Kapoor, M., J. Martel-Pelletier, D. Lajeunesse, J. P. Pelletier, and H. Fahmi. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nature Reviews Rheumatology. 7:33–42, 2011. https://doi.org/10.1038/nrrheum.2010.196.
Egloff, C., T. Hügle, and V. Valderrabano. Biomechanics and pathomechanisms of osteoarthritis. Swiss Medical Weekly. 142:1–14, 2012. https://doi.org/10.4414/smw.2012.13583.
Oliviero F, Ramonda R, Punzi L (2010) New horizons in osteoarthritis. Swiss Medical Weekly 1–10. https://doi.org/10.4414/smw.2010.13098
Lee, A. S., M. B. Ellman, D. Yan, J. S. Kroin, B. J. Cole, A. J. van Wijnen, and H. J. Im. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene. 527:440–447, 2013. https://doi.org/10.1016/j.gene.2013.05.069.
van Dalen, S. C. M., A. B. Blom, A. W. Slöetjes, M. M. A. Helsen, J. Roth, T. Vogl, F. A. J. van de Loo, M. I. Koenders, P. M. van der Kraan, W. B. van den Berg, M. H. J. van den Bosch, and P. L. E. M. van Lent. Interleukin-1 is not involved in synovial inflammation and cartilage destruction in collagenase-induced osteoarthritis. Osteoarthritis and Cartilage. 25:385–396, 2017. https://doi.org/10.1016/j.joca.2016.09.009.
Laasanen, M. S., J. Töyräs, J. Hirvonen, S. Saarakkala, R. K. Korhonen, M. T. Nieminen, I. Kiviranta, and J. S. Jurvelin. Novel mechano-acoustic technique and instrument for diagnosis of cartilage degeneration. Physiological Measurement. 23:491–503, 2002. https://doi.org/10.1088/0967-3334/23/3/302.
Katta, J., T. Stapleton, E. Ingham, Z. M. Jin, and J. Fisher. The effect of glycosaminoglycan depletion on the friction and deformation of articular cartilage. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 222:1–11, 2008. https://doi.org/10.1243/09544119JEIM325.
June, R. K., and D. P. Fyhrie. Enzymatic digestion of articular cartilage results in viscoelasticity changes that are consistent with polymer dynamics mechanisms. Biomedical Engineering Online. 8:32, 2009. https://doi.org/10.1186/1475-925X-8-32.
Bauer, C., H. Göçerler, E. Niculescu-Morzsa, V. Jeyakumar, C. Stotter, T. Klestil, F. Franek, and S. Nehrer. Biotribological Tests of Osteochondral Grafts after Treatment with Pro-Inflammatory Cytokines. Cartilage. 2021. https://doi.org/10.1177/1947603521994900.
Park, S., S. B. Nicoll, R. L. Mauck, and G. A. Ateshian. Cartilage mechanical response under dynamic compression at physiological stress levels following collagenase digestion. Annals of Biomedical Engineering. 36:425–434, 2008. https://doi.org/10.1007/s10439-007-9431-6.
Beekman, B., N. Verzijl, J. A. D. M. De Roos, and J. M. TeKoppele. Matrix degradation by chondrocytes cultured in alginate: IL-1β induces proteoglycan degradation and proMMP synthesis but does not result in collagen degradation. Osteoarthritis and Cartilage. 6:330–340, 1998. https://doi.org/10.1053/joca.1998.0132.
Pastrama, M. I., A. C. Ortiz, L. Zevenbergen, N. Famaey, W. Gsell, C. P. Neu, U. Himmelreich, and I. Jonkers. Combined enzymatic degradation of proteoglycans and collagen significantly alters intratissue strains in articular cartilage during cyclic compression. Journal of the Mechanical Behavior of Biomedical Materials. 98:383–394, 2019. https://doi.org/10.1016/j.jmbbm.2019.05.040.
DuRaine, G., C. P. Neu, S. M. T. Chan, K. Komvopoulos, R. K. June, and A. H. Reddi. Regulation of the friction coefficient of articular cartilage by TGF-β1 and IL-1β. Journal of Orthopaedic Research. 27:249–256, 2009. https://doi.org/10.1002/jor.20713.
Torzilli, P. A., M. Bhargava, S. Park, and C. T. C. Chen. Mechanical load inhibits IL-1 induced matrix degradation in articular cartilage. Osteoarthritis and Cartilage. 18:97–105, 2010. https://doi.org/10.1016/j.joca.2009.07.012.
Temple, M. M., Y. Xue, M. Q. Chen, and R. L. Sah. Interleukin-1α induction of tensile weakening associated with collagen degradation in bovine articular cartilage. Arthritis and Rheumatism. 54:3267–3276, 2006. https://doi.org/10.1002/art.22145.
Basalo, I. M., D. Raj, R. Krishnan, F. H. Chen, C. T. Hung, and G. A. Ateshian. Effects of enzymatic degradation on the frictional response of articular cartilage in stress relaxation. Journal of Biomechanics. 38:1343–1349, 2005. https://doi.org/10.1016/j.jbiomech.2004.05.045.
Nippolainen, E., R. Shaikh, V. Virtanen, L. Rieppo, S. Saarakkala, J. Töyräs, and I. O. Afara. Near Infrared Spectroscopy Enables Differentiation of Mechanically and Enzymatically Induced Cartilage Injuries. Annals of Biomedical Engineering. 48:2343–2353, 2020. https://doi.org/10.1007/s10439-020-02506-z.
Noori-Dokht, H., A. Joukar, S. Karnik, T. Williams, S. B. Trippel, and D. R. Wagner. A Photochemical Crosslinking Approach to Enhance Resistance to Mechanical Wear and Biochemical Degradation of Articular Cartilage. Cartilage. 2022. https://doi.org/10.1177/19476035221093064.
Garrity, J. T., A. M. Stoker, H. J. Sims, and J. L. Cook. Improved osteochondral allograft preservation using serum-free media at body temperature. The American Journal of Sports Medicine. 40:2542–2548, 2012. https://doi.org/10.1177/0363546512458575.
Khan IM, Gonzalez LG, Francis L, Conlan RS, Gilbert SJ, Singhrao SK, Burdon D, Hollander AP, Duance VC, Archer CW (2011) Interleukin-1β enhances cartilage-to-cartilage integration. European Cells and Materials 22:190–201. https://doi.org/10.22203/eCM.v022a15
Cheng, L., X. Xia, L. E. Scriven, and W. W. Gerberich. Spherical-tip indentation of viscoelastic material. Mechanics of Materials. 37:213–226, 2005. https://doi.org/10.1016/j.mechmat.2004.03.002.
McGann, M. E., C. M. Bonitsky, M. L. Jackson, T. C. Ovaert, S. B. Trippel, and D. R. Wagner. Genipin crosslinking of cartilage enhances resistance to biochemical degradation and mechanical wear. Journal of Orthopaedic Research. 33:1571–1579, 2015. https://doi.org/10.1002/jor.22939.
Hossain, M. J., H. Noori-Dokht, S. Karnik, N. Alyafei, A. Joukar, S. B. Trippel, and D. R. Wagner. Anisotropic properties of articular cartilage in an accelerated in vitro wear test. Journal of the Mechanical Behavior of Biomedical Materials.109:103834, 2020. https://doi.org/10.1016/j.jmbbm.2020.103834.
Ateshian, G., and a, Mow VC, Huiskes R,. Friction, lubrication, and wear of articular cartilage and diarthrodial joints. Basic Orthopaedic Biomechanics & Mechano-Biology. 2005. https://doi.org/10.1186/1475-925X-4-28.
Radin, E. L., D. A. Swann, I. L. Paul, and P. J. Mcgrath. Factors influencing articular cartilage wear in vitro. Arthritis & Rheumatism. 25:974–980, 1982. https://doi.org/10.1002/art.1780250810.
Oungoulian, S. R., K. M. Durney, B. K. Jones, C. S. Ahmad, C. T. Hung, and G. A. Ateshian. Wear and damage of articular cartilage with friction against orthopedic implant materials. Journal of Biomechanics. 48:1957–1964, 2015. https://doi.org/10.1016/j.jbiomech.2015.04.008.
Bonitsky, C. M., M. E. McGann, M. J. Selep, T. C. Ovaert, S. B. Trippel, and D. R. Wagner. Genipin crosslinking decreases the mechanical wear and biochemical degradation of impacted cartilage in vitro. Journal of Orthopaedic Research. 2017. https://doi.org/10.1002/jor.23411.
Lipshitz, H., R. Etheredge, and M. Glimcher. In vitro wear of articular cartilage. The Journal of Bone & Joint Surgery. 57:527–534, 1975. https://doi.org/10.2106/00004623-197557040-00015.
McGann, M. E., A. Vahdati, and D. R. Wagner. Methods to assess in vitro wear of articular cartilage. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 226:612–622, 2012. https://doi.org/10.1177/0954411912447014.
Ignat’eva NY, Danilov NA, Sobol EN,. Determination of hydroxyproline in tissues and the evaluation of the collagen content of the tissues. Journal of Analytical Chemistry. 62:51–57, 2007. https://doi.org/10.1134/S106193480701011X.
Forster, H., and J. Fisher. The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage. Proc Inst Mech Eng. 213:329–345, 1999. https://doi.org/10.1243/0954411991535167.
Krishnan, R., M. Kopacz, and G. A. Ateshian. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J Orthop Res. 22:565–570, 2004. https://doi.org/10.1016/S0021-9290(98)00105-5.
Lewis, P. R., and C. W. McCutchen. Mechanism of animal joints: Experimental evidence for weeping lubrication in Mammalian Joints. Nature. 1959. https://doi.org/10.1038/1841285a0.
Northwood, E., and J. Fisher. A multi-directional in vitro investigation into friction, damage and wear of innovative chondroplasty materials against articular cartilage. Clinical Biomechanics. 2007. https://doi.org/10.1016/j.clinbiomech.2007.03.008.
Goldring, M. B., J. R. Birkhead, L. F. Suen, R. Yamin, S. Mizuno, J. Glowacki, J. L. Arbiser, and J. F. Apperley. Interleukin-1β-modulated gene expression in immortalized human chondrocytes. Journal of Clinical Investigation. 94:2307–2316, 1994. https://doi.org/10.1172/JCI117595.
McNulty, A. L., N. E. Rothfusz, H. A. Leddy, and F. Guilak. Synovial fluid concentrations and relative potency of interleukin-1 alpha and beta in cartilage and meniscus degradation. Journal of Orthopaedic Research. 31:1039–1045, 2013. https://doi.org/10.1002/jor.22334.
Sylvester, J., M. El Mabrouk, R. Ahmad, A. Chaudry, and M. Zafarullah. Interleukin-1 induction of aggrecanase gene expression in human articular chondrocytes is mediated by mitogen-activated protein kinases. Cellular Physiology and Biochemistry. 30:563–574, 2012. https://doi.org/10.1159/000341438.
Byron, C. R., and R. A. Trahan. Comparison of the effects of Interleukin-1 on equine articular cartilage explants and cocultures of osteochondral and synovial explants. Frontiers in Veterinary Science. 4:1–10, 2017. https://doi.org/10.3389/fvets.2017.00152.
Saarakkala, S., P. Julkunen, P. Kiviranta, J. Mäkitalo, J. S. Jurvelin, and R. K. Korhonen. Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics. Osteoarthritis and Cartilage. 2010. https://doi.org/10.1016/j.joca.2009.08.003.
Joukar A, Creecy A, Karnik S, Noori-Dokht H, Trippel SB, Wallace JM, Wagner DR (2023) Correlation analysis of cartilage wear with biochemical composition, viscoelastic properties and friction. Journal of the Mechanical Behavior of Biomedical Materials 142. https://doi.org/10.1016/j.jmbbm.2023.105827
Trevino, R. L., C. A. Pacione, A.-M. Malfait, S. Chubinskaya, and M. A. Wimmer. Development of a Cartilage Shear-Damage Model to Investigate the Impact of Surface Injury on Chondrocytes and Extracellular Matrix Wear. Cartilage. 8:444–455, 2017. https://doi.org/10.1177/1947603516681133.
Henao-Murillo, L., M.-I. Pastrama, K. Ito, and C. C. van Donkelaar. The Relationship Between Proteoglycan Loss, Overloading-Induced Collagen Damage, and Cyclic Loading in Articular Cartilage. Cartilage. 13:1501S-1512S, 2021. https://doi.org/10.1177/1947603519885005.
Thibault, M., A. Robin Poole, and M. D. Buschmann. Cyclic compression of cartilage/bone explants in vitro leads to physical weakening, mechanical breakdown of collagen and release of matrix fragments. Journal of Orthopaedic Research. 20:1265–1273, 2002. https://doi.org/10.1016/S0736-0266(02)00070-0.
Piscoya, J. L., B. Fermor, V. B. Kraus, T. V. Stabler, and F. Guilak. The influence of mechanical compression on the induction of osteoarthritis-related biomarkers in articular cartilage explants. Osteoarthritis and Cartilage. 13:1092–1099, 2005. https://doi.org/10.1016/j.joca.2005.07.003.
Sauerland, K., A. Wolf, M. Schudok, and J. Steinmeyer. A novel model of a biomechanically induced osteoarthritis-like cartilage for pharmacological in vitro studies. Journal of Cellular and Molecular Medicine. 25:11221–11231, 2021. https://doi.org/10.1111/jcmm.17044.
Lin, P. M., C.-T.C. Chen, and P. A. Torzilli. Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthritis and Cartilage. 12:485–496, 2004. https://doi.org/10.1016/j.joca.2004.02.012.
Petitjean, N., P. Canadas, P. Royer, D. Noël, and Le Floc’h S. Cartilage biomechanics: From the basic facts to the challenges of tissue engineering. Journal of Biomedical Materials Research Part A. 111:1067–1089, 2023. https://doi.org/10.1002/jbm.a.37478.
Korhonen, R. K., M. S. Laasanen, J. Töyräs, R. Lappalainen, H. J. Helminen, and J. S. Jurvelin. Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. Journal of Biomechanics. 36:1373–1379, 2003. https://doi.org/10.1016/S0021-9290(03)00069-1.
Laasanen, M. S., J. Töyräs, R. K. Korhonen, J. Rieppo, S. Saarakkala, M. T. Nieminen, J. Hirvonen, and J. S. Jurvelin. Biomechanical properties of knee articular cartilage. Biorheology. 40:133–140, 2002. https://doi.org/10.1243/EMED_JOUR_1988_017_042_02.
Linus, A., P. Tanska, E. Nippolainen, V. Tiitu, J. Töyras, R. K. Korhonen, I. O. Afara, and M. E. Mononen. Site-specific elastic and viscoelastic biomechanical properties of healthy and osteoarthritic human knee joint articular cartilage. Journal of Biomechanics.169:112135, 2024. https://doi.org/10.1016/j.jbiomech.2024.112135.
Ateshian GA (2009) The role of interstitial fluid pressurization in articular cartilage lubrication. J Biomech 42:1163–1176. S0021-9290(09)00256-5 [pii] https://doi.org/10.1016/j.jbiomech.2009.04.040
Pickard, J., E. Ingham, J. Egan, and J. Fisher. Investigation into the effect of proteoglycan molecules on the tribological properties of cartilage joint tissues. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 212:177–182, 1998. https://doi.org/10.1243/0954411981533953.
Mochizuki S, Yanagida S, Fujie H (2013) Effect of enzymatic degeneration on the frictonal property of articular cartilage. ASME 2013 Summer Bioengineering Conference, SBC 2013 1 B:1–2. https://doi.org/10.1115/SBC2013-14461
Katta, J., Z. Jin, E. Ingham, and J. Fisher. Effect of nominal stress on the long term friction, deformation and wear of native and glycosaminoglycan deficient articular cartilage. Osteoarthritis and Cartilage. 17:662–668, 2009. https://doi.org/10.1016/j.joca.2008.10.008.
Larson, K. M., L. Zhang, K. A. Elsaid, T. A. Schmidt, B. C. Fleming, G. J. Badger, and G. D. Jay. Reduction of friction by recombinant human proteoglycan 4 in IL-1α stimulated bovine cartilage explants. Journal of Orthopaedic Research. 35:580–589, 2017. https://doi.org/10.1002/jor.23367.
Kupratis, M. E., A. Rahman, D. L. Burris, E. A. Corbin, and C. Price. Enzymatic digestion does not compromise sliding-mediated cartilage lubrication. Acta Biomaterialia. 178:196–207, 2024. https://doi.org/10.1016/j.actbio.2024.02.040.
Caligaris, M., C. E. Canal, C. S. Ahmad, T. R. Gardner, and G. A. Ateshian. Investigation of the frictional response of osteoarthritic human tibiofemoral joints and the potential beneficial tribological effect of healthy synovial fluid. Osteoarthritis and Cartilage. 17:1327–1332, 2009. https://doi.org/10.1016/j.joca.2009.03.020.
Kumar, P., M. Oka, J. Toguchida, M. Kobayashi, E. Uchida, T. Nakamura, and K. Tanaka. Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints. Journal of Anatomy. 199:241–250, 2001. https://doi.org/10.1017/S0021878201008032.
Basalo, I. M., F. H. Chen, C. T. Hung, and G. A. Ateshian. Frictional response of bovine articular cartilage under creep loading following proteoglycan digestion with chondroitinase ABC. Journal of Biomechanical Engineering. 128:131–134, 2006. https://doi.org/10.1115/1.2133764.
Naka, M. H., K. Hattori, T. Ohashi, and K. Ikeuchi. Evaluation of the effect of collagen network degradation on the frictional characteristics of articular cartilage using a simultaneous analysis of the contact condition. Clinical Biomechanics. 20:1111–1118, 2005. https://doi.org/10.1016/j.clinbiomech.2005.06.009.
Bonnevie, E. D., D. Galesso, C. Secchieri, and L. J. Bonassar. Degradation alters the lubrication of articular cartilage by high viscosity, hyaluronic acid-based lubricants. Journal of Orthopaedic Research. 36:1456–1464, 2018. https://doi.org/10.1002/jor.23782.
Kaab, M. J., K. Ito, J. M. Clark, and H. P. Notzli. Deformation of articular cartilage collagen structure under static and cyclic loading. Journal of Orthopaedic Research. 16:743–751, 1998. https://doi.org/10.1002/jor.1100160617.
Herberhold, C., S. Faber, T. Stammberger, M. Steinlechner, R. Putz, K. H. Englmeier, M. Reiser, and F. Eckstein. In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading. Journal of Biomechanics. 32:1287–1295, 1999. https://doi.org/10.1016/S0021-9290(99)00130-X.
Mabey, T., S. Honsawek, A. Tanavalee, P. Yuktanandana, V. Wilairatana, and Y. Poovorawan. Plasma and synovial fluid inflammatory cytokine profiles in primary knee osteoarthritis. Biomarkers. 21:639–644, 2016. https://doi.org/10.3109/1354750X.2016.1171907.
Kowalski MA, Fernandes LM, Hammond KE, Labib S, Drissi H, Patel JM (2022) Cartilage‐penetrating hyaluronic acid hydrogel preserves tissue content and reduces chondrocyte catabolism. Journal of Tissue Engineering and Regenerative Medicine 1–24. https://doi.org/10.1002/term.3352
Grenier, S., P. E. Donnelly, J. Gittens, and P. A. Torzilli. Resurfacing damaged articular cartilage to restore compressive properties. Journal of Biomechanics. 48:122–129, 2015. https://doi.org/10.1016/j.jbiomech.2014.10.023.
Patel JM, Loebel C, Saleh KS, Wise BC, Bonnevie ED, Miller LM, Carey JL, Burdick JA, Mauck RL (2021) Stabilization of Damaged Articular Cartilage with Hydrogel-Mediated Reinforcement and Sealing. Advanced Healthcare Materials 10:. https://doi.org/10.1002/adhm.202100315
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4