Roddy, E., M. R. DeBaun, A. Daoud-Gray, Y. P. Yang, and M. J. Gardner. Treatment of critical-sized bone defects: clinical and tissue engineering perspectives. Eur. J. Orthop. Surg. Traumatol. 28:351–362, 2018. https://doi.org/10.1007/s00590-017-2063-0.
Li, L., G. Zhou, Y. Wang, G. Yang, S. Ding, and S. Zhou. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials. 37:218–229, 2015. https://doi.org/10.1016/j.biomaterials.2014.10.015.
Amini, A. R., C. T. Laurencin, and S. P. Nukavarapu. Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Eng. 40:363–408, 2012. https://doi.org/10.1615/CritRevBiomedEng.v40.i5.10.
Suamte, L., A. Tirkey, J. Barman, and P. JayasekharBabu. Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications. Smart Mater. Manuf. 1:100011, 2023. https://doi.org/10.1016/j.smmf.2022.100011.
Qu, H., H. Fu, Z. Han, and Y. Sun. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 9:26252–26262, 2019. https://doi.org/10.1039/C9RA05214C.
Monteiro, N., A. Martins, R. L. Reis, and N. M. Neves. Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regen. Ther. 1:109–118, 2015. https://doi.org/10.1016/j.reth.2015.05.004.
Szwed-Georgiou, A., P. Płociński, B. Kupikowska-Stobba, M. M. Urbaniak, P. Rusek-Wala, K. Szustakiewicz, P. Piszko, A. Krupa, M. Biernat, M. Gazińska, M. Kasprzak, K. Nawrotek, N. P. Mira, and K. Rudnicka. Bioactive materials for bone regeneration: biomolecules and delivery systems. ACS Biomater. Sci. Eng. 9:5222–5254, 2023. https://doi.org/10.1021/acsbiomaterials.3c00609.
Din, F. U., W. Aman, I. Ullah, O. S. Qureshi, O. Mustapha, S. Shafique, and A. Zeb. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine. 12:7291–7309, 2017. https://doi.org/10.2147/IJN.S146315.
Herdiana, Y., N. Wathoni, S. Shamsuddin, and M. Muchtaridi. Scale-up polymeric-based nanoparticles drug delivery systems: development and challenges. OpenNano. 7:100048, 2022. https://doi.org/10.1016/j.onano.2022.100048.
A. Seyfoddin, R. Al-Kassas, Biodegradable polymers for controlled delivery of bioactive macromolecules, in: Biodegrad. Polym. Process. Degrad. Appl. 471–500, 2011
Harugade, A., A. P. Sherje, and A. Pethe. Chitosan: a review on properties, biological activities and recent progress in biomedical applications. React. Funct. Polym. 191:105634, 2023. https://doi.org/10.1016/j.reactfunctpolym.2023.105634.
Hameed, A. Z., S. A. Raj, J. Kandasamy, M. A. Baghdadi, and M. A. Shahzad. Chitosan: a sustainable material for multifarious applications. Polymers (Basel). 14:2335, 2022. https://doi.org/10.3390/polym14122335.
Raafat, D., and H. Sahl. Chitosan and its antimicrobial potential – a critical literature survey. Microb. Biotechnol. 2:186–201, 2009. https://doi.org/10.1111/j.1751-7915.2008.00080.x.
Marin, E., and A. Lanzutti. Biomedical applications of titanium alloys: a comprehensive review. Materials (Basel). 17:114, 2023. https://doi.org/10.3390/ma17010114.
Zhang, L., and L. Chen. A review on biomedical titanium alloys: recent progress and prospect. Adv. Eng. Mater. 21:1801215, 2019. https://doi.org/10.1002/adem.201801215.
T. Xue, S. Attarilar, S. Liu, J. Liu, X. Song, L. Li, B. Zhao, Y. Tang, Surface modification techniques of titanium and its alloys to functionally optimize their biomedical properties: thematic review. Front. Bioeng. Biotechnol. 8. https://doi.org/10.3389/fbioe.2020.603072, 2020
Zhang, W., H. Cao, X. Zhang, G. Li, Q. Chang, J. Zhao, Y. Qiao, X. Ding, G. Yang, X. Liu, and X. Jiang. A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration. Nanoscale. 8:5291–5301, 2016. https://doi.org/10.1039/C5NR08580B.
Zhang, Z., D. Wang, G. Liu, Y. Qian, Y. Xu, and D. Xiang. Surface modification of 42CrMo steels: a review from wear and corrosion resistance. Coatings. 14:337, 2024. https://doi.org/10.3390/coatings14030337.
Rafiq, N. M., W. Wang, S. L. Liew, C. S. Chua, and S. Wang. A review on multifunctional bioceramic coatings in hip implants for osteointegration enhancement. Appl. Surf. Sci. Adv. 13:100353, 2023. https://doi.org/10.1016/j.apsadv.2022.100353.
Braic, M., M. Balaceanu, V. Braic, A. Vladescu, G. Pavelescu, and M. Albulescu. Synthesis and characterization of TiN, TiAIN and TiN/TiAIN biocompatible coatings. Surf. Coatings Technol. 200:1014–1017, 2005. https://doi.org/10.1016/j.surfcoat.2005.02.140.
K. Sabouni, Y. Ozturk, E. Kacar, H.S. Mutlu, S. Solakoglu, G.T. Kose, F.N. Kok, M.K. Kazmanli, K.M. Urgen, S. Onder, Assessment of bone healing using (Ti,Mg)N thin film coated plates and screws: rabbit femur model. J. Biomed. Mater. Res. Part B Appl. Biomater. 109:227–237. https://doi.org/10.1002/jbm.b.34694. 2021
N. López-Valverde, J. Aragoneses, A. López-Valverde, N. Quispe-López, C. Rodríguez, J.M. Aragoneses, Effectiveness of biomolecule-based bioactive surfaces, on os-seointegration of titanium dental implants: a systematic review and meta-analysis of in vivo studies. Front. Bioeng. Biotechnol. 10. https://doi.org/10.3389/fbioe.2022.986112. 2022
Fu, C., X. Yang, S. Tan, and L. Song. Enhancing cell proliferation and osteogenic differentiation of MC3T3-E1 pre-osteoblasts by BMP-2 delivery in graphene oxide-incorporated PLGA/HA biodegradable microcarriers. Sci. Rep. 7:12549, 2017. https://doi.org/10.1038/s41598-017-12935-x.
J. van de Peppel, J.P.T.M. van Leeuwen, Vitamin D and gene networks in human osteoblasts, Front. Physiol. 5. https://doi.org/10.3389/fphys.2014.00137. 2014
Khammissa, R. A. G., J. Fourie, M. H. Motswaledi, R. Ballyram, J. Lemmer, and L. Feller. The biological activities of vitamin D and Its receptor in relation to calcium and bone homeostasis, cancer, immune and cardiovascular systems, skin biology, and oral health. Biomed. Res. Int. 2018:1–9, 2018. https://doi.org/10.1155/2018/9276380.
Morrison, N. A., J. Shine, J.-C. Fragonas, V. Verkest, M. L. McMenemy, and J. A. Eisman. 1,25-dihydroxyvitamin D-responsive element and glucocorticoid repression in the osteocalcin gene. Science. 246:1158–1161, 1989. https://doi.org/10.1126/science.2588000.
Girgis, C. M., R. J. Clifton-Bligh, M. W. Hamrick, M. F. Holick, and J. E. Gunton. The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr. Rev. 34:33–83, 2013. https://doi.org/10.1210/er.2012-1012.
Posa, F., A. Di Benedetto, G. Colaianni, E. A. Cavalcanti-Adam, G. Brunetti, C. Porro, T. Trotta, M. Grano, and G. Mori. Vitamin D effects on osteoblastic differentiation of mesenchymal stem cells from dental tissues. Stem Cells Int. 2016:1–9, 2016. https://doi.org/10.1155/2016/9150819.
Marie, P. J., E. Haÿ, and Z. Saidak. Integrin and cadherin signaling in bone: role and potential therapeutic targets. Trends Endocrinol. Metab. 25:567–575, 2014. https://doi.org/10.1016/j.tem.2014.06.009.
Ž. Petrović, J. Katić, A. Šarić, I. Despotović, N. Matijaković, D. Kralj, M. Leskovac, M. Petković, Influence of biocompatible coating on titanium surface characteristics. Innov. Corros. Mater. Sci. (Formerly Recent Patents Corros. Sci. 10:37–46. https://doi.org/10.2174/2352094910999200407095723. 2020
He, P., H. Zhang, Y. Li, M. Ren, J. Xiang, Z. Zhang, P. Ji, and S. Yang. 1α,25-Dihydroxyvitamin D3-loaded hierarchical titanium scaffold enhanced early osseointegration. Mater. Sci. Eng. C. 109:110551, 2020. https://doi.org/10.1016/j.msec.2019.110551.
Milenkova, S., M. Marudova, N. Zahariev, T. Yovcheva, and B. Pilicheva. Crosslinked chitosan-based particles obtained by water-in-oil emulsion technique. J. Phys. Conf. Ser. 2436:012027, 2023. https://doi.org/10.1088/1742-6596/2436/1/012027.
Ramalho, M. J., J. A. Loureiro, B. Gomes, M. F. Frasco, M. A. N. Coelho, and M. C. Pereira. PLGA nanoparticles as a platform for vitamin D-based cancer therapy. Beilstein J. Nanotechnol. 6:1306–1318, 2015. https://doi.org/10.3762/bjnano.6.135.
M. Fernandes Queiroz, K. Melo, D. Sabry, G. Sassaki, H. Rocha, Does the use of chitosan contribute to oxalate kidney stone formation?. Mar. Drugs. 13:141–158. https://doi.org/10.3390/md13010141. 2014
Dangre, P. V., N. J. Gurram, S. J. Surana, and S. S. Chalikwar. Development and optimization of vitamin D3 solid self-microemulsifying drug delivery system: investigation of flowability and shelf life. AAPS PharmSciTech. 23:110, 2022. https://doi.org/10.1208/s12249-022-02267-z.
Doymus, B., G. Kerem, A. YazganKaratas, F. N. Kok, and S. Önder. A functional coating to enhance antibacterial and bioactivity properties of titanium implants and its performance in vitro. J. Biomater. Appl. 35:655–669, 2021. https://doi.org/10.1177/0885328220977765.
Mulia, K., A. Safiera, I. F. Pane, and E. A. Krisanti. Effect of high speed homogenizer speed on particle size of polylactic acid. J. Phys. Conf. Ser. 1198:062006, 2019. https://doi.org/10.1088/1742-6596/1198/6/062006.
Rodriguez, L. B., A. Avalos, N. Chiaia, and A. Nadarajah. Effect of formulation and process parameters on chitosan microparticles prepared by an emulsion crosslinking technique. AAPS PharmSciTech. 18:1084–1094, 2017. https://doi.org/10.1208/s12249-016-0677-x.
Jugowiec, D., A. Łukaszczyk, Ł Cieniek, M. Kot, K. Reczyńska, K. Cholewa-Kowalska, E. Pamuła, and T. Moskalewicz. Electrophoretic deposition and characterization of composite chitosan-based coatings incorporating bioglass and sol-gel glass particles on the Ti-13Nb-13Zr alloy. Surf. Coatings Technol. 319:33–46, 2017. https://doi.org/10.1016/j.surfcoat.2017.03.067.
S.H. Chang, H.T.V. Lin, G.J. Wu, G.J. Tsai, pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr. Polym. 134. https://doi.org/10.1016/j.carbpol.2015.07.072. 2015
Amrollahi, P., J. S. Krasinski, R. Vaidyanathan, L. Tayebi, and D. Vashaee. Electrophoretic deposition (EPD): fundamentals and applications from nano- to micro-scale structures. Handb. Nanoelectrochemistry. 2015. https://doi.org/10.1007/978-3-319-15207-3_7-1.
Sopcak, T., L. Medvecky, T. Zagyva, M. Dzupon, J. Balko, K. Balázsi, and C. Balázsi. Characterization and adhesion strength of porous electrosprayed polymer–hydroxyapatite composite coatings. Resolut. Discov. 3:17–23, 2018. https://doi.org/10.1556/2051.2018.00057.
Daugaard, H., B. Elmengaard, J. E. Bechtold, T. Jensen, and K. Soballe. The effect on bone growth enhancement of implant coatings with hydroxyapatite and collagen deposited electrochemically and by plasma spray. J. Biomed. Mater. Res. Part A. 92A:913–921, 2010. https://doi.org/10.1002/jbm.a.32303.
Önder, S., and Y. Ersan. Kitosan Esaslı İlaç Taşıyıcı Sistem Üretimi ve In vitro Performansının Belirlenmesi. Eur. J. Sci. Technol. 2020. https://doi.org/10.31590/ejosat.770863.
Wang, T., Z. Weng, X. Liu, K. W. K. Yeung, H. Pan, and S. Wu. Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants. Bioact. Mater. 2:44–50, 2017. https://doi.org/10.1016/j.bioactmat.2017.02.001.
Farzan, M., R. Roth, J. Schoelkopf, J. Huwyler, and M. Puchkov. The processes behind drug loading and release in porous drug delivery systems. Eur. J. Pharm. Biopharm. 189:133–151, 2023. https://doi.org/10.1016/j.ejpb.2023.05.019.
Martin, J. Y., Z. Schwartz, T. W. Hummert, D. M. Schraub, J. Simpson, J. Lankford, D. D. Dean, D. L. Cochran, and B. D. Boyan. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J. Biomed. Mater. Res. 29:389–401, 1995. https://doi.org/10.1002/jbm.820290314.
GurelPekozer, G., M. Ramazanoglu, K. A. Schlegel, F. N. Kok, and G. Torun Kose. Role of STRO-1 sorting of porcine dental germ stem cells in dental stem cell-mediated bone tissue engineering. Artif. Cells, Nanomedicine, Biotechnol. 46:607–618, 2018. https://doi.org/10.1080/21691401.2017.1332637.
Bruderer, M., R. Richards, M. Alini, and M. Stoddart. Role and regulation of RUNX2 in osteogenesis. Eur. Cells Mater. 28:269–286, 2014. https://doi.org/10.22203/eCM.v028a19.
Kim, H. J., J. M. Park, S. Lee, H. B. Cho, J.-I. Park, J.-H. Kim, J. S. Park, and K.-H. Park. Efficient CRISPR-Cas9-based knockdown of RUNX2 to induce chondrogenic differentiation of stem cells. Biomater. Sci. 10:514–523, 2022. https://doi.org/10.1039/D1BM01716K.
X. Lin, S. Patil, Y.-G. Gao, A. Qian, The bone extracellular matrix in bone formation and regeneration. Front. Pharmacol. 11. https://doi.org/10.3389/fphar.2020.00757. 2020
Carvalho, M. S., A. A. Poundarik, J. M. S. Cabral, C. L. da Silva, and D. Vashishth. Biomimetic matrices for rapidly forming mineralized bone tissue based on stem cell-mediated osteogenesis. Sci. Rep. 8:14388, 2018. https://doi.org/10.1038/s41598-018-32794-4.
Cho, Y.-D., W.-J. Kim, S. Kim, Y. Ku, and H.-M. Ryoo. Surface topography of titanium affects their osteogenic potential through DNA methylation. Int. J. Mol. Sci. 22:2406, 2021. https://doi.org/10.3390/ijms22052406.
Shen, Q., and S. Christakos. The vitamin D receptor, Runx2, and the notch signaling pathway cooperate in the transcriptional regulation of osteopontin. J. Biol. Chem. 280:40589–40598, 2005. https://doi.org/10.1074/jbc.M504166200.
Marie, P. J. Role of N-cadherin in bone formation. J. Cell. Physiol. 190:297–305, 2002. https://doi.org/10.1002/jcp.10073.
Mao, L., L. Wang, J. Xu, and J. Zou. The role of integrin family in bone metabolism and tumor bone metastasis. Cell Death Discov. 9:119, 2023. https://doi.org/10.1038/s41420-023-01417-x.
A. Valat, L. Fourel, A. Sales, P. Machillot, A.-P. Bouin, C. Fournier, L. Bosc, M. Arboléas, I. Bourrin-Reynard, A.J. Wagoner Johnson, F. Bruckert, C. Albigès-Rizo, C. Picart, Interplay between integrins and cadherins to control bone differentiation upon BMP-2 stimulation. Front. Cell Dev. Biol. 10. https://doi.org/10.3389/fcell.2022.1027334. 2023
B. Majhy, P. Priyadarshini, A.K. Sen, Effect of surface energy and roughness on cell adhesion and growth-facile surface modification for enhanced cell culture. RSC Adv. 11. https://doi.org/10.1039/d1ra02402g. 2021
M.-H. Hong, J.H. Lee, H.S. Jung, H. Shin, H. Shin, Biomineralization of bone tissue: calcium phosphate-based inorganics in collagen fibrillar organic matrices. Biomater. Res. 26. https://doi.org/10.1186/s40824-022-00288-0. 2022
Ciosek, Ż, K. Kot, D. Kosik-Bogacka, N. Łanocha-Arendarczyk, and I. Rotter. The effects of calcium magnesium, phosphorus, fluoride, and lead on bone tissue. Biomolecules. 11:506, 2021. https://doi.org/10.3390/biom11040506.
G. Kerem, S. Önder, A. Kılıç, Locally released dexamethasone and its effects on osteogenic activity at implant-tissue interface. J. Biomed. Mater. Res. A. 1–10. https://doi.org/10.1002/jbm.a.37722. 2024
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4