimer’s disease. Methods Mol Biol 1303:327–347

    Article  PubMed  Google Scholar 

  • Roth W, Hecker D, Fava E (2016) Systems biology approaches to the study of biological networks underlying Alzheimer’s disease: role of miRNAs. Methods Mol Biol 1303:349–377

    Article  PubMed  Google Scholar 

  • Pichler S, Gu W, Hartl D et al (2017) The miRNome of Alzheimer’s disease: consistent downregulation of the miR-132/212 cluster. Neurobiol Aging 50:167.e1–167.e10

    Article  CAS  Google Scholar 

  • Bai B, Hales CM, Chen PC et al (2013) U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer’s disease. Proc Natl Acad Sci U S A 110:16562–16567

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin X, Jin N, Shi J et al (2017) Dyrk1A overexpression leads to increase of 3R-tau expression and cognitive deficits in Ts65Dn Down syndrome mice. Sci Rep 7(1):619. https://doi.org/10.1038/s41598-017-00682-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Hare DJ, Rembach A, Roberts BR (2016) The emerging role of metalloproteomics in Alzheimer’s disease research. Methods Mol Biol 1303:379–389

    Article  PubMed  Google Scholar 

  • Di Domenico F, Perluigi M, Butterfield DA (2016) Redox proteomics in human biofluids: sample preparation, separation and immunochemical tagging for analysis of protein oxidation. Methods Mol Biol 1303:391–403

    Article  PubMed  Google Scholar 

  • Nuzzo D, Inguglia L, Walters J et al (2017) A shotgun proteomics approach reveals a new toxic role for Alzheimer’s disease Aβ peptide: Spliceosome impairment. J Proteome Res 16:1526–1541. https://doi.org/10.1021/acs.jproteome.6b00925

    Article  PubMed  CAS  Google Scholar 

  • Reinders J (2016) Proteomics in systems biology. Methods and protocols, Methods in molecular biology (MIMB) series. Humana Press/Springer, New York

    Book  Google Scholar 

  • Perneczky R, Guo LH (2016) Plasma proteomics biomarkers in Alzheimer’s disease: latest advances and challenges. Methods Mol Biol 1303:521–529

    Article  PubMed  Google Scholar 

  • Bai B, Chen PC, Hales CM et al (2014) Integrated approaches for analyzing U1-70K cleavage in Alzheimer’s disease. J Proteome Res 13:4526–4534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hales CM, Seyfried NT, Dammer EB et al (2014a) U1 small nuclear ribonucleoproteins (snRNPs) aggregate in Alzheimer’s disease due to autosomal dominant genetic mutations and trisomy 21. Mol Neurodegener 9:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hales CM, Dammer EB, Diner I et al (2014b) Aggregates of small nuclear ribonucleic acids (snRNAs) in Alzheimer’s disease. Brain Pathol 24:344–351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaddurah-Daouk R, Krishnan KR (2009) Metabolomics: a global biochemical approach to the study of central nervous system diseases. Neuropsychopharmacology 34:173–186

    Article  PubMed  CAS  Google Scholar 

  • Kaddurah-Daouk R, Zhu H, Sharma S, Pharmacometabolomics Research Network et al (2013) Alterations in metabolic pathways and networks in Alzheimer’s disease. Transl Psychiatry 3:e244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toledo JB, Arnold M, Kastenmüller G, The Alzheimer’s Disease Neuroimaging Initiative and the Alzheimer Disease Metabolomics Consortium et al (2017) Metabolic network failures in Alzheimer’s disease-A biochemical road map. Alzheimers Dement 13:965–984. https://doi.org/10.1016/j.jalz.2017.01.020

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Han X (2016) Advanced shotgun lipidomics for characterization of altered lipid patterns in neurodegenerative diseases and brain injury. Methods Mol Biol 1303:405–422

    Article  PubMed  PubMed Central  Google Scholar 

  • Proitsi P, Kim M, Whiley L et al (2017) Association of blood lipids with Alzheimer’s disease: a comprehensive lipidomics analysis. Alzheimers Dement 13:140–151

    Article  PubMed  Google Scholar 

  • Huttlin EL, Bruckner RJ, Paulo JA et al (2017) Architecture of the human interactome defines protein communities and disease networks. Nature 545:505–509. https://doi.org/10.1038/nature22366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bennett RE, DeVos SL, Dujardin S et al (2017) Enhanced tau aggregation in the presence of amyloid β. Am J Pathol 187:1601–1612. https://doi.org/10.1016/j.ajpath.2017.03.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kikuchi M, Ogishima S, Mizuno S et al (2016) Network-based analysis for uncovering mechanisms underlying Alzheimer’s disease. Methods Mol Biol 1303:479–491

    Article  PubMed  Google Scholar 

  • Yerbury J, Bean D, Favrin G (2016) Network approaches to the understanding of Alzheimer’s disease: from model organisms to humans. Methods Mol Biol 1303:447–458

    Article  PubMed  Google Scholar 

  • Zanzoni A (2016) A computational network biology approach to uncover novel genes related to Alzheimer’s disease. Methods Mol Biol 1303:435–446

    Article  PubMed  Google Scholar 

  • Zhang B, Tran L, Emilsson V, Zhu J (2016) Characterization of genetic networks associated with Alzheimer’s disease. Methods Mol Biol 1303:459–477

    Article  PubMed  Google Scholar 

  • Christianson JC, Olzmann JA, Shaler TA et al (2011) Defining human ERAD networks through an integrative mapping strategy. Nat Cell Biol 14:93–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kikuchi M, Ogishima S, Miyamoto T et al (2013) Identification of unstable network modules reveals disease modules associated with the progression of Alzheimer’s disease. PLoS One 8:e76162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gitter A, Bar-Joseph Z (2016) The SDREM method for reconstructing signaling and regulatory response networks: applications for studying disease progression. Methods Mol Biol 1303:493–506

    Article  PubMed  Google Scholar 

  • Genolini C, Ecochard R, Benghezal M et al (2016) kmlShape: an efficient method to cluster longitudinal data (time-series) according to their shapes. PLoS One 11:e0150738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verduyckt M, Vignaud H, Bynens T et al (2016) Yeast as a model for Alzheimer’s disease: latest studies and advanced strategies. Methods Mol Biol 1303:197–215

    Article  PubMed  Google Scholar 

  • Porzoor A, Macreadie I (2016) Yeast as a model for studies on Aβ aggregation toxicity in Alzheimer’s disease, autophagic responses, and drug screening. Methods Mol Biol 1303:217–226

    Article  PubMed  Google Scholar 

  • Lim JY, Ott S, Crowther DC (2016) Drosophila melanogaster as a model for studies on the early stages of Alzheimer’s disease. Methods Mol Biol 1303:227–239

    Article  PubMed  Google Scholar 

  • Cuadrado-Tejedor M, García-Osta A (2016) Chronic mild stress assay leading to early onset and propagation of Alzheimer’s disease phenotype in mouse models. Methods Mol Biol 1303:241–246

    Article  PubMed  Google Scholar 

  • Lu M, Lawrence DA, Marsters S (2014b) Cell death. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science 345:98–101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abisambra JF, Jinwal UK, Blair LJ et al (2013) Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation. J Neurosci 33:9498–9507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou L, McInnes J, Wierda K et al (2017) Tau association with synaptic vesicles causes presynaptic dysfunction. Nat Commun 8:15295. https://doi.org/10.1038/ncomms15295

    Article  PubMed  PubMed Central  Google Scholar 

  • Kazim SF, Blanchard J, Bianchi R, Iqbal K (2017) Early neurotrophic pharmacotherapy rescues developmental delay and Alzheimer’s-like memory deficits in the Ts65Dn mouse model of Down syndrome. Sci Rep 7:45561. https://doi.org/10.1038/srep45561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weick JP, Kang H, Bonadurer GF 3rd, Bhattacharyya A (2016) Gene expression studies on human Trisomy 21 iPSCs and neurons: towards mechanisms underlying Down’s syndrome and early Alzheimer’s disease-like pathologies. Methods Mol Biol 1303:247–265

    Article  PubMed  Google Scholar 

  • Saurat NG, Livesey FJ, Moore S (2016) Cortical differentiation of human pluripotent cells for in vitro modeling of Alzheimer’s disease. Methods Mol Biol 1303:267–278

    Article  PubMed  Google Scholar 

  • Choi SH, Kim YH, Hebisch M et al (2014) A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515:274–278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi SH, Kim YH, Quinti L et al (2016) 3D culture models of Alzheimer’s disease: a road map to a “cure-in-a-dish”. Mol Neurodegener 11:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Camp JG, Treutlein B (2017) Human development: advances in mini-brain technology. Nature 545:39–40. https://doi.org/10.1038/545039a

    Article  PubMed  CAS  Google Scholar 

  • Koo T, Lee J, Kim JS (2015) Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9. Mol Cells 38:475–481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmid-Burgk JL, Chauhan D, Schmidt T et al (2016) A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation. J Biol Chem 291:103–109

    Article  PubMed  CAS  Google Scholar 

  • Paquet D, Kwart D, Chen A et al (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533:125–129

    Article  PubMed  CAS  Google Scholar 

  • Mungenast AE, Siegert S, Tsai LH (2016) Modeling Alzheimer’s disease with human induced pluripotent stem (iPS) cells. Mol Cell Neurosci 73:13–31

    Article  PubMed  CAS  Google Scholar 

  • Owens B (2012) Genomics: the single life. Nature 491:27–29

    Article  PubMed  CAS  Google Scholar 

  • Single-cell technology Focus Issue (2016) In this issue. Nat Biotechnol 34:vii. doi: https://doi.org/10.1038/nbt.3732

  • De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164:603–615

    Article  PubMed  CAS  Google Scholar 

  • Ledford H (2017) The race to map the human body - one cell at a time. Nature 542:404–405

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Mizuno T, Sridharan A et al (2016) Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight 1:e90558

    Article  PubMed  PubMed Central  Google Scholar 

  • Frazer S, Prados J, Niquille M et al (2017) Transcriptomic and anatomic parcellation of 5-HT(3A)R expressing cortical interneuron subtypes revealed by single-cell RNA sequencing. Nat Commun 8:14219. https://doi.org/10.1038/ncomms14219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pavličev M, Wagner GP, Chavan AR et al (2017) Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface. Genome Res 27:349–361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zenobi R (2013) Single-cell metabolomics: analytical and biological perspectives. Science 342:1243259

    Article  PubMed  CAS  Google Scholar 

  • Clyde D (2017) Technique: barcoding the nucleus. Nat Rev Genet 18:4–211. https://doi.org/10.1038/nrg.2017.11

    Article  CAS  Google Scholar 

  • Ofengeim D, Giagtzoglou N, Huh D et al (2017) Single-cell RNA sequencing: unraveling the brain one cell at a time. Trends Mol Med 23:563–576. https://doi.org/10.1016/j.molmed.2017.04.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang Y, Li K, Riecken K et al (2016) Long-term in vivo single-cell tracking reveals the switch of migration patterns in adult-born juxtaglomerular cells of the mouse olfactory bulb. Cell Res 26:805–821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Courtois ET, Sengupta D et al (2017) Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet 49:708–718. https://doi.org/10.1038/ng.3818

    Article  PubMed  CAS  Google Scholar 

  • Keren-Shaul H, Spinrad A, Weiner A et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–1290.e17. https://doi.org/10.1016/j.cell.2017.05.018

    Article  PubMed  CAS  Google Scholar 

  • Dubois B, Hampel H, Feldman HH et al (2016) Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement 12:292–323

    Article  PubMed  PubMed Central  Google Scholar 

  • Uzilov AV, Ding W, Fink MY et al (2016) Development and clinical application of an integrative genomic approach to personalized cancer therapy. Genome Med 8:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajamani D, Bhasin MK (2016) Identification of key regulators of pancreatic cancer progression through multidimensional systems-level analysis. Genome Med 8:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghosh D, Funk CC, Caballero J et al (2017) A cell-surface membrane protein signature for glioblastoma. Cell Syst 4:516–529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheridan C (2015) Omics-driven startups challenge healthcare model. Nat Biotechnol 33:887–889

    Article  PubMed  CAS  Google Scholar 

  • Lausted C, Lee I, Zhou Y et al (2014) Systems approach to neurodegenerative disease biomarker discovery. Annu Rev Pharmacol Toxicol 54:457–481

    Article  PubMed  CAS  Google Scholar 

  • Lista S, Khachaturian ZS, Rujescu D et al (2016) Application of systems theory in longitudinal studies on the origin and progression of Alzheimer’s disease. Methods Mol Biol 1303:49–67

    Article  PubMed  Google Scholar 

  • Rollo JL, Banihashemi N, Vafaee F et al (2016) Unraveling the mechanistic complexity of Alzheimer’s disease through systems biology. Alzheimers Dement 12:708–718

    Article  PubMed  Google Scholar 

  • Burton A (2016) Kaj Blennow: the route to biomarkers and the Söderberg prize. Lancet Neurol 15(9):906. https://doi.org/10.1016/S1474-4422(16)30097-7

    Article  PubMed  Google Scholar 

  • Zwan MD, Rinne JO, Hasselbalch SG et al (2016) Use of amyloid-PET to determine cutpoints for CSF markers: a multicenter study. Neurology 86:50–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • FitzGerald GA (2016) Measure for measure: biomarker standards and transparency. Sci Transl Med 8:343fs10

    Article  PubMed  CAS  Google Scholar 

  • Kivipelto M, Håkansson K (2017) A rare success against Alzheimer’s. Sci Am 316:32–37

    Article  PubMed  Google Scholar 

  • Ritchie CW, Molinuevo JL, Satlin A et al (2016) The European Prevention of Alzheimer’s Dementia (EPAD) Consortium: a platform to enable the secondary prevention of Alzheimer’s dementia through improved Proof of Concept Trials. Lancet Psychiatry 3:179–186

    Article  PubMed  Google Scholar 

  • Ritchie K, Ritchie CW, Yaffe K et al (2015) Is late-onset Alzheimer’s disease really a disease of midlife? Alzheimers Dement 1(2):122–130

    Google Scholar 

  • Ritchie CW, Ames D, Clayton T, Lai R (2004) A meta-analysis of randomised trials for the efficacy and safety of donepezil, galantamine and rivastigmine for the treatment of Alzheimer’s disease. Am J Geriatr Psychiatry 12:358–369

    Article  PubMed  Google Scholar 

  • Molinuevo JL, Jordi C, Came X et al (2016) Ethical challenges in preclinical Alzheimer’s disease observational studies and trials: results of the Barcelona Summit. Alzheimers Dement 12:614–622

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritchie K, Ropacki M, Albala B et al (2017) Recommended cognitive outcomes in preclinical Alzheimer’s disease: consensus statement from the European Prevention of Alzheimer’s Dementia project. Alzheimers Dement 13:186–195

    Article  PubMed  Google Scholar 

  • Mortamais M, Ash JA, Harrison J et al (2017) Detecting cognitive changes in preclinical Alzheimer’s disease: a review of its feasibility. Alzheimers Dement 13:468–492

    Article  PubMed  Google Scholar 

  • Bateman RJ, Xiong C, Benzinger TL, Dominantly Inherited Alzheimer Network et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fagan AM, Xiong C, Jasielec MS, Dominantly Inherited Alzheimer Network et al (2014) Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease. Sci Transl Med 6:226ra30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imamura K, Izumi Y, Watanabe A et al (2017) The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis. Sci Transl Med 9. https://doi.org/10.1126/scitranslmed.aaf3962

  • Sun C, Fang Y, Yin J et al (2017) Rational combination therapy with PARP and MEK inhibitors capitalizes on therapeutic liabilities in RAS mutant cancers. Sci Transl Med 9. https://doi.org/10.1126/scitranslmed.aal5148

  • Cancer Genome Atlas Research Network (2017) Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 169:1327–1341.e23

    Article  CAS  Google Scholar 

  • Norton S, Matthews FE, Barnes DE et al (2014) Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol 13:788–794

    Article  PubMed  Google Scholar 

  • World Alzheimer Report (2014) Dementia and risk reduction: an analysis of protective and modifiable factors. ADI (http://www.alz.co.uk/research/world-report-2014)

  • Sperling RA, Karlawish J, Johnson KA (2013) Preclinical Alzheimer disease-the challenges ahead. Nat Rev Neurol 9:54–58

    Article  PubMed  CAS  Google Scholar 

  • Epelbaum S, Genthon R, Cavedo E et al (2017) Preclinical Alzheimer’s disease: a systematic review of the cohorts underlying the concept. Alzheimers Dement 13:454–467

    Article  PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4