Ahn, J.-M., J.-S. Oh, S.-M. Yoon, J.-H. Shim, H.-J. Oh, and H.-G. Bae. Procedure-related complications during endovascular treatment of intracranial saccular aneurysms. Journal of Cerebrovascular and Endovascular Neurosurgery. 19:162–170, 2017.
Chalouhi, N., M. Zanaty, A. Whiting, S. Yang, S. Tjoumakaris, D. Hasan, et al. Safety and efficacy of the pipeline embolization device in 100 small intracranial aneurysms. Journal of Neurosurgery. 122:1498–1502, 2015.
Kotowski, M., O. Naggara, T. E. Darsaut, S. Nolet, G. Gevry, E. Kouznetsov, et al. Safety and occlusion rates of surgical treatment of unruptured intracranial aneurysms: a systematic review and meta-analysis of the literature from 1990 to 2011. Journal of Neurology, Neurosurgery & Psychiatry. 84:42–48, 2013.
Liu, J., L. Jing, C. Wang, Y. Zhang, and X. Yang. Recanalization, regrowth, and delayed rupture of a previously coiled unruptured anterior communicating artery aneurysm: a longitudinal hemodynamic analysis. World Neurosurgery. 89:726.e5-726.e10, 2016. https://doi.org/10.1016/j.wneu.2016.01.002.
Molyneux, A., and R. Kerr. Group ISATC International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomized trial. Journal of Stroke and Cerebrovascular Diseases. 11:304–314, 2002.
Molyneux, A. J., J. Birks, A. Clarke, and M. Sneade. Kerr RS The durability of endovascular coiling versus neurosurgical clipping of ruptured cerebral aneurysms: 18 year follow-up of the UK cohort of the International Subarachnoid Aneurysm Trial (ISAT). The Lancet. 385:691–697, 2015.
Pierot, L., C. Barbe, J.-C. Ferré, C. Cognard, S. Soize, P. White, et al. Patient and aneurysm factors associated with aneurysm rupture in the population of the ARETA study. Journal of Neuroradiology. 47:292–300, 2020.
Malhotra, A., X. Wu, B. Geng, D. Hersey, and D. Gandhi. Sanelli P Management of small unruptured intracranial aneurysms: a survey of neuroradiologists. American Journal of Neuroradiology. 39:875–880, 2018.
Liang, L., D. A. Steinman, O. Brina, C. Chnafa, N. M. Cancelliere, and V. M. Pereira. Towards the clinical utility of CFD for assessment of intracranial aneurysm rupture—a systematic review and novel parameter-ranking tool. Journal of NeuroInterventional Surgery. 11:153–158, 2019. https://doi.org/10.1136/neurintsurg-2018-014246.
Byrne, G., F. Mut, and J. Cebral. Quantifying the large-scale hemodynamics of intracranial aneurysms. American Journal of Neuroradiology. 35:333–338, 2014. https://doi.org/10.3174/ajnr.A3678.
Meng, H., V. Tutino, J. Xiang, and A. Siddiqui. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. American Journal of Neuroradiology. 35:1254–1262, 2014.
Detmer, F. J., B. J. Chung, F. Mut, M. Pritz, M. Slawski, F. Hamzei-Sichani, et al. Development of a statistical model for discrimination of rupture status in posterior communicating artery aneurysms. Acta Neurochirurgica. 160:1643–1652, 2018.
Tanioka, S., F. Ishida, A. Yamamoto, S. Shimizu, H. Sakaida, M. Toyoda, et al. Machine learning classification of cerebral aneurysm rupture status with morphologic variables and hemodynamic parameters. Radiology Artificial Intelligence. 2:e190077, 2020. https://doi.org/10.1148/ryai.2019190077.
Sunderland, K., J. Jiang, and F. Zhao. Disturbed flow’s impact on cellular changes indicative of vascular aneurysm initiation, expansion, and rupture: A pathological and methodological review. Journal of Cellular Physiology. 237:1–12, 2021. https://doi.org/10.1002/jcp.30569.
Jiang, J., M. Rezaeitaleshmahalleh, Z. Lyu, N. Mu, A. S. Ahmed, C. M. S. Md, et al. Augmenting prediction of intracranial aneurysms’ risk status using velocity-informatics: initial experience. Journal of Cardiovascular Translational Research. 2023. https://doi.org/10.1007/s12265-023-10394-6.
Amigo, N., A. Valencia, W. Wu, S. Patnaik, and E. Finol. Cerebral aneurysm rupture status classification using statistical and machine learning methods. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 235:655–662, 2021. https://doi.org/10.1177/09544119211000477.
Detmer, F. J., D. Lückehe, F. Mut, M. Slawski, S. Hirsch, P. Bijlenga, et al. Comparison of statistical learning approaches for cerebral aneurysm rupture assessment. International Journal of Computer Assisted Radiology and Surgery. 15:141–150, 2020. https://doi.org/10.1007/s11548-019-02065-2.
Xiang, J., S. K. Natarajan, M. Tremmel, D. Ma, J. Mocco, L. N. Hopkins, et al. Hemodynamic–morphologic discriminants for intracranial aneurysm rupture. Stroke. 42:144–152, 2011.
Sunderland, K., M. Wang, A. S. Pandey, J. Gemmete, Q. Huang, A. Goudge, et al. Quantitative analysis of flow vortices: differentiation of unruptured and ruptured medium-sized middle cerebral artery aneurysms. Acta Neurochirurgica. 163:2339–2349, 2021. https://doi.org/10.1007/s00701-020-04616-y.
Balaguru, U. M., L. Sundaresan, J. Manivannan, R. Majunathan, K. Mani, A. Swaminathan, et al. Disturbed flow mediated modulation of shear forces on endothelial plane: a proposed model for studying endothelium around atherosclerotic plaques. Scientific Reports. 6:27304, 2016.
Chiu, J.-J., and S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiological Reviews. 91:327–387, 2011. https://doi.org/10.1152/physrev.00047.2009.
Sunderland, K., C. Haferman, G. Chintalapani, and J. Jiang. Vortex analysis of intra-aneurismal flow in cerebral aneurysms. Computational and Mathematical Methods in Medicine. 2016:16, 2016. https://doi.org/10.1155/2016/7406215.
Varble, N., G. Trylesinski, J. Xiang, K. Snyder, and H. Meng. Identification of vortex structures in a cohort of 204 intracranial aneurysms. Journal of the Royal Society Interface. 14:20170021, 2017. https://doi.org/10.1098/rsif.2017.0021.
Sano, T., F. Ishida, M. Tsuji, K. Furukawa, S. Shimosaka, and H. Suzuki. Hemodynamic differences between ruptured and unruptured cerebral aneurysms simultaneously existing in the same location: 2 case reports and proposal of a novel parameter oscillatory velocity index. World Neurosurgery. 98:868.e5-868.e10, 2017. https://doi.org/10.1016/j.wneu.2016.12.047.
Sunderland, K., Q. Huang, C. Strother, and J. Jiang. Two closely spaced aneurysms of the supraclinoid internal carotid artery: how does one influence the other? Journal of Biomechanical Engineering. 2019. https://doi.org/10.1115/1.4043868.
Sunderland, K., and J. Jiang. Multivariate analysis of hemodynamic parameters on intracranial aneurysm initiation of the internal carotid artery. Medical Engineering & Physics. 74:129–136, 2019. https://doi.org/10.1016/j.medengphy.2019.09.010.
Van Timmeren, J. E., D. Cester, S. Tanadini-Lang, H. Alkadhi, and B. Baessler. Radiomics in medical imaging—“how-to” guide and critical reflection. Insights into imaging. 11:1–16, 2020.
Mayerhoefer, M. E., A. Materka, G. Langs, I. Häggström, P. Szczypiński, P. Gibbs, et al. Introduction to radiomics. Journal of Nuclear Medicine. 61:488–495, 2020.
Kumar, V., Y. Gu, S. Basu, A. Berglund, S. A. Eschrich, M. B. Schabath, et al. Radiomics: the process and the challenges. Magnetic Resonance Imaging. 30:1234–1248, 2012.
Gillies, R. J., P. E. Kinahan, and H. Hricak. Radiomics: images are more than pictures, they are data. Radiology. 278:563–577, 2016.
Rezaeitaleshmahalleh, M., Z. Lyu, N. Mu, X. Zhang, T. E. Rasmussen, R. D. McBane, et al. Characterization of small abdominal aortic aneurysms’ growth status using spatial pattern analysis of aneurismal hemodynamics. Scientific Reports. 13:13832, 2023. https://doi.org/10.1038/s41598-023-40139-z.
Antiga, L., and D. A. Steinman. Robust and objective decomposition and mapping of bifurcating vessels. IEEE Transactions on Medical Imaging. 23:704–713, 2004. https://doi.org/10.1109/TMI.2004.826946.
van Griethuysen, J. J. M., A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Research. 77:e104–e107, 2017. https://doi.org/10.1158/0008-5472.Can-17-0339.
Jou, L.-D., C. M. Quick, W. L. Young, M. T. Lawton, R. Higashida, A. Martin, et al. Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms. American Journal of Neuroradiology. 24:1804–1810, 2003.
Steinman, D. A., J. S. Milner, C. J. Norley, S. P. Lownie, and D. W. Holdsworth. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. American Journal of Neuroradiology. 24:559–566, 2003.
Patankar, S. Numerical heat transfer and fluid flow. Taylor & Francis, 2018.
Ferziger, J. H., and M. Perić. Solution of the Navier-Stokes equations. In: Computational methods for fluid dynamics, Berlin Heidelberg: Springer, 2002, pp. 157–216.
Gwilliam, M. N., N. Hoggard, D. Capener, P. Singh, A. Marzo, P. K. Verma, et al. MR derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries. Journal of Cerebral Blood Flow & Metabolism. 29:1975–1982, 2009. https://doi.org/10.1038/jcbfm.2009.176.
Jiang, J., K. Johnson, K. Valen-Sendstad, K. A. Mardal, and O. Wieben. Strother C Flow characteristics in a canine aneurysm model: a comparison of 4D accelerated phase-contrast MR measurements and computational fluid dynamics simulations. Med Phys. 38:6300–6312, 2011. https://doi.org/10.1118/1.3652917.
Jain, K., J. Jiang, C. Strother, and K.-A. Mardal. Transitional hemodynamics in intracranial aneurysms—Comparative velocity investigations with high resolution lattice Boltzmann simulations, normal resolution ANSYS simulations, and MR imaging. Medical Physics. 43:6186–6198, 2016. https://doi.org/10.1118/1.4964793.
Jiang, J., C. Strother, K. Johnson, S. Baker, D. Consigny, O. Wieben, et al. Comparison of blood velocity measurements between ultrasound Doppler and accelerated phase-contrast MR angiography in small arteries with disturbed flow. Physics in Medicine and Biology. 56:1755–1773, 2011. https://doi.org/10.1088/0031-9155/56/6/015.
Berkowitz BM. Development of metrics to describe cerebral aneurysm morphology. Dissertation, University of Iowa;2017
Kelley, C. T. Iterative methods for optimization: frontiers in applied mathematics. Philadelphia: SIAM, 1999.
Jiang, J., and C. M. Strother. Interactive decomposition and mapping of saccular cerebral aneurysms using harmonic functions: its first application with “patient-specific” computational fluid dynamics (CFD) simulations. IEEE Transactions on Medical Imaging. 32:153–164, 2013. https://doi.org/10.1109/TMI.2012.2216542.
Leopardi, P. A partition of the unit sphere into regions of equal area and small diameter. Electronic Transactions on Numerical Analysis. 25:309–327, 2006.
Lundberg, S. M., and S.-I. Lee. A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems, Long Beach: Curran Associates Inc, 2017, pp. 4768–4777.
Mu, N., M. Rezaeitaleshmahalleh, Z. Lyu, M. Wang, J. Tang, C. M. Strother, et al. Can we explain machine learning-based prediction for rupture status assessments of intracranial aneurysms? Biomedical Physics & Engineering Express. 9:037001, 2023. https://doi.org/10.1088/2057-1976/acb1b3.
Cebral, J. R., F. Mut, and J. Weir. Putman C Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. American Journal of Neuroradiology. 32:145–151, 2011.
Cebral, J. R., F. Mut, and J. Weir. Putman CM association of hemodynamic characteristics and cerebral aneurysm rupture. American Journal of Neuroradiology. 32:264–270, 2011.
Valen-Sendstad, K. Steinman DA mind the gap: impact of computational fluid dynamics solution strategy on prediction of intracranial aneurysm hemodynamics and rupture status indicators. American Journal of Neuroradiology. 35:536–543, 2014. https://doi.org/10.3174/ajnr.A3793.
Bijlenga, P., S. Morel, S. Hirsch, and K. Schaller. Rüfenacht D Plea for an international Aneurysm Data Bank: description and perspectives. Neurosurgical Focus FOC. 47:E17, 2019. https://doi.org/10.3171/2019.4.Focus19185.
Mu, N., Z. Lyu, M. Rezaeitaleshmahalleh, and J. Tang. Jiang J An attention residual u-net with differential preprocessing and geometric postprocessing: learning how to segment vasculature including intracranial aneurysms. Medical Image Analysis. 84:102697, 2023. https://doi.org/10.1016/j.media.2022.102697.
Mu, N., Z. Lyu, M. Rezaeitaleshmahalleh, X. Zhang, T. Rasmussen, R. McBane, et al. Automatic segmentation of abdominal aortic aneurysms from CT angiography using a context-aware cascaded U-Net. Computers in Biology and Medicine. 158:106569, 2023. https://doi.org/10.1016/j.compbiomed.2023.106569.
Mu, N., Z. Lyu, M. Rezaeitaleshmahalleh, C. Bonifas, J. Gosnell, M. Haw, et al. S-Net: a multiple cross aggregation convolutional architecture for automatic segmentation of small/thin structures for cardiovascular applications. Frontiers in Physiology. 14:1209659, 2023. https://doi.org/10.3389/fphys.2023.1209659.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4