Al-Rifai, R., M. Vandestienne, J. R. Lavillegrand, T. Mirault, J. Cornebise, J. Poisson, L. Laurans, B. Esposito, C. James, O. Mansier, P. Hirsch, F. Favale, R. Braik, C. Knosp, J. Vilar, G. Rizzo, A. Zernecke, A. E. Saliba, A. Tedgui, M. Lacroix, L. Arrive, Z. Mallat, S. Taleb, M. Diedisheim, C. Cochain, P. E. Rautou, and H. Ait-Oufella. JAK2V617F mutation drives vascular resident macrophages toward a pathogenic phenotype and promotes dissecting aortic aneurysm. Nat. Commun. 13(1):6592, 2022.
Bersi, M. R., C. Bellini, J. Wu, K. R. C. Montaniel, D. G. Harrison, and J. D. Humphrey. Excessive adventitial remodeling leads to early aortic maladaptation in angiotensin-induced hypertension. Hypertension. 67(5):890–896, 2016.
Bersi, M. R., C. Bellini, P. Di Achille, J. D. Humphrey, K. Genovese, and S. Avril. Novel methodology for characterizing regional variations in the material properties of murine aortas. J. Biomech. Eng. 138(7):0710051–07100515, 2016.
Bersi, M. R., R. Khosravi, A. J. Wujciak, D. G. Harrison, and J. D. Humphrey. Differential cell-matrix mechanoadaptations and inflammation drive regional propensities to aortic fibrosis, aneurysm or dissection in hypertension. J. R. Soc. Interface. 14(136):20170327, 2017.
Boutouyrie, P., P. Chowienczyk, J. D. Humphrey, and G. F. Mitchell. Arterial stiffness and cardiovascular risk in hypertension. Circ. Res. 128(7):864–886, 2021.
Bush, E., N. Maeda, W. A. Kuziel, T. C. Dawson, J. N. Wilcox, H. DeLeon, and W. R. Taylor. CC chemokine receptor 2 is required for macrophage infiltration and vascular hypertrophy in angiotensin II-induced hypertension. Hypertension. 36(3):360–363, 2000.
Capers, Q., 4th., R. W. Alexander, P. Lou, H. De Leon, J. N. Wilcox, N. Ishizaka, A. B. Howard, and W. R. Taylor. Monocyte chemoattractant protein-1 expression in aortic tissues of hypertensive rats. Hypertension. 30(6):1397–1402, 1997.
Cavinato, C., B. Spronck, A. W. Caulk, S. I. Murtada, and J. D. Humphrey. AT1b receptors contribute to regional disparities in angiotensin II mediated aortic remodelling in mice. J. R. Soc. Interface. 21(217):20240110, 2024.
Chovatiya, R., and R. Medzhitov. Stress, inflammation, and defense of homeostasis. Mol. Cell. 54(2):281–288, 2014.
Clark, A. P., M. Chowkwale, A. Paap, S. Dang, and J. J. Saucerman. Logic-based modeling of biological networks with Netflux. bioRxiv. 2024. https://doi.org/10.1101/2024.01.11.575227.
Estrada, A. C., L. Irons, G. Tellides, and J. D. Humphrey. Multiscale computational model of aortic remodeling following postnatal disruption of TGFβ signaling. J. Biomech.169:112152, 2024.
Ferruzzi, J., D. Madziva, A. W. Caulk, G. Tellides, and J. D. Humphrey. Compromised mechanical homeostasis in arterial aging and associated cardiovascular consequences. Biomech. Model. Mechanobiol. 17(5):1281–1295, 2018.
Franklin, R. A. Fibroblasts and macrophages: collaborators in tissue homeostasis. Immunol. Rev. 302(1):86–103, 2021.
Gleason, R. L., and J. D. Humphrey. Effects of a sustained extension on arterial growth and remodeling: a theoretical study. J. Biomech. 38(6):1255–1261, 2005.
Guzik, T. J., N. E. Hoch, K. A. Brown, L. A. McCann, A. Rahman, S. Dikalov, J. Goronzy, C. Weyand, and D. G. Harrison. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204(10):2449–2460, 2007.
Harrison, D. G., and D. M. Patrick. Immune mechanisms in hypertension. Hypertension. 81(8):1659–1674, 2024.
Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. Math. Model. Methods Appl. Sci. 12:407–430, 2002.
Humphrey, J. D., D. G. Harrison, C. A. Figueroa, P. Lacolley, and S. Laurent. Central artery stiffness in hypertension and aging: a problem with cause and consequence. Circ. Res. 118(3):379–381, 2016.
Humphrey, J. D. Constrained mixture models of soft tissue growth and remodeling - twenty years after. J. Elasticity. 145(1–2):49–75, 2021.
Humphrey, J. D. Mechanisms of vascular remodeling in hypertension. Am. J. Hypertens. 34(5):432–441, 2021.
Irons, L., M. Latorre, and J. D. Humphrey. From Transcript to tissue: multiscale modeling from cell signaling to matrix remodeling. Ann. Biomed. Eng. 49(7):1701–1715, 2021.
Irons, L., A. C. Estrada, and J. D. Humphrey. Intracellular signaling control of mechanical homeostasis in the aorta. Biomech. Model. Mechanobiol. 21(5):1339–1355, 2022.
Ishibashi, M., K. Hiasa, Q. Zhao, S. Inoue, K. Ohtani, S. Kitamoto, M. Tsuchihashi, T. Sugaya, I. F. Charo, S. Kura, T. Tsuzuki, T. Ishibashi, A. Takeshita, and K. Egashira. Critical role of monocyte chemoattractant protein-1 receptor CCR2 on monocytes in hypertension-induced vascular inflammation and remodeling. Circ. Res. 94(9):1203–1210, 2004.
Latorre, M., M. R. Bersi, and J. D. Humphrey. Computational modeling predicts immuno-mechanical mechanisms of maladaptive aortic remodeling in hypertension. Int. J. Eng. Sci. 141:35–46, 2019.
Latorre, M., B. Spronck, and J. D. Humphrey. Complementary roles of mechanotransduction and inflammation in vascular homeostasis. Proc. Math. Phys. Eng. Sci. 477(2245):20200622, 2021.
Laurent, S., and P. Boutouyrie. The structural factor of hypertension: large and small artery alterations. Circ. Res. 116(6):1007–1021, 2015.
Lim, H. Y., S. Y. Lim, C. K. Tan, C. H. Thiam, C. C. Goh, D. Carbajo, S. H. S. Chew, P. See, S. Chakarov, X. N. Wang, L. H. Lim, L. A. Johnson, J. Lum, C. Y. Fong, A. Bongso, A. Biswas, C. Goh, M. Evrard, K. P. Yeo, R. Basu, J. K. Wang, Y. Tan, R. Jain, S. Tikoo, C. Choong, W. Weninger, M. Poidinger, E. R. Stanley, M. Collin, N. S. Tan, L. G. Ng, D. G. Jackson, F. Ginhoux, and V. Angeli. Hyaluronan receptor LYVE-1-expressing macrophages maintain arterial tone through hyaluronan-mediated regulation of smooth muscle cell collagen. Immunity. 49(6):1191, 2018.
Lin, Q. Y., J. Bai, Y. L. Zhang, and H. H. Li. Integrin CD11b contributes to hypertension and vascular dysfunction through mediating macrophage adhesion and migration. Hypertension. 80(1):57–69, 2023.
Liu, X., J. Zhang, A. C. Zeigler, A. R. Nelson, M. L. Lindsey, and J. J. Saucerman. Network analysis reveals a distinct axis of macrophage activation in response to conflicting inflammatory cues. J. Immunol. 206(4):883–891, 2021.
Loperena, R., J. P. Van Beusecum, H. A. Itani, N. Engel, F. Laroumanie, L. Xiao, F. Elijovich, C. L. Laffer, J. S. Gnecco, J. Noonan, P. Maffia, B. Jasiewicz-Honkisz, M. Czesnikiewicz-Guzik, T. Mikolajczyk, T. Sliwa, S. Dikalov, C. M. Weyand, T. J. Guzik, and D. G. Harrison. Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide. Cardiovasc. Res. 114(11):1547–1563, 2018.
Maiellaro, K., and W. R. Taylor. The role of the adventitia in vascular inflammation. Cardiovasc. Res. 75(4):640–648, 2007.
Meizlish, M. L., R. A. Franklin, X. Zhou, and R. Medzhitov. Tissue homeostasis and inflammation. Annu. Rev. Immunol. 39:557–581, 2021.
Moore, J. P., A. Vinh, K. L. Tuck, S. Sakkal, S. M. Krishnan, C. T. Chan, M. Lieu, C. S. Samuel, H. Diep, B. K. Kemp-Harper, M. Tare, S. D. Ricardo, T. J. Guzik, C. G. Sobey, and G. R. Drummond. M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure. Am. J. Physiol. Heart Circ. Physiol. 309(5):H906-917, 2015.
Okuno, K., K. Torimoto, S. M. Cicalese, K. Preston, V. Rizzo, T. Hashimoto, T. M. Coffman, M. A. Sparks, and S. Eguchi. Angiotensin II type 1a receptor expressed in smooth muscle cells is required for hypertensive vascular remodeling in mice infused with Angiotensin II. Hypertension. 80(3):668–677, 2023.
Payne, R. A., I. B. Wilkinson, and D. J. Webb. Arterial stiffness and hypertension: emerging concepts. Hypertension. 55(1):9–14, 2010.
Poduri, A., D. L. Rateri, D. A. Howatt, A. Balakrishnan, J. J. Moorleghen, L. A. Cassis, and A. Daugherty. Fibroblast Angiotensin II type 1a receptors contribute to angiotensin ii-induced medial hyperplasia in the ascending aorta. Arterioscler. Thromb. Vasc. Biol. 35(9):1995–2002, 2015.
Rateri, D. L., J. J. Moorleghen, A. Balakrishnan, A. P. Owens 3rd., D. A. Howatt, V. Subramanian, A. Poduri, R. Charnigo, L. A. Cassis, and A. Daugherty. Endothelial cell-specific deficiency of Ang II type 1a receptors attenuates Ang II-induced ascending aortic aneurysms in LDL receptor−/− mice. Circ. Res. 108(5):574–581, 2011.
Rivera, C. F., Y. M. Farra, M. Silvestro, S. Medvedovsky, J. Matz, M. Y. Pratama, J. Vlahos, B. Ramkhelawon, and C. Bellini. Mapping the unicellular transcriptome of the ascending thoracic aorta to changes in mechanosensing and mechanoadaptation during aging. Aging Cell. 28:e14197, 2024.
Roccabianca, S., C. Bellini, and J. D. Humphrey. Computational modelling suggests good, bad and ugly roles of glycosaminoglycans in arterial wall mechanics and mechanobiology. J. R. Soc. Interface. 11(97):20140397, 2014.
Safar, M. E. Arterial stiffness as a risk factor for clinical hypertension. Nat. Rev. Cardiol. 15(2):97–105, 2018.
Savoia, C., and E. L. Schiffrin. Inflammation in hypertension. Curr. Opin. Nephrol. Hypertens. 15(2):152–158, 2006.
Schuster, R., J. S. Rockel, M. Kapoor, and B. Hinz. The inflammatory speech of fibroblasts. Immunol. Rev. 302(1):126–146, 2021.
Spronck, B., M. Latorre, M. Wang, S. Mehta, A. W. Caulk, P. Ren, A. B. Ramachandra, S. I. Murtada, A. Rojas, C. S. He, B. Jiang, M. R. Bersi, G. Tellides, and J. D. Humphrey. Excessive adventitial stress drives inflammation-mediated fibrosis in hypertensive aortic remodelling in mice. J. R. Soc. Interface. 18(180):20210336, 2021.
Stenmark, K. R., M. E. Yeager, K. C. El Kasmi, E. Nozik-Grayck, E. V. Gerasimovskaya, M. Li, S. R. Riddle, and M. G. Frid. The adventitia: essential regulator of vascular wall structure and function. Annu. Rev. Physiol. 75:23–47, 2013.
Tieu, B. C., X. Ju, C. Lee, H. Sun, W. Lejeune, A. Recinos 3rd., A. R. Brasier, and R. G. Tilton. Aortic adventitial fibroblasts participate in angiotensin-induced vascular wall inflammation and remodeling. J. Vasc. Res. 48(3):261–272, 2011.
Tieu, B. C., C. Lee, H. Sun, W. Lejeune, A. Recinos 3rd., X. Ju, H. Spratt, D. C. Guo, D. Milewicz, R. G. Tilton, and A. R. Brasier. An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice. J. Clin. Invest. 119(12):3637–3651, 2009.
Tinajero, M. G., and A. I. Gotlieb. Recent developments in vascular adventitial pathobiology: the dynamic adventitia as a complex regulator of vascular disease. Am. J. Pathol. 190(3):520–534, 2020.
Touyz, R. M. Molecular and cellular mechanisms in vascular injury in hypertension: role of angiotensin II. Curr. Opin. Nephrol. Hypertens. 14(2):125–131, 2005.
Wang, A., S. Cao, Y. Aboelkassem, and D. Valdez-Jasso. Quantification of uncertainty in a new network model of pulmonary arterial adventitial fibroblast pro-fibrotic signalling. Philos. Trans. A Math. Phys. Eng. Sci. 378(2173):20190338, 2020.
Weinberger, T., D. Esfandyari, D. Messerer, G. Percin, C. Schleifer, R. Thaler, L. Liu, C. Stremmel, V. Schneider, R. J. Vagnozzi, J. Schwanenkamp, M. Fischer, K. Busch, K. Klapproth, H. Ishikawa-Ankerhold, L. Klösges, A. Titova, J. D. Molkentin, Y. Kobayashi, S. Engelhardt, S. Massberg, C. Waskow, E. G. Perdiguero, and C. Schulz. Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation. Nat. Commun. 11(1):4549, 2020.
Weiss, D., C. Cavinato, A. Gray, A. B. Ramachandra, S. Avril, J. D. Humphrey, and M. Latorre. Mechanics-driven mechanobiological mechanisms of arterial tortuosity. Sci. Adv. 6(49):eabd3574, 2020.
Wu, J., S. R. Thabet, A. Kirabo, D. W. Trott, M. A. Saleh, L. Xiao, M. S. Madhur, W. Chen, and D. G. Harrison. Inflammation and mechanical stretch promote aortic stiffening in hypertension through activation of p38 mitogen-activated protein kinase. Circ. Res. 114(4):616–625, 2014.
Wu, J., M. A. Saleh, A. Kirabo, H. A. Itani, K. R. Montaniel, L. Xiao, W. Chen, R. L. Mernaugh, H. Cai, K. E. Bernstein, J. J. Goronzy, C. M. Weyand, J. A. Curci, N. R. Barbaro, H. Moreno, S. S. Davies, L. J. Roberts 2nd., M. S. Madhur, and D. G. Harrison. Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J. Clin. Invest. 126(4):1607, 2016.
Wu, J., K. R. Montaniel, M. A. Saleh, L. Xiao, W. Chen, G. K. Owens, J. D. Humphrey, M. W. Majesky, D. T. Paik, A. K. Hatzopoulos, M. S. Madhur, and D. G. Harrison. Origin of matrix-producing cells that contribute to aortic fibrosis in hypertension. Hypertension. 67(2):461–468, 2016.
Zanoli, L., M. Briet, J. P. Empana, P. G. Cunha, K. M. Mäki-Petäjä, A. D. Protogerou, A. Tedgui, R. M. Touyz, E. L. Schiffrin, B. Spronck, P. Bouchard, C. Vlachopoulos, R. M. Bruno, P. Boutouyrie, Association for Research into Arterial Structure, Physiology (ARTERY) Society, the European Society of Hypertension (ESH) Working Group on Vascular Structure and Function, and the European Network for Noninvasive Investigation of Large Arteries. Vascular consequences of inflammation: a position statement from the ESH Working Group on Vascular Structure and Function and the ARTERY Society. J Hypertens. 38(9):1682–1698, 2020.
Zhou, X., R. A. Franklin, M. Adler, J. B. Jacox, W. Bailis, J. A. Shyer, R. A. Flavell, A. Mayo, U. Alon, and R. Medzhitov. Circuit design features of a stable two-cell system. Cell. 172(4):744-757.e17, 2018.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4