A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-025-03686-2 below:

Improving Prediction of Intracranial Aneurysm Rupture Status Using Temporal Velocity-Informatics

References
  1. Ahn, J.-M., J.-S. Oh, S.-M. Yoon, J.-H. Shim, H.-J. Oh, and H.-G. Bae. Procedure-related complications during endovascular treatment of intracranial saccular aneurysms. Journal of Cerebrovascular and Endovascular Neurosurgery. 19:162–170, 2017.

    PubMed  PubMed Central  Google Scholar 

  2. Chalouhi, N., M. Zanaty, A. Whiting, S. Yang, S. Tjoumakaris, D. Hasan, et al. Safety and efficacy of the pipeline embolization device in 100 small intracranial aneurysms. Journal of Neurosurgery. 122:1498–1502, 2015.

    PubMed  Google Scholar 

  3. Kotowski, M., O. Naggara, T. E. Darsaut, S. Nolet, G. Gevry, E. Kouznetsov, et al. Safety and occlusion rates of surgical treatment of unruptured intracranial aneurysms: a systematic review and meta-analysis of the literature from 1990 to 2011. Journal of Neurology, Neurosurgery & Psychiatry. 84:42–48, 2013.

    Google Scholar 

  4. Liu, J., L. Jing, C. Wang, Y. Zhang, and X. Yang. Recanalization, regrowth, and delayed rupture of a previously coiled unruptured anterior communicating artery aneurysm: a longitudinal hemodynamic analysis. World Neurosurgery. 89:726.e5-726.e10, 2016. https://doi.org/10.1016/j.wneu.2016.01.002.

    PubMed  Google Scholar 

  5. Molyneux, A., and R. Kerr. Group ISATC International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomized trial. Journal of Stroke and Cerebrovascular Diseases. 11:304–314, 2002.

    PubMed  Google Scholar 

  6. Molyneux, A. J., J. Birks, A. Clarke, and M. Sneade. Kerr RS The durability of endovascular coiling versus neurosurgical clipping of ruptured cerebral aneurysms: 18 year follow-up of the UK cohort of the International Subarachnoid Aneurysm Trial (ISAT). The Lancet. 385:691–697, 2015.

    Google Scholar 

  7. Pierot, L., C. Barbe, J.-C. Ferré, C. Cognard, S. Soize, P. White, et al. Patient and aneurysm factors associated with aneurysm rupture in the population of the ARETA study. Journal of Neuroradiology. 47:292–300, 2020.

    PubMed  Google Scholar 

  8. Malhotra, A., X. Wu, B. Geng, D. Hersey, and D. Gandhi. Sanelli P Management of small unruptured intracranial aneurysms: a survey of neuroradiologists. American Journal of Neuroradiology. 39:875–880, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Liang, L., D. A. Steinman, O. Brina, C. Chnafa, N. M. Cancelliere, and V. M. Pereira. Towards the clinical utility of CFD for assessment of intracranial aneurysm rupture—a systematic review and novel parameter-ranking tool. Journal of NeuroInterventional Surgery. 11:153–158, 2019. https://doi.org/10.1136/neurintsurg-2018-014246.

    PubMed  Google Scholar 

  10. Byrne, G., F. Mut, and J. Cebral. Quantifying the large-scale hemodynamics of intracranial aneurysms. American Journal of Neuroradiology. 35:333–338, 2014. https://doi.org/10.3174/ajnr.A3678.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Meng, H., V. Tutino, J. Xiang, and A. Siddiqui. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. American Journal of Neuroradiology. 35:1254–1262, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Detmer, F. J., B. J. Chung, F. Mut, M. Pritz, M. Slawski, F. Hamzei-Sichani, et al. Development of a statistical model for discrimination of rupture status in posterior communicating artery aneurysms. Acta Neurochirurgica. 160:1643–1652, 2018.

    PubMed  PubMed Central  Google Scholar 

  13. Tanioka, S., F. Ishida, A. Yamamoto, S. Shimizu, H. Sakaida, M. Toyoda, et al. Machine learning classification of cerebral aneurysm rupture status with morphologic variables and hemodynamic parameters. Radiology Artificial Intelligence. 2:e190077, 2020. https://doi.org/10.1148/ryai.2019190077.

    PubMed  PubMed Central  Google Scholar 

  14. Sunderland, K., J. Jiang, and F. Zhao. Disturbed flow’s impact on cellular changes indicative of vascular aneurysm initiation, expansion, and rupture: A pathological and methodological review. Journal of Cellular Physiology. 237:1–12, 2021. https://doi.org/10.1002/jcp.30569.

    CAS  Google Scholar 

  15. Jiang, J., M. Rezaeitaleshmahalleh, Z. Lyu, N. Mu, A. S. Ahmed, C. M. S. Md, et al. Augmenting prediction of intracranial aneurysms’ risk status using velocity-informatics: initial experience. Journal of Cardiovascular Translational Research. 2023. https://doi.org/10.1007/s12265-023-10394-6.

    PubMed  PubMed Central  Google Scholar 

  16. Amigo, N., A. Valencia, W. Wu, S. Patnaik, and E. Finol. Cerebral aneurysm rupture status classification using statistical and machine learning methods. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 235:655–662, 2021. https://doi.org/10.1177/09544119211000477.

    PubMed  Google Scholar 

  17. Detmer, F. J., D. Lückehe, F. Mut, M. Slawski, S. Hirsch, P. Bijlenga, et al. Comparison of statistical learning approaches for cerebral aneurysm rupture assessment. International Journal of Computer Assisted Radiology and Surgery. 15:141–150, 2020. https://doi.org/10.1007/s11548-019-02065-2.

    PubMed  Google Scholar 

  18. Xiang, J., S. K. Natarajan, M. Tremmel, D. Ma, J. Mocco, L. N. Hopkins, et al. Hemodynamic–morphologic discriminants for intracranial aneurysm rupture. Stroke. 42:144–152, 2011.

    PubMed  Google Scholar 

  19. Sunderland, K., M. Wang, A. S. Pandey, J. Gemmete, Q. Huang, A. Goudge, et al. Quantitative analysis of flow vortices: differentiation of unruptured and ruptured medium-sized middle cerebral artery aneurysms. Acta Neurochirurgica. 163:2339–2349, 2021. https://doi.org/10.1007/s00701-020-04616-y.

    CAS  PubMed  Google Scholar 

  20. Balaguru, U. M., L. Sundaresan, J. Manivannan, R. Majunathan, K. Mani, A. Swaminathan, et al. Disturbed flow mediated modulation of shear forces on endothelial plane: a proposed model for studying endothelium around atherosclerotic plaques. Scientific Reports. 6:27304, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chiu, J.-J., and S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiological Reviews. 91:327–387, 2011. https://doi.org/10.1152/physrev.00047.2009.

    PubMed  Google Scholar 

  22. Sunderland, K., C. Haferman, G. Chintalapani, and J. Jiang. Vortex analysis of intra-aneurismal flow in cerebral aneurysms. Computational and Mathematical Methods in Medicine. 2016:16, 2016. https://doi.org/10.1155/2016/7406215.

    Google Scholar 

  23. Varble, N., G. Trylesinski, J. Xiang, K. Snyder, and H. Meng. Identification of vortex structures in a cohort of 204 intracranial aneurysms. Journal of the Royal Society Interface. 14:20170021, 2017. https://doi.org/10.1098/rsif.2017.0021.

    PubMed  PubMed Central  Google Scholar 

  24. Sano, T., F. Ishida, M. Tsuji, K. Furukawa, S. Shimosaka, and H. Suzuki. Hemodynamic differences between ruptured and unruptured cerebral aneurysms simultaneously existing in the same location: 2 case reports and proposal of a novel parameter oscillatory velocity index. World Neurosurgery. 98:868.e5-868.e10, 2017. https://doi.org/10.1016/j.wneu.2016.12.047.

    PubMed  Google Scholar 

  25. Sunderland, K., Q. Huang, C. Strother, and J. Jiang. Two closely spaced aneurysms of the supraclinoid internal carotid artery: how does one influence the other? Journal of Biomechanical Engineering. 2019. https://doi.org/10.1115/1.4043868.

    PubMed  Google Scholar 

  26. Sunderland, K., and J. Jiang. Multivariate analysis of hemodynamic parameters on intracranial aneurysm initiation of the internal carotid artery. Medical Engineering & Physics. 74:129–136, 2019. https://doi.org/10.1016/j.medengphy.2019.09.010.

    CAS  Google Scholar 

  27. Van Timmeren, J. E., D. Cester, S. Tanadini-Lang, H. Alkadhi, and B. Baessler. Radiomics in medical imaging—“how-to” guide and critical reflection. Insights into imaging. 11:1–16, 2020.

    Google Scholar 

  28. Mayerhoefer, M. E., A. Materka, G. Langs, I. Häggström, P. Szczypiński, P. Gibbs, et al. Introduction to radiomics. Journal of Nuclear Medicine. 61:488–495, 2020.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumar, V., Y. Gu, S. Basu, A. Berglund, S. A. Eschrich, M. B. Schabath, et al. Radiomics: the process and the challenges. Magnetic Resonance Imaging. 30:1234–1248, 2012.

    PubMed  PubMed Central  Google Scholar 

  30. Gillies, R. J., P. E. Kinahan, and H. Hricak. Radiomics: images are more than pictures, they are data. Radiology. 278:563–577, 2016.

    PubMed  Google Scholar 

  31. Rezaeitaleshmahalleh, M., Z. Lyu, N. Mu, X. Zhang, T. E. Rasmussen, R. D. McBane, et al. Characterization of small abdominal aortic aneurysms’ growth status using spatial pattern analysis of aneurismal hemodynamics. Scientific Reports. 13:13832, 2023. https://doi.org/10.1038/s41598-023-40139-z.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Antiga, L., and D. A. Steinman. Robust and objective decomposition and mapping of bifurcating vessels. IEEE Transactions on Medical Imaging. 23:704–713, 2004. https://doi.org/10.1109/TMI.2004.826946.

    PubMed  Google Scholar 

  33. van Griethuysen, J. J. M., A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Research. 77:e104–e107, 2017. https://doi.org/10.1158/0008-5472.Can-17-0339.

    PubMed  PubMed Central  Google Scholar 

  34. Jou, L.-D., C. M. Quick, W. L. Young, M. T. Lawton, R. Higashida, A. Martin, et al. Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms. American Journal of Neuroradiology. 24:1804–1810, 2003.

    PubMed  PubMed Central  Google Scholar 

  35. Steinman, D. A., J. S. Milner, C. J. Norley, S. P. Lownie, and D. W. Holdsworth. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. American Journal of Neuroradiology. 24:559–566, 2003.

    PubMed  PubMed Central  Google Scholar 

  36. Patankar, S. Numerical heat transfer and fluid flow. Taylor & Francis, 2018.

    Google Scholar 

  37. Ferziger, J. H., and M. Perić. Solution of the Navier-Stokes equations. In: Computational methods for fluid dynamics, Berlin Heidelberg: Springer, 2002, pp. 157–216.

    Google Scholar 

  38. Gwilliam, M. N., N. Hoggard, D. Capener, P. Singh, A. Marzo, P. K. Verma, et al. MR derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries. Journal of Cerebral Blood Flow & Metabolism. 29:1975–1982, 2009. https://doi.org/10.1038/jcbfm.2009.176.

    Google Scholar 

  39. Jiang, J., K. Johnson, K. Valen-Sendstad, K. A. Mardal, and O. Wieben. Strother C Flow characteristics in a canine aneurysm model: a comparison of 4D accelerated phase-contrast MR measurements and computational fluid dynamics simulations. Med Phys. 38:6300–6312, 2011. https://doi.org/10.1118/1.3652917.

    PubMed  PubMed Central  Google Scholar 

  40. Jain, K., J. Jiang, C. Strother, and K.-A. Mardal. Transitional hemodynamics in intracranial aneurysms—Comparative velocity investigations with high resolution lattice Boltzmann simulations, normal resolution ANSYS simulations, and MR imaging. Medical Physics. 43:6186–6198, 2016. https://doi.org/10.1118/1.4964793.

    PubMed  Google Scholar 

  41. Jiang, J., C. Strother, K. Johnson, S. Baker, D. Consigny, O. Wieben, et al. Comparison of blood velocity measurements between ultrasound Doppler and accelerated phase-contrast MR angiography in small arteries with disturbed flow. Physics in Medicine and Biology. 56:1755–1773, 2011. https://doi.org/10.1088/0031-9155/56/6/015.

    PubMed  PubMed Central  Google Scholar 

  42. Berkowitz BM. Development of metrics to describe cerebral aneurysm morphology. Dissertation, University of Iowa;2017

  43. Kelley, C. T. Iterative methods for optimization: frontiers in applied mathematics. Philadelphia: SIAM, 1999.

    Google Scholar 

  44. Jiang, J., and C. M. Strother. Interactive decomposition and mapping of saccular cerebral aneurysms using harmonic functions: its first application with “patient-specific” computational fluid dynamics (CFD) simulations. IEEE Transactions on Medical Imaging. 32:153–164, 2013. https://doi.org/10.1109/TMI.2012.2216542.

    PubMed  Google Scholar 

  45. Leopardi, P. A partition of the unit sphere into regions of equal area and small diameter. Electronic Transactions on Numerical Analysis. 25:309–327, 2006.

    Google Scholar 

  46. Lundberg, S. M., and S.-I. Lee. A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems, Long Beach: Curran Associates Inc, 2017, pp. 4768–4777.

    Google Scholar 

  47. Mu, N., M. Rezaeitaleshmahalleh, Z. Lyu, M. Wang, J. Tang, C. M. Strother, et al. Can we explain machine learning-based prediction for rupture status assessments of intracranial aneurysms? Biomedical Physics & Engineering Express. 9:037001, 2023. https://doi.org/10.1088/2057-1976/acb1b3.

    Google Scholar 

  48. Cebral, J. R., F. Mut, and J. Weir. Putman C Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. American Journal of Neuroradiology. 32:145–151, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cebral, J. R., F. Mut, and J. Weir. Putman CM association of hemodynamic characteristics and cerebral aneurysm rupture. American Journal of Neuroradiology. 32:264–270, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Valen-Sendstad, K. Steinman DA mind the gap: impact of computational fluid dynamics solution strategy on prediction of intracranial aneurysm hemodynamics and rupture status indicators. American Journal of Neuroradiology. 35:536–543, 2014. https://doi.org/10.3174/ajnr.A3793.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bijlenga, P., S. Morel, S. Hirsch, and K. Schaller. Rüfenacht D Plea for an international Aneurysm Data Bank: description and perspectives. Neurosurgical Focus FOC. 47:E17, 2019. https://doi.org/10.3171/2019.4.Focus19185.

    Google Scholar 

  52. Mu, N., Z. Lyu, M. Rezaeitaleshmahalleh, and J. Tang. Jiang J An attention residual u-net with differential preprocessing and geometric postprocessing: learning how to segment vasculature including intracranial aneurysms. Medical Image Analysis. 84:102697, 2023. https://doi.org/10.1016/j.media.2022.102697.

    PubMed  Google Scholar 

  53. Mu, N., Z. Lyu, M. Rezaeitaleshmahalleh, X. Zhang, T. Rasmussen, R. McBane, et al. Automatic segmentation of abdominal aortic aneurysms from CT angiography using a context-aware cascaded U-Net. Computers in Biology and Medicine. 158:106569, 2023. https://doi.org/10.1016/j.compbiomed.2023.106569.

    PubMed  PubMed Central  Google Scholar 

  54. Mu, N., Z. Lyu, M. Rezaeitaleshmahalleh, C. Bonifas, J. Gosnell, M. Haw, et al. S-Net: a multiple cross aggregation convolutional architecture for automatic segmentation of small/thin structures for cardiovascular applications. Frontiers in Physiology. 14:1209659, 2023. https://doi.org/10.3389/fphys.2023.1209659.

    PubMed  PubMed Central  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4