A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/978-1-4614-7651-1_9 below:

Entry of Rhabdoviruses Into Animal Cells

  • Fauquet CM, Mayo MA, Maniloff J et al, eds. Virus Taxonomy. San Diego: Elsevier Academic Press, 2005.

    Google Scholar 

  • Bearzotti M, Delmas B, Lamoureux A et al. Fish rhabdovirus cell entry is mediated by fibronectin. J Virol 1999; 73(9):7703–7709.

    PubMed  CAS  Google Scholar 

  • Lafon M. Rabies virus receptors. J Neurovirol 2005; 11(1):82–87.

    Article  PubMed  CAS  Google Scholar 

  • Wunner WH, Reagan KJ, Koprowski H. Characterization of saturable binding sites for rabies virus. J Virol 1984; 50(3):691–697.

    PubMed  CAS  Google Scholar 

  • Altstiel LD, Landsberger FR. Lipid-protein interactions between the surface glycoprotein of vesicular stomatitis virus and the lipid bilayer. Virology 1981; 115(1): 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Gaudin Y, Ruigrok RW, Knossow M et al. Low-pH conformational changes of rabies virus glycoprotein and their role in membrane fusion. J Virol 1993; 67(3): 1365–1372.

    PubMed  CAS  Google Scholar 

  • Konieczko EM, Whitaker-Dowling PA, Widnell CC. Membrane fusion as a determinant of the infectibility of cells by vesicular stomatitis virus. Virology 1994; 199(1):200–211.

    Article  PubMed  CAS  Google Scholar 

  • Lecocq-Xhonneux F, Thiry M, Dheur I et al. A recombinant viral haemorrhagic septicaemia virus glycoprotein expressed in insect cells induces protective immunity in rainbow trout. J Gen Virol 1994; 75(Pt 7): 1579–1587.

    Article  PubMed  CAS  Google Scholar 

  • Coll JM. The glycoprotein G of rhabdoviruses. Arch Virol 1995; 140(5):827–851.

    Article  PubMed  CAS  Google Scholar 

  • Balch WE, Elliott MM, Keller DS. ATP-coupled transport of vesicular stomatitis virus G protein between the endoplasmic reticulum and the Golgi. J Biol Chem 1986; 261(31):14681–14689.

    PubMed  CAS  Google Scholar 

  • Doms RW, Keller DS, Helenius A et al. Role for adenosine triphosphate in regulating the assembly and transport of vesicular stomatitis virus G protein trimers. J Cell Biol 1987; 105(5): 1957–1969.

    Article  PubMed  CAS  Google Scholar 

  • Gaudin Y, Ruigrok RW, Tuffereau C et al. Rabies virus glycoprotein is a trimer. Virology 1992; 187(2):627–632.

    Article  PubMed  CAS  Google Scholar 

  • Kreis TE, Lodish HF. Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. Cell 1986; 46(6):929–937.

    Article  PubMed  CAS  Google Scholar 

  • Lyles DS, Varela VA, Parce JW. Dynamic nature of the quaternary structure of the vesicular stomatitis virus envelope glycoprotein. Biochemistry 1990; 29(10):2442–2449.

    Article  PubMed  CAS  Google Scholar 

  • Whitt MA, Buonocore L, Prehaud C et al. Membrane fusion activity, oligomerization, and assembly of the rabies virus glycoprotein. Virology 1991; 185(2):681–688.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox MD, McKenzie MO, Parce JW et al. Subunit interactions of vesicular stomatitis virus envelope glycoprotein influenced by detergent micelles and lipid bilayers. Biochemistry 1992; 31(43): 10458–10464.

    Article  PubMed  CAS  Google Scholar 

  • Zagouras P, Ruusala A, Rose JK. Dissociation and reassociation of oligomeric viral glycoprotein subunits in the endoplasmic reticulum. J Virol 1991; 65(4): 1976–1984.

    PubMed  CAS  Google Scholar 

  • Schlegel R, Willingham MC, Pastan IH. Saturable binding sites for vesicular stomatitis virus on the surface of Vero cells. J Virol 1982; 43(3):871–875.

    PubMed  CAS  Google Scholar 

  • Conti C, Hauttecoeur B, Morelec MJ et al. Inhibition of rabies virus infection by a soluble membrane fraction from the rat central nervous system. Arch Virol 1988; 98(1–2):73–86.

    Article  PubMed  CAS  Google Scholar 

  • Conti C, Mastromarino P, Ciuffarella MG et al. Characterization of rat brain cellular membrane components acting as receptors for vesicular stomatitis virus. Brief report. Arch Virol 1988; 99(3–4):261–269.

    Article  PubMed  CAS  Google Scholar 

  • Mastromarino P, Conti C, Goldoni P et al. Characterization of membrane components of the erythrocyte involved in vesicular stomatitis virus attachment and fusion at acidic pH. J Gen Virol 1987; 68(Pt 9):2359–2369.

    Article  PubMed  CAS  Google Scholar 

  • Schlegel R, Tralka TS, Willingham MC et al. Inhibition of VSVbinding and infectivity by phosphatidylserine: Is phosphatidylserine a VSV-binding site? Cell 1983; 32(2):639–646.

    Article  PubMed  CAS  Google Scholar 

  • Coll JM. Heptad-repeat sequences in the glycoprotein of rhabdoviruses. Virus Genes 1995; 10(2):107–114.

    Article  PubMed  CAS  Google Scholar 

  • Coll JM. Synthetic peptides from the heptad repeats of the glycoproteins of rabies, vesicular stomatitis and fish rhabdoviruses bind phosphatidylserine. Arch Virol 1997; 142(10):2089–2097.

    Article  PubMed  CAS  Google Scholar 

  • Hall MP, Burson KK, Huestis WH. Interactions of a vesicular stomatitis virus G protein fragment with phosphatidylserine: NMR and fluorescence studies. Biochim Biophys Acta 1998; 1415(1): 101–113.

    Article  PubMed  CAS  Google Scholar 

  • Morrot G, Herve P, Zachowski A et al. Aminophospholipid translocase of human erythrocytes: Phospholipid substrate specificity and effect of cholesterol. Biochemistry 1989; 28(8):3456–3462.

    Article  PubMed  CAS  Google Scholar 

  • Zachowski A, Favre E, Cribier S et al. Outside-inside translocation of aminophospholipids in the human erythrocyte membrane is mediated by a specific enzyme. Biochemistry 1986; 25(9):2585–2590.

    Article  PubMed  CAS  Google Scholar 

  • Coil DA, Miller AD. Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. J Virol 2004; 78(20): 10920–10926.

    Article  PubMed  CAS  Google Scholar 

  • Carneiro FA, Lapido-Loureiro PA, Cordo SM et al. Probing the interaction between vesicular stomatitis virus and phosphatidylserine. Eur Biophys 2006; 35(2): 145–154.

    Article  CAS  Google Scholar 

  • Burrage TG, Tignor GH, Smith AL. Rabies virus binding at neuromuscular junctions. Virus Res 1985; 2(3):273–289.

    Article  PubMed  CAS  Google Scholar 

  • Castellanos JE, Castaneda DR, Velandia AE et al. Partial inhibition of the in vitro infection of adult mouse dorsal root ganglion neurons by rabies virus using nicotinic antagonists. Neurosci Lett 1997; 229(3): 198–200.

    Article  PubMed  CAS  Google Scholar 

  • Gastka M, Horvath J, Lentz TL. Rabies virus binding to the nicotinic acetylcholine receptor alpha subunit demonstrated by virus overlay protein binding assay. J Gen Virol 1996; 77(Pt 10):2437–2440.

    Article  PubMed  CAS  Google Scholar 

  • Lentz TL, Benson RJ, Klimowicz D et al. Binding of rabies virus to purified Torpedo acetylcholine receptor. Brain Res 1986; 387(3):211–219.

    PubMed  CAS  Google Scholar 

  • Lentz TL, Burrage TG, Smith AL et al. Is the acetylcholine receptor a rabies virus receptor? Science 1982; 215(4529):182–184.

    Article  PubMed  CAS  Google Scholar 

  • Lewis P, Fu Y, Lentz T. Rabies virus entry at the neuromuscular junction in nerve-muscle cocultures. Muscle Nerve 2000; 23(5):720–730.

    Article  PubMed  CAS  Google Scholar 

  • Superti F, Seganti L, Ruggeri FM et al. Entry pathway of vesicular stomatitis virus into different host cells. J Gen Virol 1987; 68(Pt 2):387–399.

    Article  PubMed  CAS  Google Scholar 

  • Matlin KS, Reggio H, Helenius A et al. Pathway of vesicular stomatitis virus leading to infection. J Mol Biol 1982; 156:609–631.

    Article  PubMed  CAS  Google Scholar 

  • Cernescu C, Constantinescu SN, Popescu LM. Electron microscopic observations of vesicular stomatitis virus particles penetration in human fibroblasts. Rev Roum Virol 1990; 41:93–96.

    PubMed  CAS  Google Scholar 

  • Sun X, Yau VK, Briggs BJ et al. Role of clathrin-mediated endocytosis during vesicular stomatitis virus entry into host cells. Virology 2005; 338(1):53–60.

    Article  PubMed  CAS  Google Scholar 

  • Kolokoltsov AA, Fleming EH, Davey RA. Venezuelan equine encephalitis virus entry mechanism requires late endosome formation and resists cellmembrane cholesterol depletion. Virology 2006; 347(2):333–342.

    Article  PubMed  CAS  Google Scholar 

  • Daro E, Sheff D, Gomez M et al. Inhibition of endosome function in CHO cells bearing atemperature-sensitive defect in the coatomer (COPI) component epsilon-COP. J Cell Biol 1997; 139(7): 1747–1759.

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans L, Fava E, Grabner H et al. Genome-wide analysis of human kinases in clathrin-and caveolae/ raft-mediated endocytosis. Nature 2005; 436(7047):78–86.

    Article  PubMed  CAS  Google Scholar 

  • Fuller S, von Bonsdorff CH, Simons K. Vesicular stomatitis virus infects and matures only through the basolateral surface of the polarized epithelial cell line, MDCK. Cell 1984; 38(l):65–77.

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb TA, Ivanov IE, Adesnik M et al. Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells. J Cell Biol 1993; 120(3):695–710.

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal R, Bali-Puri A, Walter A et al. pH-dependent fusion of vesicular stomatitis virus with Vero cells. Measurement by dequenching of octadecyl rhodamine fluorescence. J Biol Chem 1987; 262(28):13614–13619.

    PubMed  CAS  Google Scholar 

  • Florkiewicz RZ, Rose JK. A cell line expressing vesicular stomatitis virus glycoprotein fuses at low pH. Science 1984; 225(4663):721–723.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez LD, Hoffman LR, Wolfsberg TG et al. Virus-cell and cell-cell fusion. Annu Rev Cell Dev Biol 1996; 12:627–661.

    Article  PubMed  CAS  Google Scholar 

  • Matlin KS, Reggio H, Helenius A et al. Pathway of vesicular stomatitis virus entry leading to infection. J Mol Biol 1982; 156(3):609–631.

    Article  PubMed  CAS  Google Scholar 

  • White J, Matlin K, Helenius A. Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses. J Cell Biol 1981; 89(3):674–679.

    Article  PubMed  CAS  Google Scholar 

  • Carneiro FA, Ferradosa AS, Da Poian AT. Low pH-induced conformational changes in vesicular stomatitis virus glycoprotein involve dramatic structure reorganization. J Biol Chem 2001; 276(l):62–67.

    PubMed  CAS  Google Scholar 

  • Pak CC, Puri A, Blumenthal R. Conformational changes and fusion activity of vesicular stomatitis virus glycoprotein: [125I]iodonaphthyl azide photolabeling studies in biological membranes. Biochemistry 1997; 36(29):8890–8896.

    Article  PubMed  CAS  Google Scholar 

  • Gaudin Y, Tuffereau C, Durrer P et al. Biological function of the low-pH, fusion-inactive conformation of rabies virus glycoprotein (G): G is transported in a fusion-inactive state-like conformation. J Virol 1995;69(9):5528–5534.

    PubMed  CAS  Google Scholar 

  • Gaudin Y. Reversibility in fusion protein conformational changes. The intriguing case of rhabdo virus-induced membrane fusion. Subcell Biochem 2000; 34:379–408.

    Article  PubMed  CAS  Google Scholar 

  • Colman PM, Lawrence MC. The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol 2003; 4(4):309–319.

    Article  PubMed  CAS  Google Scholar 

  • Le Blanc I, Luyet PP, Pons V et al. Endosome-to-cytosol transport of viral nucleocapsids. Nat Cell Biol 2005; 7(7):653–664.

    Article  PubMed  Google Scholar 

  • Matsuo H, Chevallier J, Mayran N et al. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 2004; 303(5657):531–534.

    Article  PubMed  CAS  Google Scholar 

  • Uchil P, Mothes W. Viral entry: A detour through multivesicular bodies. Nat Cell Biol 2005; 7(7):641–642.

    Article  PubMed  CAS  Google Scholar 

  • Earp LJ, Delos SE, Park HE et al. The many mechanisms of viral membrane fusion proteins. Curr Top Microbiol Immunol 2005; 285:25–66.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Ghosh HP. Characterization of the putative fusogenic domain in vesicular stomatitis virus glycoprotein G. J Virol 1994; 68(4):2186–2193.

    PubMed  CAS  Google Scholar 

  • Kielian M. Class II virus membrane fusion proteins. Virology 2006; 344(1):38–47.

    Article  PubMed  CAS  Google Scholar 

  • Durrer P, Gaudin Y, Ruigrok RW et al. Photolabeling identifies a putative fusion domain in the envelope glycoprotein of rabies and vesicular stomatitis viruses. J Biol Chem 1995; 270(29):17575–17581.

    Article  PubMed  CAS  Google Scholar 

  • Fredericksen BL, Whitt MA. Vesicular stomatitis virus glycoprotein mutations that affect membrane fusion activity and abolish virus infectivity. J Virol 1995; 69(3):1435–1443.

    PubMed  CAS  Google Scholar 

  • Li Y, Drone C, Sat E et al. Mutational analysis of the vesicular stomatitis virus glycoprotein G for membrane fusion domains. J Virol 1993; 67(7):4070–4077.

    PubMed  CAS  Google Scholar 

  • Shokralla S, He Y, Wanas E et al. Mutations in a carboxy-terminal region of vesicular stomatitis virus glycoprotein G that affect membrane fusion activity. Virology 1998; 75:39–50.

    Article  Google Scholar 

  • Gaudin Y, Raux H, Flamand A et al. Identification of amino acids controlling the low-pH-induced conformational change of rabies virus glycoprotein. J Virol 1996; 70:7371–7378.

    PubMed  CAS  Google Scholar 

  • Shokralla S, Chernish R, Ghosh HP. Effect of double-site mutations of vesicular stomatitis virus glycoprotein G on membrane fusion activity. Virology 1999; 256:119–129.

    Article  PubMed  CAS  Google Scholar 

  • Carneiro FA, Stauffer F, Lima CS et al. Membrane fusion induced by vesicular stomatitis virus depends on histidine protonation. J Biol Chem 2003; 278(16):13789–13794.

    Article  PubMed  CAS  Google Scholar 

  • Nunez E, Fernandez AM, Estepa A et al. Phospholipid interactions of a peptide from the fusion-related domain of the glycoprotein of VHSV, a fish rhabdovirus. Virology 1998; 243(2):322–330.

    Article  PubMed  CAS  Google Scholar 

  • Carneiro FA, Bianconi ML, Weissmuller G et al. Membrane recognition by vesicular stomatits virus involves enthalpy-driven protein-lipid interactions. J Virol 2002; 76:3756–3764.

    Article  PubMed  CAS  Google Scholar 

  • Estepa AM, Rocha AI, Mas V et al. A protein G fragment from the salmonid viral hemorrhagic septicemia rhabdovirus induces cell-to-cell fusion and membrane phosphatidylserine translocation at low pH. J Biol Chem 2001; 276(49):46268–46275.

    Article  PubMed  CAS  Google Scholar 

  • Jeetendra E, Ghosh K, Odell D et al. The membrane-proximal region of vesicular stomatitis virus glycoprotein G ectodomain is critical for fusion and virus infectivity. J Virol 2003; 77(23):12807–12818.

    Article  PubMed  CAS  Google Scholar 

  • Jeetendra E, Robison CS, Albritton LM et al. The membrane-proximal domain of vesicular stomatitis virus G protein functions as a membrane fusion potentiator and can induce hemifusion. J Virol 2002; 76(23):12300–12311.

    Article  PubMed  CAS  Google Scholar 

  • Langosch D, Brosig B, Pipkorn R. Peptide mimics of the vesicular stomatitis virus G-protein transmembrane segment drive membrane fusion in vitro. J Biol Chem 2001; 276(34):32016–32021.

    Article  PubMed  CAS  Google Scholar 

  • Cleverley DZ, Lenard J. The transmembrane domain in viral fusion: Essential role for a conserved glycine residue in vesicular stomatitis virus G protein. Proc Natl Acad Sci USA 1998; 95(7):3425–3430.

    Article  PubMed  CAS  Google Scholar 

  • Odell D, Wanas E, Yan J et al. Influence of membrane anchoring and cytoplasmic domains on the fusogenic activity of vesicular stomatitis virus glycoprotein G. J Virol 1997; 71(10):7996–8000.

    PubMed  CAS  Google Scholar 

  • Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. Annu Rev Biochem 2000; 69:531–569.

    Article  PubMed  CAS  Google Scholar 

  • Roberts PC, Kipperman T, Compans RW. Vesicular stomatitis virus G protein acquires pH-independent fusion activity during transport in a polarized endometrial cell line. J Virol 1999; 73(12): 10447–10457.

    PubMed  CAS  Google Scholar 

  • Simmons G, Reeves JD, Rennekamp AJ et al. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci USA 2004; 101(12):4240–4245.

    Article  PubMed  CAS  Google Scholar 

  • Tscherne DM, Jones CT, Evans MJ et al. Time-and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. J Virol 2006; 80(4): 1734–1741.

    Article  PubMed  CAS  Google Scholar 

  • Chu VC, McElroy LJ, Chu V et al. The avian coronavirus infectious bronchitis virus undergoes direct low-pH-dependent fusion activation during entry into host cells. J Virol 2006; 80(7):3180–3188.

    Article  PubMed  CAS  Google Scholar 

  • Finke S, Conzelmann KK. Recombinant rhabdo viruses: Vectors for vaccine development and gene therapy. Curr Top Microbiol Immunol 2005; 292:165–200.

    Article  PubMed  CAS  Google Scholar 

  • Roche S, Bressanelli S, Rey FA, Gaudin Y. Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science 2006; 313(5784):187–191.

    Article  PubMed  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4