J. Drefs and E. Guiraud—Joint first authorship.
ReferencesBengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: NeurIPS (2007)
Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv:1308.3432 (2013)
Berliner, A., Rotman, G., Adi, Y., Reichart, R., Hazan, T.: Learning discrete structured variational auto-encoder using natural evolution strategies. In: ICLR (2022)
Bingham, E., et al.: PYRO: deep universal probabilistic programming. JMLR 20(1), 973–978 (2019)
Bowman, S., Vilnis, L., Vinyals, O., Dai, A.M., Jozefowicz, R., Bengio, S.: Generating Sentences from a Continuous Space. In: CoNLL (2016)
Chaudhury, S., Roy, H.: Can fully convolutional networks perform well for general image restoration problems? In: IAPR International Conference MVA (2017)
Child, R., Gray, S., Radford, A., Sutskever, I.: Generating long sequences with sparse transformers. arXiv:1904.10509 (2019)
Cong, Y., Zhao, M., Bai, K., Carin, L.: GO gradient for expectation-based objectives. In: ICLR (2019)
Cremer, C., Li, X., Duvenaud, D.: Inference suboptimality in variational autoencoders. In: ICML (2018)
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Proc. 16(8), 2080–2095 (2007)
Dimitriev, A., Zhou, M.: CARMS: categorical-antithetic-reinforce multi-sample gradient estimator. In: NeurIPS (2021)
Dong, W., Wang, P., Yin, W., Shi, G., Wu, F., Lu, X.: Denoising prior driven deep neural network for image restoration. TPAMI 41(10), 2305–2318 (2019)
Dong, Z., Mnih, A., Tucker, G.: Coupled gradient estimators for discrete latent variables. In: NeurIPS (2021)
Drefs, J., Guiraud, E., Lücke, J.: Evolutionary Variational Optimization of Generative Models. JMLR 23(21), 1–51 (2022)
Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Proc. 15, 3736–3745 (2006)
Eldar, Y.C., Kutyniok, G.: Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2012)
Exarchakis, G., Oubari, O., Lenz, G.: A sampling-based approach for efficient clustering in large datasets. In: CVPR (2022)
Fajtl, J., Argyriou, V., Monekosso, D., Remagnino, P.: Latent bernoulli autoencoder. In: ICML (2020)
Foerster, J., Farquhar, G., Al-Shedivat, M., Rocktäschel, T., Xing, E., Whiteson, S.: DiCE: the infinitely differentiable monte Carlo estimator. In: ICML (2018)
Goodfellow, I.J., Courville, A., Bengio, Y.: Scaling up spike-and-slab models for unsupervised feature learning. TPAMI 35(8), 1902–1914 (2013)
Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)
Grathwohl, W., Choi, D., Wu, Y., Roeder, G., Duvenaud, D.: Backpropagation through the void: optimizing control variates for black-box gradient estimation. In: ICLR (2018)
Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: CVPR (2014)
Hajewski, J., Oliveira, S.: An evolutionary approach to variational autoencoders. In: CCWC (2020)
van Hateren, J.H., van der Schaaf, A.: Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. Roy. Soc. London Ser. B 265, 359–66 (1998)
Hirschberger, F., Forster, D., Lücke, J.: A variational EM acceleration for efficient clustering at very large scales. TPAMI (2022)
Hughes, M.C., Sudderth, E.B.: Fast learning of clusters and topics via sparse posteriors. arXiv:1609.07521 (2016)
Imamura, R., Itasaka, T., Okuda, M.: Zero-shot hyperspectral image denoising with separable image prior. In: ICCV Workshops (2019)
Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. In: ICLR (2017)
Kim, Y., Wiseman, S., Miller, A., Sontag, D., Rush, A.: Semi-amortized variational autoencoders. In: ICML (2018)
Kingma, D.P., Salimans, T., Poole, B., Ho, J.: Variational diffusion models. In: NeurIPS (2021)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)
Kiran, B., Thomas, D., Parakkal, R.: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos. J. Imaging 4(2), 36 (2018)
Kool, W., van Hoof, H., Welling, M.: Estimating gradients for discrete random variables by sampling without Replacement. In: ICLR (2020)
van Krieken, E., Tomczak, J.M., Teije, A.T.: Storchastic: a framework for general stochastic automatic differentiation. In: NeurIPS (2021)
Krull, A., Buchholz, T.O., Jug, F.: Noise2Void - learning denoising from single noisy images. In: CVPR (2019)
Lehtinen, J., et al.: Noise2Noise: learning image restoration without clean data. In: ICML (2018)
Liu, R., Regier, J., Tripuraneni, N., Jordan, M., Mcauliffe, J.: Rao-Blackwellized stochastic gradients for discrete distributions. In: ICML (2019)
Lorberbom, G., Gane, A., Jaakkola, T., Hazan, T.: Direct Optimization through \(\arg \max \) for discrete variational auto-encoder. In: NeurIPS (2019)
Maaløe, L., Sønderby, C.K., Sønderby, S.K., Winther, O.: Auxiliary deep generative models. In: ICML (2016)
Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. In: ICLR (2017)
Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans. Image Proc. 17(1), 53–69 (2008)
Olshausen, B., Field, D.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–9 (1996)
van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning. In: NeurIPS (2017)
Paiton, D.M., Frye, C.G., Lundquist, S.Y., Bowen, J.D., Zarcone, R., Olshausen, B.A.: Selectivity and robustness of sparse coding networks. J. Vis. 20(12), 10–10 (2020)
Papyan, V., Romano, Y., Sulam, J., Elad, M.: Convolutional dictionary learning via local processing. In: ICCV (2017)
Park, Y., Kim, C., Kim, G.: Variational laplace autoencoders. In: ICML (2019)
Paulus, M.B., Maddison, C.J., Krause, A.: Rao-blackwellizing the straight-through gumbel-softmax gradient estimator. In: ICLR (2021)
Potapczynski, A., Loaiza-Ganem, G., Cunningham, J.P.: Invertible Gaussian reparameterization: revisiting the gumbel-softmax. In: NeurIPS (2020)
Quan, Y., Chen, M., Pang, T., Ji, H.: Self2Self With Dropout: learning self-supervised denoising from single image. In: CVPR (2020)
Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: ICML (2014)
Roberts, A., Engel, J., Raffel, C., Hawthorne, C., Eck, D.: A hierarchical latent vector model for learning long-term structure in music. In: ICML (2018)
Rolfe, J.T.: Discrete variational autoencoders. In: ICLR (2017)
Schulman, J., Heess, N., Weber, T., Abbeel, P.: Gradient estimation using stochastic computation graphs. In: NeurIPS (2015)
Sheikh, A.S., Lücke, J.: Select-and-sample for spike-and-slab sparse coding. In: NeurIPS (2016)
Sheikh, A.S., Shelton, J.A., Lücke, J.: A truncated EM approach for spike-and-slab sparse coding. JMLR 15, 2653–2687 (2014)
Shelton, J., Bornschein, J., Sheikh, A.S., Berkes, P., Lücke, J.: Select and sample - a model of efficient neural inference and learning. In: NeurIPS (2011)
Shelton, J.A., Gasthaus, J., Dai, Z., Lücke, J., Gretton, A.: GP-Select: accelerating EM using adaptive subspace preselection. Neural Comp. 29(8), 2177–2202 (2017)
Shocher, A., Cohen, N., Irani, M.: “Zero-Shot” super-resolution using deep internal learning. In: CVPR (2018)
Sulam, J., Muthukumar, R., Arora, R.: Adversarial robustness of supervised sparse coding. In: NeurIPS (2020)
Titsias, M.K., Lázaro-Gredilla, M.: Spike and slab variational inference for multi-task and multiple kernel learning. In: NeurIPS (2011)
Tomczak, J.M., Welling, M.: VAE with a VampPrior. In: AISTATS (2018)
Tonolini, F., Jensen, B.S., Murray-Smith, R.: Variational sparse coding. In: UAI (2020)
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: CVPR (2018)
Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3), 229–256 (1992)
Yu, G., Sapiro, G., Mallat, S.: Solving inverse problems with piecewise linear estimators: from gaussian mixture models to structured sparsity. IEEE Trans. Image Proc. 21(5), 2481–2499 (2012)
Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian Denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Proc. 26(7), 3142–3155 (2017)
Zhou, M., Chen, H., Paisley, J., Ren, L., Sapiro, G., Carin, L.: Non-Parametric Bayesian dictionary learning for sparse image representations. In: NeurIPS (2009)
Zhou, M., et al.: Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images. IEEE Trans. Image Proc. 21(1), 130–144 (2012)
Zhu, S., Xu, G., Cheng, Y., Han, X., Wang, Z.: BDGAN: image blind denoising using generative adversarial networks. In: PRCV (2019)
Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: ICCV (2011)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4