A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-025-03684-4 below:

Enhancing Bioactivity of Titanium-Based Materials Through Chitosan Based Coating and Calcitriol Functionalization

References
  1. Roddy, E., M. R. DeBaun, A. Daoud-Gray, Y. P. Yang, and M. J. Gardner. Treatment of critical-sized bone defects: clinical and tissue engineering perspectives. Eur. J. Orthop. Surg. Traumatol. 28:351–362, 2018. https://doi.org/10.1007/s00590-017-2063-0.

    Article  PubMed  Google Scholar 

  2. Li, L., G. Zhou, Y. Wang, G. Yang, S. Ding, and S. Zhou. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials. 37:218–229, 2015. https://doi.org/10.1016/j.biomaterials.2014.10.015.

    Article  CAS  PubMed  Google Scholar 

  3. Amini, A. R., C. T. Laurencin, and S. P. Nukavarapu. Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Eng. 40:363–408, 2012. https://doi.org/10.1615/CritRevBiomedEng.v40.i5.10.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Suamte, L., A. Tirkey, J. Barman, and P. JayasekharBabu. Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications. Smart Mater. Manuf. 1:100011, 2023. https://doi.org/10.1016/j.smmf.2022.100011.

    Article  Google Scholar 

  5. Qu, H., H. Fu, Z. Han, and Y. Sun. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 9:26252–26262, 2019. https://doi.org/10.1039/C9RA05214C.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Monteiro, N., A. Martins, R. L. Reis, and N. M. Neves. Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regen. Ther. 1:109–118, 2015. https://doi.org/10.1016/j.reth.2015.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Szwed-Georgiou, A., P. Płociński, B. Kupikowska-Stobba, M. M. Urbaniak, P. Rusek-Wala, K. Szustakiewicz, P. Piszko, A. Krupa, M. Biernat, M. Gazińska, M. Kasprzak, K. Nawrotek, N. P. Mira, and K. Rudnicka. Bioactive materials for bone regeneration: biomolecules and delivery systems. ACS Biomater. Sci. Eng. 9:5222–5254, 2023. https://doi.org/10.1021/acsbiomaterials.3c00609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Din, F. U., W. Aman, I. Ullah, O. S. Qureshi, O. Mustapha, S. Shafique, and A. Zeb. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine. 12:7291–7309, 2017. https://doi.org/10.2147/IJN.S146315.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Herdiana, Y., N. Wathoni, S. Shamsuddin, and M. Muchtaridi. Scale-up polymeric-based nanoparticles drug delivery systems: development and challenges. OpenNano. 7:100048, 2022. https://doi.org/10.1016/j.onano.2022.100048.

    Article  CAS  Google Scholar 

  10. A. Seyfoddin, R. Al-Kassas, Biodegradable polymers for controlled delivery of bioactive macromolecules, in: Biodegrad. Polym. Process. Degrad. Appl. 471–500, 2011

  11. Harugade, A., A. P. Sherje, and A. Pethe. Chitosan: a review on properties, biological activities and recent progress in biomedical applications. React. Funct. Polym. 191:105634, 2023. https://doi.org/10.1016/j.reactfunctpolym.2023.105634.

    Article  CAS  Google Scholar 

  12. Hameed, A. Z., S. A. Raj, J. Kandasamy, M. A. Baghdadi, and M. A. Shahzad. Chitosan: a sustainable material for multifarious applications. Polymers (Basel). 14:2335, 2022. https://doi.org/10.3390/polym14122335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Raafat, D., and H. Sahl. Chitosan and its antimicrobial potential – a critical literature survey. Microb. Biotechnol. 2:186–201, 2009. https://doi.org/10.1111/j.1751-7915.2008.00080.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marin, E., and A. Lanzutti. Biomedical applications of titanium alloys: a comprehensive review. Materials (Basel). 17:114, 2023. https://doi.org/10.3390/ma17010114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, L., and L. Chen. A review on biomedical titanium alloys: recent progress and prospect. Adv. Eng. Mater. 21:1801215, 2019. https://doi.org/10.1002/adem.201801215.

    Article  CAS  Google Scholar 

  16. T. Xue, S. Attarilar, S. Liu, J. Liu, X. Song, L. Li, B. Zhao, Y. Tang, Surface modification techniques of titanium and its alloys to functionally optimize their biomedical properties: thematic review. Front. Bioeng. Biotechnol. 8. https://doi.org/10.3389/fbioe.2020.603072, 2020

  17. Zhang, W., H. Cao, X. Zhang, G. Li, Q. Chang, J. Zhao, Y. Qiao, X. Ding, G. Yang, X. Liu, and X. Jiang. A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration. Nanoscale. 8:5291–5301, 2016. https://doi.org/10.1039/C5NR08580B.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Z., D. Wang, G. Liu, Y. Qian, Y. Xu, and D. Xiang. Surface modification of 42CrMo steels: a review from wear and corrosion resistance. Coatings. 14:337, 2024. https://doi.org/10.3390/coatings14030337.

    Article  CAS  Google Scholar 

  19. Rafiq, N. M., W. Wang, S. L. Liew, C. S. Chua, and S. Wang. A review on multifunctional bioceramic coatings in hip implants for osteointegration enhancement. Appl. Surf. Sci. Adv. 13:100353, 2023. https://doi.org/10.1016/j.apsadv.2022.100353.

    Article  Google Scholar 

  20. Braic, M., M. Balaceanu, V. Braic, A. Vladescu, G. Pavelescu, and M. Albulescu. Synthesis and characterization of TiN, TiAIN and TiN/TiAIN biocompatible coatings. Surf. Coatings Technol. 200:1014–1017, 2005. https://doi.org/10.1016/j.surfcoat.2005.02.140.

    Article  CAS  Google Scholar 

  21. K. Sabouni, Y. Ozturk, E. Kacar, H.S. Mutlu, S. Solakoglu, G.T. Kose, F.N. Kok, M.K. Kazmanli, K.M. Urgen, S. Onder, Assessment of bone healing using (Ti,Mg)N thin film coated plates and screws: rabbit femur model. J. Biomed. Mater. Res. Part B Appl. Biomater. 109:227–237. https://doi.org/10.1002/jbm.b.34694. 2021

  22. N. López-Valverde, J. Aragoneses, A. López-Valverde, N. Quispe-López, C. Rodríguez, J.M. Aragoneses, Effectiveness of biomolecule-based bioactive surfaces, on os-seointegration of titanium dental implants: a systematic review and meta-analysis of in vivo studies. Front. Bioeng. Biotechnol. 10. https://doi.org/10.3389/fbioe.2022.986112. 2022

  23. Fu, C., X. Yang, S. Tan, and L. Song. Enhancing cell proliferation and osteogenic differentiation of MC3T3-E1 pre-osteoblasts by BMP-2 delivery in graphene oxide-incorporated PLGA/HA biodegradable microcarriers. Sci. Rep. 7:12549, 2017. https://doi.org/10.1038/s41598-017-12935-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J. van de Peppel, J.P.T.M. van Leeuwen, Vitamin D and gene networks in human osteoblasts, Front. Physiol. 5. https://doi.org/10.3389/fphys.2014.00137. 2014

  25. Khammissa, R. A. G., J. Fourie, M. H. Motswaledi, R. Ballyram, J. Lemmer, and L. Feller. The biological activities of vitamin D and Its receptor in relation to calcium and bone homeostasis, cancer, immune and cardiovascular systems, skin biology, and oral health. Biomed. Res. Int. 2018:1–9, 2018. https://doi.org/10.1155/2018/9276380.

    Article  CAS  Google Scholar 

  26. Morrison, N. A., J. Shine, J.-C. Fragonas, V. Verkest, M. L. McMenemy, and J. A. Eisman. 1,25-dihydroxyvitamin D-responsive element and glucocorticoid repression in the osteocalcin gene. Science. 246:1158–1161, 1989. https://doi.org/10.1126/science.2588000.

    Article  CAS  PubMed  Google Scholar 

  27. Girgis, C. M., R. J. Clifton-Bligh, M. W. Hamrick, M. F. Holick, and J. E. Gunton. The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr. Rev. 34:33–83, 2013. https://doi.org/10.1210/er.2012-1012.

    Article  CAS  PubMed  Google Scholar 

  28. Posa, F., A. Di Benedetto, G. Colaianni, E. A. Cavalcanti-Adam, G. Brunetti, C. Porro, T. Trotta, M. Grano, and G. Mori. Vitamin D effects on osteoblastic differentiation of mesenchymal stem cells from dental tissues. Stem Cells Int. 2016:1–9, 2016. https://doi.org/10.1155/2016/9150819.

    Article  CAS  Google Scholar 

  29. Marie, P. J., E. Haÿ, and Z. Saidak. Integrin and cadherin signaling in bone: role and potential therapeutic targets. Trends Endocrinol. Metab. 25:567–575, 2014. https://doi.org/10.1016/j.tem.2014.06.009.

    Article  CAS  PubMed  Google Scholar 

  30. Ž. Petrović, J. Katić, A. Šarić, I. Despotović, N. Matijaković, D. Kralj, M. Leskovac, M. Petković, Influence of biocompatible coating on titanium surface characteristics. Innov. Corros. Mater. Sci. (Formerly Recent Patents Corros. Sci. 10:37–46. https://doi.org/10.2174/2352094910999200407095723. 2020

  31. He, P., H. Zhang, Y. Li, M. Ren, J. Xiang, Z. Zhang, P. Ji, and S. Yang. 1α,25-Dihydroxyvitamin D3-loaded hierarchical titanium scaffold enhanced early osseointegration. Mater. Sci. Eng. C. 109:110551, 2020. https://doi.org/10.1016/j.msec.2019.110551.

    Article  CAS  Google Scholar 

  32. Milenkova, S., M. Marudova, N. Zahariev, T. Yovcheva, and B. Pilicheva. Crosslinked chitosan-based particles obtained by water-in-oil emulsion technique. J. Phys. Conf. Ser. 2436:012027, 2023. https://doi.org/10.1088/1742-6596/2436/1/012027.

    Article  Google Scholar 

  33. Ramalho, M. J., J. A. Loureiro, B. Gomes, M. F. Frasco, M. A. N. Coelho, and M. C. Pereira. PLGA nanoparticles as a platform for vitamin D-based cancer therapy. Beilstein J. Nanotechnol. 6:1306–1318, 2015. https://doi.org/10.3762/bjnano.6.135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. M. Fernandes Queiroz, K. Melo, D. Sabry, G. Sassaki, H. Rocha, Does the use of chitosan contribute to oxalate kidney stone formation?. Mar. Drugs. 13:141–158. https://doi.org/10.3390/md13010141. 2014

  35. Dangre, P. V., N. J. Gurram, S. J. Surana, and S. S. Chalikwar. Development and optimization of vitamin D3 solid self-microemulsifying drug delivery system: investigation of flowability and shelf life. AAPS PharmSciTech. 23:110, 2022. https://doi.org/10.1208/s12249-022-02267-z.

    Article  CAS  PubMed  Google Scholar 

  36. Doymus, B., G. Kerem, A. YazganKaratas, F. N. Kok, and S. Önder. A functional coating to enhance antibacterial and bioactivity properties of titanium implants and its performance in vitro. J. Biomater. Appl. 35:655–669, 2021. https://doi.org/10.1177/0885328220977765.

    Article  CAS  PubMed  Google Scholar 

  37. Mulia, K., A. Safiera, I. F. Pane, and E. A. Krisanti. Effect of high speed homogenizer speed on particle size of polylactic acid. J. Phys. Conf. Ser. 1198:062006, 2019. https://doi.org/10.1088/1742-6596/1198/6/062006.

    Article  CAS  Google Scholar 

  38. Rodriguez, L. B., A. Avalos, N. Chiaia, and A. Nadarajah. Effect of formulation and process parameters on chitosan microparticles prepared by an emulsion crosslinking technique. AAPS PharmSciTech. 18:1084–1094, 2017. https://doi.org/10.1208/s12249-016-0677-x.

    Article  CAS  PubMed  Google Scholar 

  39. Jugowiec, D., A. Łukaszczyk, Ł Cieniek, M. Kot, K. Reczyńska, K. Cholewa-Kowalska, E. Pamuła, and T. Moskalewicz. Electrophoretic deposition and characterization of composite chitosan-based coatings incorporating bioglass and sol-gel glass particles on the Ti-13Nb-13Zr alloy. Surf. Coatings Technol. 319:33–46, 2017. https://doi.org/10.1016/j.surfcoat.2017.03.067.

    Article  CAS  Google Scholar 

  40. S.H. Chang, H.T.V. Lin, G.J. Wu, G.J. Tsai, pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr. Polym. 134. https://doi.org/10.1016/j.carbpol.2015.07.072. 2015

  41. Amrollahi, P., J. S. Krasinski, R. Vaidyanathan, L. Tayebi, and D. Vashaee. Electrophoretic deposition (EPD): fundamentals and applications from nano- to micro-scale structures. Handb. Nanoelectrochemistry. 2015. https://doi.org/10.1007/978-3-319-15207-3_7-1.

    Article  Google Scholar 

  42. Sopcak, T., L. Medvecky, T. Zagyva, M. Dzupon, J. Balko, K. Balázsi, and C. Balázsi. Characterization and adhesion strength of porous electrosprayed polymer–hydroxyapatite composite coatings. Resolut. Discov. 3:17–23, 2018. https://doi.org/10.1556/2051.2018.00057.

    Article  Google Scholar 

  43. Daugaard, H., B. Elmengaard, J. E. Bechtold, T. Jensen, and K. Soballe. The effect on bone growth enhancement of implant coatings with hydroxyapatite and collagen deposited electrochemically and by plasma spray. J. Biomed. Mater. Res. Part A. 92A:913–921, 2010. https://doi.org/10.1002/jbm.a.32303.

    Article  CAS  Google Scholar 

  44. Önder, S., and Y. Ersan. Kitosan Esaslı İlaç Taşıyıcı Sistem Üretimi ve In vitro Performansının Belirlenmesi. Eur. J. Sci. Technol. 2020. https://doi.org/10.31590/ejosat.770863.

    Article  Google Scholar 

  45. Wang, T., Z. Weng, X. Liu, K. W. K. Yeung, H. Pan, and S. Wu. Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants. Bioact. Mater. 2:44–50, 2017. https://doi.org/10.1016/j.bioactmat.2017.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Farzan, M., R. Roth, J. Schoelkopf, J. Huwyler, and M. Puchkov. The processes behind drug loading and release in porous drug delivery systems. Eur. J. Pharm. Biopharm. 189:133–151, 2023. https://doi.org/10.1016/j.ejpb.2023.05.019.

    Article  CAS  PubMed  Google Scholar 

  47. Martin, J. Y., Z. Schwartz, T. W. Hummert, D. M. Schraub, J. Simpson, J. Lankford, D. D. Dean, D. L. Cochran, and B. D. Boyan. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J. Biomed. Mater. Res. 29:389–401, 1995. https://doi.org/10.1002/jbm.820290314.

    Article  CAS  PubMed  Google Scholar 

  48. GurelPekozer, G., M. Ramazanoglu, K. A. Schlegel, F. N. Kok, and G. Torun Kose. Role of STRO-1 sorting of porcine dental germ stem cells in dental stem cell-mediated bone tissue engineering. Artif. Cells, Nanomedicine, Biotechnol. 46:607–618, 2018. https://doi.org/10.1080/21691401.2017.1332637.

    Article  CAS  Google Scholar 

  49. Bruderer, M., R. Richards, M. Alini, and M. Stoddart. Role and regulation of RUNX2 in osteogenesis. Eur. Cells Mater. 28:269–286, 2014. https://doi.org/10.22203/eCM.v028a19.

    Article  CAS  Google Scholar 

  50. Kim, H. J., J. M. Park, S. Lee, H. B. Cho, J.-I. Park, J.-H. Kim, J. S. Park, and K.-H. Park. Efficient CRISPR-Cas9-based knockdown of RUNX2 to induce chondrogenic differentiation of stem cells. Biomater. Sci. 10:514–523, 2022. https://doi.org/10.1039/D1BM01716K.

    Article  CAS  PubMed  Google Scholar 

  51. X. Lin, S. Patil, Y.-G. Gao, A. Qian, The bone extracellular matrix in bone formation and regeneration. Front. Pharmacol. 11. https://doi.org/10.3389/fphar.2020.00757. 2020

  52. Carvalho, M. S., A. A. Poundarik, J. M. S. Cabral, C. L. da Silva, and D. Vashishth. Biomimetic matrices for rapidly forming mineralized bone tissue based on stem cell-mediated osteogenesis. Sci. Rep. 8:14388, 2018. https://doi.org/10.1038/s41598-018-32794-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cho, Y.-D., W.-J. Kim, S. Kim, Y. Ku, and H.-M. Ryoo. Surface topography of titanium affects their osteogenic potential through DNA methylation. Int. J. Mol. Sci. 22:2406, 2021. https://doi.org/10.3390/ijms22052406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shen, Q., and S. Christakos. The vitamin D receptor, Runx2, and the notch signaling pathway cooperate in the transcriptional regulation of osteopontin. J. Biol. Chem. 280:40589–40598, 2005. https://doi.org/10.1074/jbc.M504166200.

    Article  CAS  PubMed  Google Scholar 

  55. Marie, P. J. Role of N-cadherin in bone formation. J. Cell. Physiol. 190:297–305, 2002. https://doi.org/10.1002/jcp.10073.

    Article  CAS  PubMed  Google Scholar 

  56. Mao, L., L. Wang, J. Xu, and J. Zou. The role of integrin family in bone metabolism and tumor bone metastasis. Cell Death Discov. 9:119, 2023. https://doi.org/10.1038/s41420-023-01417-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. A. Valat, L. Fourel, A. Sales, P. Machillot, A.-P. Bouin, C. Fournier, L. Bosc, M. Arboléas, I. Bourrin-Reynard, A.J. Wagoner Johnson, F. Bruckert, C. Albigès-Rizo, C. Picart, Interplay between integrins and cadherins to control bone differentiation upon BMP-2 stimulation. Front. Cell Dev. Biol. 10. https://doi.org/10.3389/fcell.2022.1027334. 2023

  58. B. Majhy, P. Priyadarshini, A.K. Sen, Effect of surface energy and roughness on cell adhesion and growth-facile surface modification for enhanced cell culture. RSC Adv. 11. https://doi.org/10.1039/d1ra02402g. 2021

  59. M.-H. Hong, J.H. Lee, H.S. Jung, H. Shin, H. Shin, Biomineralization of bone tissue: calcium phosphate-based inorganics in collagen fibrillar organic matrices. Biomater. Res. 26. https://doi.org/10.1186/s40824-022-00288-0. 2022

  60. Ciosek, Ż, K. Kot, D. Kosik-Bogacka, N. Łanocha-Arendarczyk, and I. Rotter. The effects of calcium magnesium, phosphorus, fluoride, and lead on bone tissue. Biomolecules. 11:506, 2021. https://doi.org/10.3390/biom11040506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. G. Kerem, S. Önder, A. Kılıç, Locally released dexamethasone and its effects on osteogenic activity at implant-tissue interface. J. Biomed. Mater. Res. A. 1–10. https://doi.org/10.1002/jbm.a.37722. 2024

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4