See the lecture by Barut, A. O.: Springer Tracts in Mod. Phys., Vol. 50 (1969).
Kleinert, H.: Fortschr. Phys. 16, 1 (1968).
For an extensive study of this subject see: Hamprecht, B., and H. Kleinert: Univ. of Colorado preprint, May 1968; Hamprecht, B.: Fortschr. Phys. 16, 35 (1969). There are very few parameters in this approach reproducing the decay properties of almost the complete Rosenfeld table for baryon resonances.
Kleinert, H.: Phys. Rev. 163, 1807 (1967). Kleinert, H., Barut, A. O., D. Corrigan, and H. Kleinert: Phys. Rev. Letters 20, 167 (1968). Kleinert, H. Corrigan, D.: University of Colorado, Thesis (1968). In particular, the theory is able to reproduce the experimentally observed double pole formula for G P E =G P M /μ P=G n M /μ n and \(G_E^n = \frac{t}{{4m^2 }}G_M^n \).
-: Phys. Rev. Letters 18, 1027 (1967). One simply assumes the pseudoscalar to transform as an octet operator under SU (3) and uses experimental masses. The mass splitting cause SU (3) breaking in the form factors. Only the unphysical transitions at rest are SU (3) symmetric.
Hamprecht, B., and H. Kleinert: Phys. Rev. (in press).
For simplicity we shall assume isospin invariance of the theory. The electromagnetic breaking effects could be included in this theory in quite the same way as the effect of the medium strong interactions on the strangeness changing currents which we shall focus our attention on. The strangeness changing currents will clearly not be conserved.
See the other lectures or, for example; Renner, B.: Current algebras, and their applications. Oxford: Pergamon Press 1968.
Rosenfeld, A. H., et al.: Rev. Mod. Phys. 40, 77 (1968). For some more questionable resonances see Donnachie, A, R. G. Kirsopp, and C. Lovelace Phys. Letters 26 B, 161 (1968).
Kleinert, H.: Phys. Rev. 168 1827 (1968), and Lectures in Theoretical Physics New York: Gordon and Breach 1968.
Barut, A. O., D. Corrigan, and H. Kleinert: Phys. Rev. 167, 1527 (1968).
We absorb the labels s, s 3 in n to simplify the notation.
Such a wave equation is given by model 5 of Nambu, Y.: Phys. Rev. 160, 1171 (1967).
Grodsky, I. T., and R. F. Streater: Phys. Rev. Letters 20 695 (1968).
We assume the quaternion representation to be given by L=σ/2 and M=iσ/2 of the Lorentz group.
Bebie, H., and H. Leutwyler: Phys. Rev. Letters 19, 618 (1967).
Gell-Mann, M., D. Horn, and J. Weyers: Heidelberg Conference on High Energy Physics and Elementary Particles 1967. Gell-Mann, Leutwyler, H.: University Bern Preprint 1967. Gell-Mann, Kleinert, H.: Montana State University Preprint 1967.
Cutkosky, R. E., and M. Leon: Phys. Rev. 135, B 1445 (1964).
We use the notation and phase conventions of de Swart, J. J.: Rev. Mod. Phys. 35, 916 (1963). The Racah coefficients are tabulated in Krammer, M.: Acta Phys. Austr., Suppl. 1, 183 (1964). The subscripts β, γ of ν are degeneracy labels.
In (35) we have absorbed the degeneracy labels γ, γ′, in ν′ to simplify the notation. The summation clearly extends over those labels as well.
Cook, T., C. J. Goebel and B. Sakita: Phys. Rev. Letters 15, 35 (1965).
Kuriyan, J. G., and E. C. G. Sudarshan: Phys. Letters, 21, 106 (1966).
Fulco, J., and D. Y. Wong: Phys. Rev. Letters 15, 274 (1965). The extended bootstrap condition is Γ=C ssu Γ+C st Γ′. For a, detailed discussion of this connection see Fairlie, D. B.: Phys. Rev. 155, 1694 (1968).
Bincer, A. M.: Phys. Rev. 155, 1699 (1967).
For a review on the status of SU (3) and further references see D. D. Reeders talk at the Argonne Symposium 1967.
Kernan, A., and W. M. Smart: Phys. Rev. Letters 17, 832 (1966).
Goldberg, M. et al.: Nuovo Cimento 45, 169 (1966), and Tripp, R., et al.: UCRL Report No. 17385 (unpublished).
Barut, A. O., and H. Kleinert: Phys. Rev. Letters 18, 754 (1967).
For a review of this subject see Kleiner, H.: In: Lectures in Theoretical Physics, Vol. 10. New York: Gordon and Breach 1968.
Corrigan, D., B. Hamprecht, and H. Kleinert: Nuclear Physics B (in press).
Nambu, Y.: Progr. Theor Phys., Commemorative issue in honour of S. Tomonaga, 1966.
Bjorken, J. D., and J. D. Walecka: Ann. Phys. 38, 35 (1966).
Reviews on nucleon form factors are contained in W. K. H. Panofsky, Rapporteur's Talk at the Heidelberg International Conference on Elementary Particles, September 1967; H. Joos, ibid. Talk at the Heidelberg International Conference on Elementary Particles, September 1967, Hand, L. H.: Proc. of Inter. Conf. on Particles and Fields. New York: Interscience 1967.
Recent measurement of nucleon form factors at CEA: Gotein, M., et al.: Phys. Rev. Letters 18, 106 (1967).—DESY: Albrech, W., et al.: Phys. Rev. Letters 18, 1014 (1967); and SLAC: R. Taylor.—Paper delivered at the International Symposium on Electron and Photon Interactions at high Energies, SLAC, September, 1967.
Dunning, J. R., et al.: Phys. Rev. 141, 1286 (1966).
Walecka J. D., and P. A. Zucker: Phys. Rev. 167, 1479 (1968).
Cone, A. A., et al.: Phys. Rev. 156, 1490 (1967).
Lynch, H. L., et al.: HEPL-494 B (1967).
Brasse, F., et al.: DESY preprint 67/34, 1967;—Ash, W. W., et al.: Phys. Letters 24 B, 165 (1967);—Tsai, Y. S.: SLAC-PUB-364 (Nov. 1967).
Dalitz, R. H., and D. G. Sutherland: Phys. Rev. 146, 1180 (1966).
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4