A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/7854_2016_39 below:

Electrophysiological Actions of Synthetic Cathinones on Monoamine Transporters

  • Spiller HA, Ryan ML, Weston RG, Jansen J (2011) Clinical experience with and analytical confirmation of “bath salts” and “legal highs” (synthetic cathinones) in the United States. Clin Toxicol (Phila) 49:499–505

    CAS  PubMed  Google Scholar 

  • De Felice LJ, Glennon RA, Negus SS (2014) Synthetic cathinones: chemical phylogeny, physiology, and neuropharmacology. Life Sci 97:20–26

    PubMed  Google Scholar 

  • Schechter MD, Glennon RA (1985) Cathinone, cocaine and methamphetamine: similarity of behavioral effects. Pharmacol Biochem Behav 22:913–916

    CAS  PubMed  Google Scholar 

  • Iversen L, White M, Treble R (2014) Designer psychostimulants: pharmacology and differences. Neuropharmacology 87:59–65

    CAS  PubMed  Google Scholar 

  • Saha K, Partilla JS, Lehner KR, Seddik A, Stockner T, Holy M, Sandtner W, Ecker GF, Sitte HH, Baumann MH (2015) ‘Second-generation’ mephedrone analogs, 4-MEC and 4-MePPP, differentially affect monoamine transporter function. Neuropsychopharmacology 40:1321–1331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman BJ, Hansson SR, Mezey E, Palkovits M (1998) Localization and dynamic regulation of biogenic amine transporters in the mammalian central nervous system. Front Neuroendocrinol 19:187–231

    CAS  PubMed  Google Scholar 

  • Tao-Cheng JH, Zhou FC (1999) Differential polarization of serotonin transporters in axons versus soma-dendrites: an immunogold electron microscopy study. Neuroscience 94:821–830

    CAS  PubMed  Google Scholar 

  • Wimalasena K (2011) Vesicular monoamine transporters: structure-function, pharmacology, and medicinal chemistry. Med Res Rev 31:483–519

    CAS  PubMed  Google Scholar 

  • Schloss P, Williams DC (1998) The serotonin transporter: a primary target for antidepressant drugs. J Psychopharmacol 12:115–121

    CAS  PubMed  Google Scholar 

  • Stahl SM (1998) Basic psychopharmacology of antidepressants, part 1: antidepressants have seven distinct mechanisms of action. J Clin Psychiatry 59(Suppl 4):5–14

    CAS  PubMed  Google Scholar 

  • Coppen A, Shaw DM, Herzberg B, Maggs R (1967) Tryptophan in the treatment of depression. Lancet 2:1178–1180

    CAS  PubMed  Google Scholar 

  • Feighner JP (1994) Clinical effects of serotonin reuptake inhibitors--a review. Fortschr Neurol Psychiatr 62(Suppl 1):9–15

    PubMed  Google Scholar 

  • Vaswani M, Kalra H (2004) Selective serotonin re-uptake inhibitors in anorexia nervosa. Expert Opin Investig Drugs 13:349–357

    CAS  PubMed  Google Scholar 

  • Vaswani M, Linda FK, Ramesh S (2003) Role of selective serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 27:85–102

    CAS  PubMed  Google Scholar 

  • Barbeau A (1970) Dopamine and disease. Can Med Assoc J 103:824–832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gainetdinov RR (2008) Dopamine transporter mutant mice in experimental neuropharmacology. Naunyn Schmiedebergs Arch Pharmacol 377:301–313

    CAS  PubMed  Google Scholar 

  • Gainetdinov RR, Caron MG (2003) Monoamine transporters: from genes to behavior. Annu Rev Pharmacol Toxicol 43:261–284

    CAS  PubMed  Google Scholar 

  • Javitch JA, Snyder SH (1984) Uptake of MPP(+) by dopamine neurons explains selectivity of parkinsonism-inducing neurotoxin, MPTP. Eur J Pharmacol 106:455–456

    CAS  PubMed  Google Scholar 

  • Foote SL, Aston-Jones G, Bloom FE (1980) Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc Natl Acad Sci U S A 77:3033–3037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz JW, Piston D, DeFelice LJ (2006) Molecular microfluorometry: converting arbitrary fluorescence units into absolute molecular concentrations to study binding kinetics and stoichiometry in transporters. Handb Exp Pharmacol (175):23–57

    Google Scholar 

  • Banks ML, Worst TJ, Rusyniak DE, Sprague JE (2014) Synthetic cathinones (“bath salts”). J Emerg Med 46:632–642

    PubMed  PubMed Central  Google Scholar 

  • German CL, Fleckenstein AE, Hanson GR (2014) Bath salts and synthetic cathinones: an emerging designer drug phenomenon. Life Sci 97:2–8

    CAS  PubMed  Google Scholar 

  • Miotto K, Striebel J, Cho AK, Wang C (2013) Clinical and pharmacological aspects of bath salt use: a review of the literature and case reports. Drug Alcohol Depend 132:1–12

    CAS  PubMed  Google Scholar 

  • Valente MJ, Guedes de Pinho P, de Lourdes Bastos M, Carvalho F, Carvalho M (2014) Khat and synthetic cathinones: a review. Arch Toxicol 88:15–45

    CAS  PubMed  Google Scholar 

  • White KJ, Walline CC, Barker EL (2005) Serotonin transporters: implications for antidepressant drug development. AAPS J 7:E421–E433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sghendo L, Mifsud J (2012) Understanding the molecular pharmacology of the serotonergic system: using fluoxetine as a model. J Pharm Pharmacol 64:317–325

    CAS  PubMed  Google Scholar 

  • Stahl SM (1998) Mechanism of action of serotonin selective reuptake inhibitors. Serotonin receptors and pathways mediate therapeutic effects and side effects. J Affect Disord 51:215–235

    CAS  PubMed  Google Scholar 

  • Johansen PO, Krebs TS (2009) How could MDMA (ecstasy) help anxiety disorders? A neurobiological rationale. J Psychopharmacol 23:389–391

    CAS  PubMed  Google Scholar 

  • Mithoefer MC, Wagner MT, Mithoefer AT, Jerome L, Doblin R (2011) The safety and efficacy of {+/-}3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol 25:439–452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wall SC, Gu H, Rudnick G (1995) Biogenic amine flux mediated by cloned transporters stably expressed in cultured cell lines: amphetamine specificity for inhibition and efflux. Mol Pharmacol 47:544–550

    CAS  PubMed  Google Scholar 

  • Wu X, Gu HH (1999) Molecular cloning of the mouse dopamine transporter and pharmacological comparison with the human homologue. Gene 233:163–170

    CAS  PubMed  Google Scholar 

  • Henry LK, Blakely RD (2008) Distinctions between dopamine transporter antagonists could be just around the bend. Mol Pharmacol 73:616–618

    CAS  PubMed  Google Scholar 

  • Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR (2007) New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol 47:681–698

    CAS  PubMed  Google Scholar 

  • Burnette WB, Bailey MD, Kukoyi S, Blakely RD, Trowbridge CG, Justice JB Jr (1996) Human norepinephrine transporter kinetics using rotating disk electrode voltammetry. Anal Chem 68:2932–2938

    CAS  PubMed  Google Scholar 

  • Holmes JC, Rutledge CO (1976) Effects of the d- and l-isomers of amphetamine on uptake, release and catabolism of norepinephrine, dopamine and 5-hydroxytryptamine in several regions of rat brain. Biochem Pharmacol 25:447–451

    CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal DS, Cho AK, Melega W (1995) Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J Neurosci 15:1308–1317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips AG, Brooke SM, Fibiger HC (1975) Effects of amphetamine isomers and neuroleptics on self-stimulation from the nucleus accumbens and dorsal noradrenergic bundle. Brain Res 85:13–22

    CAS  PubMed  Google Scholar 

  • Cody JT, Valtier S, Nelson SL (2003) Amphetamine enantiomer excretion profile following administration of Adderall. J Anal Toxicol 27:485–492

    CAS  PubMed  Google Scholar 

  • Heal DJ, Cheetham SC, Smith SL (2009) The neuropharmacology of ADHD drugs in vivo: insights on efficacy and safety. Neuropharmacology 57:608–618

    CAS  PubMed  Google Scholar 

  • Najib J (2009) The efficacy and safety profile of lisdexamfetamine dimesylate, a prodrug of d-amphetamine, for the treatment of attention-deficit/hyperactivity disorder in children and adults. Clin Ther 31:142–176

    CAS  PubMed  Google Scholar 

  • Mendelson J, Uemura N, Harris D, Nath RP, Fernandez E, Jacob P 3rd, Everhart ET, Jones RT (2006) Human pharmacology of the methamphetamine stereoisomers. Clin Pharmacol Ther 80:403–420

    CAS  PubMed  Google Scholar 

  • Potkin SG, Karoum F, Chuang LW, Cannon-Spoor HE, Phillips I, Wyatt RJ (1979) Phenylethylamine in paranoid chronic schizophrenia. Science 206:470–471

    CAS  PubMed  Google Scholar 

  • Romanelli F, Smith KM (2006) Clinical effects and management of methamphetamine abuse. Pharmacotherapy 26:1148–1156

    CAS  PubMed  Google Scholar 

  • Winslow BT, Voorhees KI, Pehl KA (2007) Methamphetamine abuse. Am Fam Physician 76:1169–1174

    PubMed  Google Scholar 

  • Mazei-Robinson MS, Blakely RD (2006) ADHD and the dopamine transporter: are there reasons to pay attention? Handb Exp Pharmacol (175):373–415

    Google Scholar 

  • Arias HR (2009) Is the inhibition of nicotinic acetylcholine receptors by bupropion involved in its clinical actions? Int J Biochem Cell Biol 41:2098–2108

    CAS  PubMed  Google Scholar 

  • De Felice LJ (2016) Chloride requirement for monoamine transporters. Pflugers Arch 468:503–511

    PubMed  PubMed Central  Google Scholar 

  • Singh SK (2008) LeuT: A prokaryotic stepping stone on the way to a eukaryotic neurotransmitter transporter structure. Channels (Austin) 2

    Google Scholar 

  • Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS, Ganapathy V, Blakely RD (1993) Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci U S A 90:2542–2546

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeFelice LJ, Blakely RD (1996) Pore models for transporters? Biophys J 70:579–580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galli A, Blakely RD, DeFelice LJ (1996) Norepinephrine transporters have channel modes of conduction. Proc Natl Acad Sci U S A 93:8671–8676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudnick G (1998) Bioenergetics of neurotransmitter transport. J Bioenerg Biomembr 30:173–185

    CAS  PubMed  Google Scholar 

  • Rudnick G (1998) Ion-coupled neurotransmitter transport: thermodynamic vs. kinetic determinations of stoichiometry. Methods Enzymol 296:233–247

    CAS  PubMed  Google Scholar 

  • Naftalin RJ (1984) The thermostatics and thermodynamics of cotransport. Biochim Biophys Acta 778:155–175

    CAS  PubMed  Google Scholar 

  • Stein WD, Lieb WR (1986) Transport and diffusion across cell membranes. Academic, Orlando

    Google Scholar 

  • Abramson J, Smirnova I, Kasho V, Verner G, Iwata S, Kaback HR (2003) The lactose permease of Escherichia coli: overall structure, the sugar-binding site and the alternating access model for transport. FEBS Lett 555:96–101

    CAS  PubMed  Google Scholar 

  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    CAS  PubMed  Google Scholar 

  • Penmatsa A, Wang KH, Gouaux E (2015) X-ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine. Nat Struct Mol Biol 22:506–508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KH, Penmatsa A, Gouaux E (2015) Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521:322–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters. Nature 437:215–223

    CAS  PubMed  Google Scholar 

  • Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818

    CAS  PubMed  Google Scholar 

  • Gu H, Wall SC, Rudnick G (1994) Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. J Biol Chem 269:7124–7130

    CAS  PubMed  Google Scholar 

  • McElvain JS, Schenk JO (1992) A multisubstrate mechanism of striatal dopamine uptake and its inhibition by cocaine. Biochem Pharmacol 43:2189–2199

    CAS  PubMed  Google Scholar 

  • Sonders MS, Zhu SJ, Zahniser NR, Kavanaugh MP, Amara SG (1997) Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J Neurosci 17:960–974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khoshbouei H, Wang H, Lechleiter JD, Javitch JA, Galli A (2003) Amphetamine-induced dopamine efflux. A voltage-sensitive and intracellular Na+-dependent mechanism. J Biol Chem 278:12070–12077

    CAS  PubMed  Google Scholar 

  • Kahlig KM, Binda F, Khoshbouei H, Blakely RD, McMahon DG, Javitch JA, Galli A (2005) Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci U S A 102:3495–3500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seidel S, Singer EA, Just H, Farhan H, Scholze P, Kudlacek O, Holy M, Koppatz K, Krivanek P, Freissmuth M, Sitte HH (2005) Amphetamines take two to tango: an oligomer-based counter-transport model of neurotransmitter transport explores the amphetamine action. Mol Pharmacol 67:140–151

    CAS  PubMed  Google Scholar 

  • Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A (1995) Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 15:4102–4108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sulzer D, Maidment NT, Rayport S (1993) Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J Neurochem 60:527–535

    CAS  PubMed  Google Scholar 

  • Khoshbouei H, Sen N, Guptaroy B, Johnson L, Lund D, Gnegy ME, Galli A, Javitch JA (2004) N-terminal phosphorylation of the dopamine transporter is required for amphetamine-induced efflux. PLoS Biol 2, E78

    PubMed  PubMed Central  Google Scholar 

  • Fog JU, Khoshbouei H, Holy M, Owens WA, Vaegter CB, Sen N, Nikandrova Y, Bowton E, McMahon DG, Colbran RJ, Daws LC, Sitte HH, Javitch JA, Galli A, Gether U (2006) Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport. Neuron 51:417–429

    CAS  PubMed  Google Scholar 

  • DeFelice LJ (2004) Going against the flow. Nature 432:279

    CAS  PubMed  Google Scholar 

  • DeFelice LJ, Goswami T (2007) Transporters as channels. Annu Rev Physiol 69:87–112

    CAS  PubMed  Google Scholar 

  • Quick MW (2003) Regulating the conducting states of a mammalian serotonin transporter. Neuron 40:537–549

    CAS  PubMed  Google Scholar 

  • Adams SV, DeFelice LJ (2002) Flux coupling in the human serotonin transporter. Biophys J 83:3268–3282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adams SV, DeFelice LJ (2003) Ionic currents in the human serotonin transporter reveal inconsistencies in the alternating access hypothesis. Biophys J 85:1548–1559

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeFelice LJ, Galli A (1998) Electrophysiological analysis of transporter function. Adv Pharmacol 42:186–190

    CAS  PubMed  Google Scholar 

  • DeFelice LJ, Galli A (1998) Fluctuation analysis of norepinephrine and serotonin transporter currents. Methods Enzymol 296:578–593

    CAS  PubMed  Google Scholar 

  • Galli A, Blakely RD, DeFelice LJ (1998) Patch-clamp and amperometric recordings from norepinephrine transporters: channel activity and voltage-dependent uptake. Proc Natl Acad Sci U S A 95:13260–13265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galli A, DeFelice LJ, Duke BJ, Moore KR, Blakely RD (1995) Sodium-dependent norepinephrine-induced currents in norepinephrine-transporter-transfected HEK-293 cells blocked by cocaine and antidepressants. J Exp Biol 198:2197–2212

    CAS  PubMed  Google Scholar 

  • Li C, Zhong H, Wang Y, Wang H, Yang Z, Zheng Y, Liu K, Liu Y (2006) Voltage and ionic regulation of human serotonin transporter in Xenopus oocytes. Clin Exp Pharmacol Physiol 33:1088–1092

    CAS  PubMed  Google Scholar 

  • Mager S, Min C, Henry DJ, Chavkin C, Hoffman BJ, Davidson N, Lester HA (1994) Conducting states of a mammalian serotonin transporter. Neuron 12:845–859

    CAS  PubMed  Google Scholar 

  • Petersen CI, DeFelice LJ (1999) Ionic interactions in the Drosophila serotonin transporter identify it as a serotonin channel. Nat Neurosci 2:605–610

    CAS  PubMed  Google Scholar 

  • Ramsey IS, DeFelice LJ (2002) Serotonin transporter function and pharmacology are sensitive to expression level: evidence for an endogenous regulatory factor. J Biol Chem 277:14475–14482

    CAS  PubMed  Google Scholar 

  • Carvelli L, McDonald PW, Blakely RD, Defelice LJ (2004) Dopamine transporters depolarize neurons by a channel mechanism. Proc Natl Acad Sci U S A 101:16046–16051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram SL, Prasad BM, Amara SG (2002) Dopamine transporter-mediated conductances increase excitability of midbrain dopamine neurons. Nat Neurosci 5:971–978

    CAS  PubMed  Google Scholar 

  • Quick MW (2002) Role of syntaxin 1A on serotonin transporter expression in developing thalamocortical neurons. Int J Dev Neurosci 20:219–224

    CAS  PubMed  Google Scholar 

  • Ryan RM, Mindell JA (2007) The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nat Struct Mol Biol 14:365–371

    CAS  PubMed  Google Scholar 

  • Sonders MS, Amara SG (1996) Channels in transporters. Curr Opin Neurobiol 6:294–302

    CAS  PubMed  Google Scholar 

  • Bruns D (1998) Serotonin transport in cultured leech neurons. Methods Enzymol 296:593–607

    CAS  PubMed  Google Scholar 

  • Bruns D, Engert F, Lux HD (1993) A fast activating presynaptic reuptake current during serotonergic transmission in identified neurons of Hirudo. Neuron 10:559–572

    CAS  PubMed  Google Scholar 

  • Rodriguez-Menchaca AA, Solis E Jr, Cameron K, De Felice LJ (2012) S(+)amphetamine induces a persistent leak in the human dopamine transporter: molecular stent hypothesis. Br J Pharmacol 165:2749–2757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HW, Li CZ, Yang ZF, Zheng YQ, Zhang Y, Liu YM (2006) Electrophysiological effect of fluoxetine on Xenopus oocytes heterologously expressing human serotonin transporter. Acta Pharmacol Sin 27:289–293

    PubMed  Google Scholar 

  • Storustovu S, Sanchez C, Porzgen P, Brennum LT, Larsen AK, Pulis M, Ebert B (2004) R-citalopram functionally antagonises escitalopram in vivo and in vitro: evidence for kinetic interaction at the serotonin transporter. Br J Pharmacol 142:172–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin F, Lester HA, Mager S (1996) Single-channel currents produced by the serotonin transporter and analysis of a mutation affecting ion permeation. Biophys J 71:3126–3135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barker EL, Moore KR, Rakhshan F, Blakely RD (1999) Transmembrane domain I contributes to the permeation pathway for serotonin and ions in the serotonin transporter. J Neurosci 19:4705–4717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandtner W, Schmid D, Schicker K, Gerstbrein K, Koenig X, Mayer FP, Boehm S, Freissmuth M, Sitte HH (2014) A quantitative model of amphetamine action on the 5-HT transporter. Br J Pharmacol 171:1007–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Felice LJ, Cameron KN (2015) Comments on ‘A quantitative model of amphetamine action on the serotonin transporter’, by Sandtner et al., Br J Pharmacol 171: 1007–1018. Br J Pharmacol 172:4772–4774

    PubMed  PubMed Central  Google Scholar 

  • Baumann MH, Ayestas MA Jr, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 37:1192–1203

    CAS  PubMed  Google Scholar 

  • Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB, Goldberg SR, Lupica CR, Sitte HH, Brandt SD, Tella SR, Cozzi NV, Schindler CW (2013) Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive ‘bath salts’ products. Neuropsychopharmacology 38:552–562

    CAS  PubMed  Google Scholar 

  • Marusich JA, Antonazzo KR, Wiley JL, Blough BE, Partilla JS, Baumann MH (2014) Pharmacology of novel synthetic stimulants structurally related to the “bath salts” constituent 3,4-methylenedioxypyrovalerone (MDPV). Neuropharmacology 87:206–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cozzi NV, Brandt SD, Daley PF, Partilla JS, Rothman RB, Tulzer A, Sitte HH, Baumann MH (2013) Pharmacological examination of trifluoromethyl ring-substituted methcathinone analogs. Eur J Pharmacol 699:180–187

    CAS  PubMed  Google Scholar 

  • Eshleman AJ, Wolfrum KM, Hatfield MG, Johnson RA, Murphy KV, Janowsky A (2013) Substituted methcathinones differ in transporter and receptor interactions. Biochem Pharmacol 85:1803–1815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, Chaboz S, Hoener MC, Liechti ME (2013) Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 168:458–470

    CAS  PubMed  Google Scholar 

  • Simmler LD, Rickli A, Hoener MC, Liechti ME (2014) Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology 79:152–160

    CAS  PubMed  Google Scholar 

  • Cameron KN, Kolanos R, Solis E Jr, Glennon RA, De Felice LJ (2013) Bath salts components mephedrone and methylenedioxypyrovalerone (MDPV) act synergistically at the human dopamine transporter. Br J Pharmacol 168:1750–1757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolanos R, Solis E Jr, Sakloth F, De Felice LJ, Glennon RA (2013) “Deconstruction” of the abused synthetic cathinone methylenedioxypyrovalerone (MDPV) and an examination of effects at the human dopamine transporter. ACS Chem Neurosci 4:1524–1529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bulling S, Schicker K, Zhang YW, Steinkellner T, Stockner T, Gruber CW, Boehm S, Freissmuth M, Rudnick G, Sitte HH, Sandtner W (2012) The mechanistic basis for noncompetitive ibogaine inhibition of serotonin and dopamine transporters. J Biol Chem 287:18524–18534

    CAS  PubMed  PubMed Central  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4