A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/chapter/10.1007/978-3-031-26409-2_22 below:

Direct Evolutionary Optimization of Variational Autoencoders with Binary Latents

J. Drefs and E. Guiraud—Joint first authorship.

References
  1. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: NeurIPS (2007)

    Google Scholar 

  2. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv:1308.3432 (2013)

  3. Berliner, A., Rotman, G., Adi, Y., Reichart, R., Hazan, T.: Learning discrete structured variational auto-encoder using natural evolution strategies. In: ICLR (2022)

    Google Scholar 

  4. Bingham, E., et al.: PYRO: deep universal probabilistic programming. JMLR 20(1), 973–978 (2019)

    Google Scholar 

  5. Bowman, S., Vilnis, L., Vinyals, O., Dai, A.M., Jozefowicz, R., Bengio, S.: Generating Sentences from a Continuous Space. In: CoNLL (2016)

    Google Scholar 

  6. Chaudhury, S., Roy, H.: Can fully convolutional networks perform well for general image restoration problems? In: IAPR International Conference MVA (2017)

    Google Scholar 

  7. Child, R., Gray, S., Radford, A., Sutskever, I.: Generating long sequences with sparse transformers. arXiv:1904.10509 (2019)

  8. Cong, Y., Zhao, M., Bai, K., Carin, L.: GO gradient for expectation-based objectives. In: ICLR (2019)

    Google Scholar 

  9. Cremer, C., Li, X., Duvenaud, D.: Inference suboptimality in variational autoencoders. In: ICML (2018)

    Google Scholar 

  10. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Proc. 16(8), 2080–2095 (2007)

    Article  Google Scholar 

  11. Dimitriev, A., Zhou, M.: CARMS: categorical-antithetic-reinforce multi-sample gradient estimator. In: NeurIPS (2021)

    Google Scholar 

  12. Dong, W., Wang, P., Yin, W., Shi, G., Wu, F., Lu, X.: Denoising prior driven deep neural network for image restoration. TPAMI 41(10), 2305–2318 (2019)

    Article  Google Scholar 

  13. Dong, Z., Mnih, A., Tucker, G.: Coupled gradient estimators for discrete latent variables. In: NeurIPS (2021)

    Google Scholar 

  14. Drefs, J., Guiraud, E., Lücke, J.: Evolutionary Variational Optimization of Generative Models. JMLR 23(21), 1–51 (2022)

    MathSciNet  MATH  Google Scholar 

  15. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Proc. 15, 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  16. Eldar, Y.C., Kutyniok, G.: Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  17. Exarchakis, G., Oubari, O., Lenz, G.: A sampling-based approach for efficient clustering in large datasets. In: CVPR (2022)

    Google Scholar 

  18. Fajtl, J., Argyriou, V., Monekosso, D., Remagnino, P.: Latent bernoulli autoencoder. In: ICML (2020)

    Google Scholar 

  19. Foerster, J., Farquhar, G., Al-Shedivat, M., Rocktäschel, T., Xing, E., Whiteson, S.: DiCE: the infinitely differentiable monte Carlo estimator. In: ICML (2018)

    Google Scholar 

  20. Goodfellow, I.J., Courville, A., Bengio, Y.: Scaling up spike-and-slab models for unsupervised feature learning. TPAMI 35(8), 1902–1914 (2013)

    Article  Google Scholar 

  21. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  22. Grathwohl, W., Choi, D., Wu, Y., Roeder, G., Duvenaud, D.: Backpropagation through the void: optimizing control variates for black-box gradient estimation. In: ICLR (2018)

    Google Scholar 

  23. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: CVPR (2014)

    Google Scholar 

  24. Hajewski, J., Oliveira, S.: An evolutionary approach to variational autoencoders. In: CCWC (2020)

    Google Scholar 

  25. van Hateren, J.H., van der Schaaf, A.: Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. Roy. Soc. London Ser. B 265, 359–66 (1998)

    Article  Google Scholar 

  26. Hirschberger, F., Forster, D., Lücke, J.: A variational EM acceleration for efficient clustering at very large scales. TPAMI (2022)

    Google Scholar 

  27. Hughes, M.C., Sudderth, E.B.: Fast learning of clusters and topics via sparse posteriors. arXiv:1609.07521 (2016)

  28. Imamura, R., Itasaka, T., Okuda, M.: Zero-shot hyperspectral image denoising with separable image prior. In: ICCV Workshops (2019)

    Google Scholar 

  29. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. In: ICLR (2017)

    Google Scholar 

  30. Kim, Y., Wiseman, S., Miller, A., Sontag, D., Rush, A.: Semi-amortized variational autoencoders. In: ICML (2018)

    Google Scholar 

  31. Kingma, D.P., Salimans, T., Poole, B., Ho, J.: Variational diffusion models. In: NeurIPS (2021)

    Google Scholar 

  32. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)

    Google Scholar 

  33. Kiran, B., Thomas, D., Parakkal, R.: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos. J. Imaging 4(2), 36 (2018)

    Article  Google Scholar 

  34. Kool, W., van Hoof, H., Welling, M.: Estimating gradients for discrete random variables by sampling without Replacement. In: ICLR (2020)

    Google Scholar 

  35. van Krieken, E., Tomczak, J.M., Teije, A.T.: Storchastic: a framework for general stochastic automatic differentiation. In: NeurIPS (2021)

    Google Scholar 

  36. Krull, A., Buchholz, T.O., Jug, F.: Noise2Void - learning denoising from single noisy images. In: CVPR (2019)

    Google Scholar 

  37. Lehtinen, J., et al.: Noise2Noise: learning image restoration without clean data. In: ICML (2018)

    Google Scholar 

  38. Liu, R., Regier, J., Tripuraneni, N., Jordan, M., Mcauliffe, J.: Rao-Blackwellized stochastic gradients for discrete distributions. In: ICML (2019)

    Google Scholar 

  39. Lorberbom, G., Gane, A., Jaakkola, T., Hazan, T.: Direct Optimization through \(\arg \max \) for discrete variational auto-encoder. In: NeurIPS (2019)

    Google Scholar 

  40. Maaløe, L., Sønderby, C.K., Sønderby, S.K., Winther, O.: Auxiliary deep generative models. In: ICML (2016)

    Google Scholar 

  41. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. In: ICLR (2017)

    Google Scholar 

  42. Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans. Image Proc. 17(1), 53–69 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Olshausen, B., Field, D.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–9 (1996)

    Article  Google Scholar 

  44. van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning. In: NeurIPS (2017)

    Google Scholar 

  45. Paiton, D.M., Frye, C.G., Lundquist, S.Y., Bowen, J.D., Zarcone, R., Olshausen, B.A.: Selectivity and robustness of sparse coding networks. J. Vis. 20(12), 10–10 (2020)

    Article  Google Scholar 

  46. Papyan, V., Romano, Y., Sulam, J., Elad, M.: Convolutional dictionary learning via local processing. In: ICCV (2017)

    Google Scholar 

  47. Park, Y., Kim, C., Kim, G.: Variational laplace autoencoders. In: ICML (2019)

    Google Scholar 

  48. Paulus, M.B., Maddison, C.J., Krause, A.: Rao-blackwellizing the straight-through gumbel-softmax gradient estimator. In: ICLR (2021)

    Google Scholar 

  49. Potapczynski, A., Loaiza-Ganem, G., Cunningham, J.P.: Invertible Gaussian reparameterization: revisiting the gumbel-softmax. In: NeurIPS (2020)

    Google Scholar 

  50. Quan, Y., Chen, M., Pang, T., Ji, H.: Self2Self With Dropout: learning self-supervised denoising from single image. In: CVPR (2020)

    Google Scholar 

  51. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: ICML (2014)

    Google Scholar 

  52. Roberts, A., Engel, J., Raffel, C., Hawthorne, C., Eck, D.: A hierarchical latent vector model for learning long-term structure in music. In: ICML (2018)

    Google Scholar 

  53. Rolfe, J.T.: Discrete variational autoencoders. In: ICLR (2017)

    Google Scholar 

  54. Schulman, J., Heess, N., Weber, T., Abbeel, P.: Gradient estimation using stochastic computation graphs. In: NeurIPS (2015)

    Google Scholar 

  55. Sheikh, A.S., Lücke, J.: Select-and-sample for spike-and-slab sparse coding. In: NeurIPS (2016)

    Google Scholar 

  56. Sheikh, A.S., Shelton, J.A., Lücke, J.: A truncated EM approach for spike-and-slab sparse coding. JMLR 15, 2653–2687 (2014)

    MathSciNet  MATH  Google Scholar 

  57. Shelton, J., Bornschein, J., Sheikh, A.S., Berkes, P., Lücke, J.: Select and sample - a model of efficient neural inference and learning. In: NeurIPS (2011)

    Google Scholar 

  58. Shelton, J.A., Gasthaus, J., Dai, Z., Lücke, J., Gretton, A.: GP-Select: accelerating EM using adaptive subspace preselection. Neural Comp. 29(8), 2177–2202 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  59. Shocher, A., Cohen, N., Irani, M.: “Zero-Shot” super-resolution using deep internal learning. In: CVPR (2018)

    Google Scholar 

  60. Sulam, J., Muthukumar, R., Arora, R.: Adversarial robustness of supervised sparse coding. In: NeurIPS (2020)

    Google Scholar 

  61. Titsias, M.K., Lázaro-Gredilla, M.: Spike and slab variational inference for multi-task and multiple kernel learning. In: NeurIPS (2011)

    Google Scholar 

  62. Tomczak, J.M., Welling, M.: VAE with a VampPrior. In: AISTATS (2018)

    Google Scholar 

  63. Tonolini, F., Jensen, B.S., Murray-Smith, R.: Variational sparse coding. In: UAI (2020)

    Google Scholar 

  64. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: CVPR (2018)

    Google Scholar 

  65. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3), 229–256 (1992)

    Article  MATH  Google Scholar 

  66. Yu, G., Sapiro, G., Mallat, S.: Solving inverse problems with piecewise linear estimators: from gaussian mixture models to structured sparsity. IEEE Trans. Image Proc. 21(5), 2481–2499 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  67. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian Denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Proc. 26(7), 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  68. Zhou, M., Chen, H., Paisley, J., Ren, L., Sapiro, G., Carin, L.: Non-Parametric Bayesian dictionary learning for sparse image representations. In: NeurIPS (2009)

    Google Scholar 

  69. Zhou, M., et al.: Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images. IEEE Trans. Image Proc. 21(1), 130–144 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhu, S., Xu, G., Cheng, Y., Han, X., Wang, Z.: BDGAN: image blind denoising using generative adversarial networks. In: PRCV (2019)

    Google Scholar 

  71. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: ICCV (2011)

    Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4