This paper presents the approach to automated analysis of student argument diagrams to be used in the Genetics Argumentation Inquiry Learning (GAIL) system. Student arguments are compared to expert arguments automatically generated using an existing argument generator developed previously for the GenIE Assistant project. A prototype argument analyzer was implemented for GAIL. Weaknesses in student arguments are identified using non-domain-specific, non-content-specific rules that recognize common error types.
This is a preview of subscription content, log in via an institution to check access.
PreviewUnable to display preview. Download preview PDF.
Similar content being viewed by others ReferencesGreen, N.: A Bayesian network coding scheme for annotating biomedical information presented to genetic counseling clients. Journal of Biomedical Informatics 38, 130–144 (2005)
Green, N., Dwight, R., Navoraphan, K., Stadler, B.: Natural language generation of transparent arguments for lay audiences. Argument and Computation 2(1), 23–50 (2011)
Kirschner, P.A., Buckingham Shum, S.J., Carr, C.S. (eds.): Visualizing Argumentation. Springer, London (2003)
Pinkwart, N., McLaren, B.M. (eds.): Educational Technologies for Teaching Argumentation Skills. Bentham Science Publishers, Sharjah (2012)
Scheuer, O., Loll, F., Pinkwart, N., McLaren, B.M.: Computer-Supported Argumentation: A Review of the State of the Art. Computer-Supported Collaborative Learning 5(1), 43–102 (2010)
Scheuer, O., McLaren, B.M., Loll, F., Pinkwart, N.: Automated Analysis and Feedback Techniques to Support and Teach Argumentation: A Survey. In: Pinkwart, McLaren (eds.) Educational Technologies for Teaching Argumentation Skills (2012)
Toulmin, S.E.: The uses of argument. Cambridge University Press, Cambridge (1998)
Walton, D., Reed, C., Macagno, F.: Argumentation Schemes. Cambridge University Press, Cambridge (2008)
University of North Carolina Greensboro, Greensboro, NC, 27402, USA
Nancy L. Green
Institute for Creative Technologies, University of Southern California, 12015 Waterfront Dr., 90094, Playa Vista, CA, USA
H. Chad Lane
School of Information Technologies, University of Sydney, 2006, Sydney, NSW, Australia
Kalina Yacef
School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, 15213, Pittsburgh, PA, USA
Jack Mostow
Department of Psychology, University of Memphis, 38152, Memphis, TN, USA
Philip Pavlik
© 2013 Springer-Verlag Berlin Heidelberg
About this paper Cite this paperGreen, N.L. (2013). Towards Automated Analysis of Student Arguments. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds) Artificial Intelligence in Education. AIED 2013. Lecture Notes in Computer Science(), vol 7926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39112-5_66
Download citationDOI: https://doi.org/10.1007/978-3-642-39112-5_66
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39111-8
Online ISBN: 978-3-642-39112-5
eBook Packages: Computer ScienceComputer Science (R0)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.3