A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-025-03685-3 below:

Multi-Scale Multi-Cell Computational Model of Inflammation-Mediated Aortic Remodeling in Hypertension

References
  1. Al-Rifai, R., M. Vandestienne, J. R. Lavillegrand, T. Mirault, J. Cornebise, J. Poisson, L. Laurans, B. Esposito, C. James, O. Mansier, P. Hirsch, F. Favale, R. Braik, C. Knosp, J. Vilar, G. Rizzo, A. Zernecke, A. E. Saliba, A. Tedgui, M. Lacroix, L. Arrive, Z. Mallat, S. Taleb, M. Diedisheim, C. Cochain, P. E. Rautou, and H. Ait-Oufella. JAK2V617F mutation drives vascular resident macrophages toward a pathogenic phenotype and promotes dissecting aortic aneurysm. Nat. Commun. 13(1):6592, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bersi, M. R., C. Bellini, J. Wu, K. R. C. Montaniel, D. G. Harrison, and J. D. Humphrey. Excessive adventitial remodeling leads to early aortic maladaptation in angiotensin-induced hypertension. Hypertension. 67(5):890–896, 2016.

    Article  CAS  PubMed  Google Scholar 

  3. Bersi, M. R., C. Bellini, P. Di Achille, J. D. Humphrey, K. Genovese, and S. Avril. Novel methodology for characterizing regional variations in the material properties of murine aortas. J. Biomech. Eng. 138(7):0710051–07100515, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bersi, M. R., R. Khosravi, A. J. Wujciak, D. G. Harrison, and J. D. Humphrey. Differential cell-matrix mechanoadaptations and inflammation drive regional propensities to aortic fibrosis, aneurysm or dissection in hypertension. J. R. Soc. Interface. 14(136):20170327, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Boutouyrie, P., P. Chowienczyk, J. D. Humphrey, and G. F. Mitchell. Arterial stiffness and cardiovascular risk in hypertension. Circ. Res. 128(7):864–886, 2021.

    Article  CAS  PubMed  Google Scholar 

  6. Bush, E., N. Maeda, W. A. Kuziel, T. C. Dawson, J. N. Wilcox, H. DeLeon, and W. R. Taylor. CC chemokine receptor 2 is required for macrophage infiltration and vascular hypertrophy in angiotensin II-induced hypertension. Hypertension. 36(3):360–363, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Capers, Q., 4th., R. W. Alexander, P. Lou, H. De Leon, J. N. Wilcox, N. Ishizaka, A. B. Howard, and W. R. Taylor. Monocyte chemoattractant protein-1 expression in aortic tissues of hypertensive rats. Hypertension. 30(6):1397–1402, 1997.

    Article  CAS  PubMed  Google Scholar 

  8. Cavinato, C., B. Spronck, A. W. Caulk, S. I. Murtada, and J. D. Humphrey. AT1b receptors contribute to regional disparities in angiotensin II mediated aortic remodelling in mice. J. R. Soc. Interface. 21(217):20240110, 2024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chovatiya, R., and R. Medzhitov. Stress, inflammation, and defense of homeostasis. Mol. Cell. 54(2):281–288, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Clark, A. P., M. Chowkwale, A. Paap, S. Dang, and J. J. Saucerman. Logic-based modeling of biological networks with Netflux. bioRxiv. 2024. https://doi.org/10.1101/2024.01.11.575227.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Estrada, A. C., L. Irons, G. Tellides, and J. D. Humphrey. Multiscale computational model of aortic remodeling following postnatal disruption of TGFβ signaling. J. Biomech.169:112152, 2024.

    Article  PubMed  Google Scholar 

  12. Ferruzzi, J., D. Madziva, A. W. Caulk, G. Tellides, and J. D. Humphrey. Compromised mechanical homeostasis in arterial aging and associated cardiovascular consequences. Biomech. Model. Mechanobiol. 17(5):1281–1295, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Franklin, R. A. Fibroblasts and macrophages: collaborators in tissue homeostasis. Immunol. Rev. 302(1):86–103, 2021.

    Article  CAS  PubMed  Google Scholar 

  14. Gleason, R. L., and J. D. Humphrey. Effects of a sustained extension on arterial growth and remodeling: a theoretical study. J. Biomech. 38(6):1255–1261, 2005.

    Article  CAS  PubMed  Google Scholar 

  15. Guzik, T. J., N. E. Hoch, K. A. Brown, L. A. McCann, A. Rahman, S. Dikalov, J. Goronzy, C. Weyand, and D. G. Harrison. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204(10):2449–2460, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harrison, D. G., and D. M. Patrick. Immune mechanisms in hypertension. Hypertension. 81(8):1659–1674, 2024.

    Article  CAS  PubMed  Google Scholar 

  17. Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. Math. Model. Methods Appl. Sci. 12:407–430, 2002.

    Article  Google Scholar 

  18. Humphrey, J. D., D. G. Harrison, C. A. Figueroa, P. Lacolley, and S. Laurent. Central artery stiffness in hypertension and aging: a problem with cause and consequence. Circ. Res. 118(3):379–381, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Humphrey, J. D. Constrained mixture models of soft tissue growth and remodeling - twenty years after. J. Elasticity. 145(1–2):49–75, 2021.

    Article  CAS  Google Scholar 

  20. Humphrey, J. D. Mechanisms of vascular remodeling in hypertension. Am. J. Hypertens. 34(5):432–441, 2021.

    Article  PubMed  Google Scholar 

  21. Irons, L., M. Latorre, and J. D. Humphrey. From Transcript to tissue: multiscale modeling from cell signaling to matrix remodeling. Ann. Biomed. Eng. 49(7):1701–1715, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Irons, L., A. C. Estrada, and J. D. Humphrey. Intracellular signaling control of mechanical homeostasis in the aorta. Biomech. Model. Mechanobiol. 21(5):1339–1355, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ishibashi, M., K. Hiasa, Q. Zhao, S. Inoue, K. Ohtani, S. Kitamoto, M. Tsuchihashi, T. Sugaya, I. F. Charo, S. Kura, T. Tsuzuki, T. Ishibashi, A. Takeshita, and K. Egashira. Critical role of monocyte chemoattractant protein-1 receptor CCR2 on monocytes in hypertension-induced vascular inflammation and remodeling. Circ. Res. 94(9):1203–1210, 2004.

    Article  CAS  PubMed  Google Scholar 

  24. Latorre, M., M. R. Bersi, and J. D. Humphrey. Computational modeling predicts immuno-mechanical mechanisms of maladaptive aortic remodeling in hypertension. Int. J. Eng. Sci. 141:35–46, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Latorre, M., B. Spronck, and J. D. Humphrey. Complementary roles of mechanotransduction and inflammation in vascular homeostasis. Proc. Math. Phys. Eng. Sci. 477(2245):20200622, 2021.

    PubMed  PubMed Central  Google Scholar 

  26. Laurent, S., and P. Boutouyrie. The structural factor of hypertension: large and small artery alterations. Circ. Res. 116(6):1007–1021, 2015.

    Article  CAS  PubMed  Google Scholar 

  27. Lim, H. Y., S. Y. Lim, C. K. Tan, C. H. Thiam, C. C. Goh, D. Carbajo, S. H. S. Chew, P. See, S. Chakarov, X. N. Wang, L. H. Lim, L. A. Johnson, J. Lum, C. Y. Fong, A. Bongso, A. Biswas, C. Goh, M. Evrard, K. P. Yeo, R. Basu, J. K. Wang, Y. Tan, R. Jain, S. Tikoo, C. Choong, W. Weninger, M. Poidinger, E. R. Stanley, M. Collin, N. S. Tan, L. G. Ng, D. G. Jackson, F. Ginhoux, and V. Angeli. Hyaluronan receptor LYVE-1-expressing macrophages maintain arterial tone through hyaluronan-mediated regulation of smooth muscle cell collagen. Immunity. 49(6):1191, 2018.

    Article  CAS  PubMed  Google Scholar 

  28. Lin, Q. Y., J. Bai, Y. L. Zhang, and H. H. Li. Integrin CD11b contributes to hypertension and vascular dysfunction through mediating macrophage adhesion and migration. Hypertension. 80(1):57–69, 2023.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, X., J. Zhang, A. C. Zeigler, A. R. Nelson, M. L. Lindsey, and J. J. Saucerman. Network analysis reveals a distinct axis of macrophage activation in response to conflicting inflammatory cues. J. Immunol. 206(4):883–891, 2021.

    Article  CAS  PubMed  Google Scholar 

  30. Loperena, R., J. P. Van Beusecum, H. A. Itani, N. Engel, F. Laroumanie, L. Xiao, F. Elijovich, C. L. Laffer, J. S. Gnecco, J. Noonan, P. Maffia, B. Jasiewicz-Honkisz, M. Czesnikiewicz-Guzik, T. Mikolajczyk, T. Sliwa, S. Dikalov, C. M. Weyand, T. J. Guzik, and D. G. Harrison. Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide. Cardiovasc. Res. 114(11):1547–1563, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maiellaro, K., and W. R. Taylor. The role of the adventitia in vascular inflammation. Cardiovasc. Res. 75(4):640–648, 2007.

    Article  CAS  PubMed  Google Scholar 

  32. Meizlish, M. L., R. A. Franklin, X. Zhou, and R. Medzhitov. Tissue homeostasis and inflammation. Annu. Rev. Immunol. 39:557–581, 2021.

    Article  CAS  PubMed  Google Scholar 

  33. Moore, J. P., A. Vinh, K. L. Tuck, S. Sakkal, S. M. Krishnan, C. T. Chan, M. Lieu, C. S. Samuel, H. Diep, B. K. Kemp-Harper, M. Tare, S. D. Ricardo, T. J. Guzik, C. G. Sobey, and G. R. Drummond. M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure. Am. J. Physiol. Heart Circ. Physiol. 309(5):H906-917, 2015.

    Article  CAS  PubMed  Google Scholar 

  34. Okuno, K., K. Torimoto, S. M. Cicalese, K. Preston, V. Rizzo, T. Hashimoto, T. M. Coffman, M. A. Sparks, and S. Eguchi. Angiotensin II type 1a receptor expressed in smooth muscle cells is required for hypertensive vascular remodeling in mice infused with Angiotensin II. Hypertension. 80(3):668–677, 2023.

    Article  CAS  PubMed  Google Scholar 

  35. Payne, R. A., I. B. Wilkinson, and D. J. Webb. Arterial stiffness and hypertension: emerging concepts. Hypertension. 55(1):9–14, 2010.

    Article  CAS  PubMed  Google Scholar 

  36. Poduri, A., D. L. Rateri, D. A. Howatt, A. Balakrishnan, J. J. Moorleghen, L. A. Cassis, and A. Daugherty. Fibroblast Angiotensin II type 1a receptors contribute to angiotensin ii-induced medial hyperplasia in the ascending aorta. Arterioscler. Thromb. Vasc. Biol. 35(9):1995–2002, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rateri, D. L., J. J. Moorleghen, A. Balakrishnan, A. P. Owens 3rd., D. A. Howatt, V. Subramanian, A. Poduri, R. Charnigo, L. A. Cassis, and A. Daugherty. Endothelial cell-specific deficiency of Ang II type 1a receptors attenuates Ang II-induced ascending aortic aneurysms in LDL receptor−/− mice. Circ. Res. 108(5):574–581, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rivera, C. F., Y. M. Farra, M. Silvestro, S. Medvedovsky, J. Matz, M. Y. Pratama, J. Vlahos, B. Ramkhelawon, and C. Bellini. Mapping the unicellular transcriptome of the ascending thoracic aorta to changes in mechanosensing and mechanoadaptation during aging. Aging Cell. 28:e14197, 2024.

    Article  Google Scholar 

  39. Roccabianca, S., C. Bellini, and J. D. Humphrey. Computational modelling suggests good, bad and ugly roles of glycosaminoglycans in arterial wall mechanics and mechanobiology. J. R. Soc. Interface. 11(97):20140397, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Safar, M. E. Arterial stiffness as a risk factor for clinical hypertension. Nat. Rev. Cardiol. 15(2):97–105, 2018.

    Article  PubMed  Google Scholar 

  41. Savoia, C., and E. L. Schiffrin. Inflammation in hypertension. Curr. Opin. Nephrol. Hypertens. 15(2):152–158, 2006.

    CAS  PubMed  Google Scholar 

  42. Schuster, R., J. S. Rockel, M. Kapoor, and B. Hinz. The inflammatory speech of fibroblasts. Immunol. Rev. 302(1):126–146, 2021.

    Article  CAS  PubMed  Google Scholar 

  43. Spronck, B., M. Latorre, M. Wang, S. Mehta, A. W. Caulk, P. Ren, A. B. Ramachandra, S. I. Murtada, A. Rojas, C. S. He, B. Jiang, M. R. Bersi, G. Tellides, and J. D. Humphrey. Excessive adventitial stress drives inflammation-mediated fibrosis in hypertensive aortic remodelling in mice. J. R. Soc. Interface. 18(180):20210336, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stenmark, K. R., M. E. Yeager, K. C. El Kasmi, E. Nozik-Grayck, E. V. Gerasimovskaya, M. Li, S. R. Riddle, and M. G. Frid. The adventitia: essential regulator of vascular wall structure and function. Annu. Rev. Physiol. 75:23–47, 2013.

    Article  CAS  PubMed  Google Scholar 

  45. Tieu, B. C., X. Ju, C. Lee, H. Sun, W. Lejeune, A. Recinos 3rd., A. R. Brasier, and R. G. Tilton. Aortic adventitial fibroblasts participate in angiotensin-induced vascular wall inflammation and remodeling. J. Vasc. Res. 48(3):261–272, 2011.

    Article  CAS  PubMed  Google Scholar 

  46. Tieu, B. C., C. Lee, H. Sun, W. Lejeune, A. Recinos 3rd., X. Ju, H. Spratt, D. C. Guo, D. Milewicz, R. G. Tilton, and A. R. Brasier. An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice. J. Clin. Invest. 119(12):3637–3651, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tinajero, M. G., and A. I. Gotlieb. Recent developments in vascular adventitial pathobiology: the dynamic adventitia as a complex regulator of vascular disease. Am. J. Pathol. 190(3):520–534, 2020.

    Article  CAS  PubMed  Google Scholar 

  48. Touyz, R. M. Molecular and cellular mechanisms in vascular injury in hypertension: role of angiotensin II. Curr. Opin. Nephrol. Hypertens. 14(2):125–131, 2005.

    Article  CAS  PubMed  Google Scholar 

  49. Wang, A., S. Cao, Y. Aboelkassem, and D. Valdez-Jasso. Quantification of uncertainty in a new network model of pulmonary arterial adventitial fibroblast pro-fibrotic signalling. Philos. Trans. A Math. Phys. Eng. Sci. 378(2173):20190338, 2020.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Weinberger, T., D. Esfandyari, D. Messerer, G. Percin, C. Schleifer, R. Thaler, L. Liu, C. Stremmel, V. Schneider, R. J. Vagnozzi, J. Schwanenkamp, M. Fischer, K. Busch, K. Klapproth, H. Ishikawa-Ankerhold, L. Klösges, A. Titova, J. D. Molkentin, Y. Kobayashi, S. Engelhardt, S. Massberg, C. Waskow, E. G. Perdiguero, and C. Schulz. Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation. Nat. Commun. 11(1):4549, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weiss, D., C. Cavinato, A. Gray, A. B. Ramachandra, S. Avril, J. D. Humphrey, and M. Latorre. Mechanics-driven mechanobiological mechanisms of arterial tortuosity. Sci. Adv. 6(49):eabd3574, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu, J., S. R. Thabet, A. Kirabo, D. W. Trott, M. A. Saleh, L. Xiao, M. S. Madhur, W. Chen, and D. G. Harrison. Inflammation and mechanical stretch promote aortic stiffening in hypertension through activation of p38 mitogen-activated protein kinase. Circ. Res. 114(4):616–625, 2014.

    Article  CAS  PubMed  Google Scholar 

  53. Wu, J., M. A. Saleh, A. Kirabo, H. A. Itani, K. R. Montaniel, L. Xiao, W. Chen, R. L. Mernaugh, H. Cai, K. E. Bernstein, J. J. Goronzy, C. M. Weyand, J. A. Curci, N. R. Barbaro, H. Moreno, S. S. Davies, L. J. Roberts 2nd., M. S. Madhur, and D. G. Harrison. Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J. Clin. Invest. 126(4):1607, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wu, J., K. R. Montaniel, M. A. Saleh, L. Xiao, W. Chen, G. K. Owens, J. D. Humphrey, M. W. Majesky, D. T. Paik, A. K. Hatzopoulos, M. S. Madhur, and D. G. Harrison. Origin of matrix-producing cells that contribute to aortic fibrosis in hypertension. Hypertension. 67(2):461–468, 2016.

    Article  CAS  PubMed  Google Scholar 

  55. Zanoli, L., M. Briet, J. P. Empana, P. G. Cunha, K. M. Mäki-Petäjä, A. D. Protogerou, A. Tedgui, R. M. Touyz, E. L. Schiffrin, B. Spronck, P. Bouchard, C. Vlachopoulos, R. M. Bruno, P. Boutouyrie, Association for Research into Arterial Structure, Physiology (ARTERY) Society, the European Society of Hypertension (ESH) Working Group on Vascular Structure and Function, and the European Network for Noninvasive Investigation of Large Arteries. Vascular consequences of inflammation: a position statement from the ESH Working Group on Vascular Structure and Function and the ARTERY Society. J Hypertens. 38(9):1682–1698, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou, X., R. A. Franklin, M. Adler, J. B. Jacox, W. Bailis, J. A. Shyer, R. A. Flavell, A. Mayo, U. Alon, and R. Medzhitov. Circuit design features of a stable two-cell system. Cell. 172(4):744-757.e17, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4