S. Torregrosa et al., Oxigenación de membrana extracorpórea para soporte cardíaco o respiratorio en adultos. 1134-0096, vol. 16, no. 2, pp. 163–177, 2009. https://doi.org/10.1016/S1134-0096(09)70162-7
Chakaramakkil, M. J., and C. Sivathasan. ECMO and short-term support for cardiogenic shock in heart failure. Current Cardiology Reports. 20(10):87, 2018. https://doi.org/10.1007/s11886-018-1041-4.
MacLaren, G., A. Combes, and R. H. Bartlett. Contemporary extracorporeal membrane oxygenation for adult respiratory failure: life support in the new era. Intensive Care Medicine. 38(2):210–220, 2012. https://doi.org/10.1007/s00134-011-2439-2.
Abrams, D., A. Combes, and D. Brodie. Extracorporeal membrane oxygenation in cardiopulmonary disease in adults. Journal of the American College of Cardiology. 63(25):2769–2778, 2014. https://doi.org/10.1016/j.jacc.2014.03.046.
Combes, A., et al. Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Critical Care Medicine. 36(5):1404–1411, 2008. https://doi.org/10.1097/CCM.0b013e31816f7cf7.
Dangers, L., et al. Extracorporeal membrane oxygenation for acute decompensated heart failure. Critical Care Medicine. 45(8):1359–1366, 2017. https://doi.org/10.1097/CCM.0000000000002485.
Zapol, W. M., et al. Extracorporeal membrane oxygenation in severe acute respiratory failure. JAMA. 242(20):2195–2196, 1979. https://doi.org/10.1001/jama.1979.03300200023016.
Hill J. Donald et al., Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (Shock-Lung Syndrome), 1972. https://doi.org/10.1056/NEJM197203232861204
Khoshbin, E., et al. Poly-methyl pentene oxygenators have improved gas exchange capability and reduced transfusion requirements in adult extracorporeal membrane oxygenation. ASAIO Journal. 51(3):281–287, 2005. https://doi.org/10.1097/01.mat.0000159741.33681.f1.
Maslach-Hubbard, A., and S. L. Bratton. Extracorporeal membrane oxygenation for pediatric respiratory failure: history, development and current status. World Journal of Critical Care Medicine. 2(4):29–39, 2013. https://doi.org/10.5492/wjccm.v2.i4.29.
Javidfar, J., et al. Use of bicaval dual-lumen catheter for adult venovenous extracorporeal membrane oxygenation. The Annals of Thoracic Surgery. 91(6):1763–1768, 2011. https://doi.org/10.1016/j.athoracsur.2011.03.002.
Wang, D., et al. Wang-zwische double lumen cannula-toward a percutaneous and ambulatory paracorporeal artificial lung. ASAIO Journal American Society for Artificial Internal Organs 1992. 54(6):606–611, 2008. https://doi.org/10.1097/MAT.0b013e31818c69ab.
Sauer, C. M., D. D. Yuh, and P. Bonde. Extracorporeal membrane oxygenation use has increased by 433% in adults in the United States from 2006 to 2011. ASAIO Journal (American Society for Artificial Internal Organs 1992). 61(1):31–36, 2015. https://doi.org/10.1097/MAT.0000000000000160.
Allen, S., et al. A review of the fundamental principles and evidence base in the use of extracorporeal membrane oxygenation (ECMO) in critically ill adult patients. Journal of Intensive Care Medicine. 26(1):13–26, 2011. https://doi.org/10.1177/0885066610384061.
Paden, M. L., S. A. Conrad, P. T. Rycus, and R. R. Thiagarajan. Extracorporeal life support organization registry report 2012. ASAIO Journal (American Society for Artificial Internal Organs 1992). 59(3):202–210, 2013. https://doi.org/10.1097/MAT.0b013e3182904a52.
Tonna, J. E., et al. Management of adult patients supported with venovenous extracorporeal membrane oxygenation (VV ECMO): guideline from the extracorporeal life support organization (ELSO). ASAIO Journal (American Society for Artificial Internal Organs). 67(6):601–610, 2021. https://doi.org/10.1097/MAT.0000000000001432.
Vignali, E., E. Gasparotti, D. Haxhiademi, and S. Celi. Fluid dynamic model for extracorporeal membrane oxygenation support and perfusion in cardiogenic shock. Physics of Fluids. 35(11):2023, 2023. https://doi.org/10.1063/5.0174259.
Stephens, A. F., et al. Comparison of circulatory unloading techniques for venoarterial extracorporeal membrane oxygenatio. ASAIO Journal (American Society for Artificial Internal Organs). 67(6):623–631, 2021. https://doi.org/10.1097/MAT.0000000000001268.
D. Han et al., Computational fluid dynamics analysis and experimental hemolytic performance of three clinical centrifugal blood pumps: Revolution, Rotaflow and CentriMag, Medicine in novel technology and devices, vol. 15, 2022. https://doi.org/10.1016/j.medntd.2022.100153
Chaves, R. C. D. F., R. R. Filho, et al. Oxigenação por membrana extracorpórea: revisão da literatura. Revista Brasileira de Terapia Intensiva. 31(3):410–424, 2019. https://doi.org/10.5935/0103-507X.20190063.
Robinson, S., and G. Peek. The role of ECMO in neonatal & paediatric patients. Paediatrics and Child Health. 25(5):222–227, 2015. https://doi.org/10.1016/j.paed.2015.03.005.
Maratta, C., et al. Extracorporeal life support organization (ELSO): 2020 pediatric respiratory ELSO guideline. ASAIO Journal (American Society for Artificial Internal Organs 1992). 66(9):975–979, 2020. https://doi.org/10.1097/MAT.0000000000001223.
Rehder, K. J., et al. Technological advances in extracorporeal membrane oxygenation for respiratory failure. Expert Review of Respiratory Medicine. 6(4):377–384, 2012. https://doi.org/10.1586/ers.12.31.
Lequier, L., S. B. Horton, D. M. McMullan, and R. H. Bartlett. Extracorporeal membrane oxygenation circuitry. Pediatric critical Care Medicine: a Journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies. 14(5 Suppl 1):S7-12, 2013. https://doi.org/10.1097/PCC.0b013e318292dd10.
Moon, Y. S., S. Ohtsubo, M. R. Gomez, J. K. Moon, and Y. Nose. Comparison of centrifugal and roller pump hemolysis rates at low flow. Artificial Organs. 20(5):579–581, 1996. https://doi.org/10.1111/J.1525-1594.1996.TB04485.X.
Tulman, D. B., et al. Veno-venous ECMO: a synopsis of nine key potential challenges, considerations, and controversies. BMC anesthesiology. 14:65, 2014. https://doi.org/10.1186/1471-2253-14-65.
van der Merwe, J., E. Paul, and F. L. Rosenfeldt. Early gastrointestinal complications from ventricular assist devices is increased by non-pulsatile flow. Heart, Lung & Circulation. 29(2):295–300, 2020. https://doi.org/10.1016/j.hlc.2019.01.009.
Illum, B., et al. Evaluation, treatment, and impact of neurologic injury in adult patients on extracorporeal membrane oxygenation: a review. Current Treatment Options in Neurology. 23(5):15, 2021. https://doi.org/10.1007/s11940-021-00671-7.
O’Brien, C., J. Monteagudo, C. Schad, E. Cheung, and W. Middlesworth. Centrifugal pumps and hemolysis in pediatric extracorporeal membrane oxygenation (ECMO) patients: an analysis of extracorporeal life support organization (ELSO) registry data. Journal of Pediatric Surgery. 52(6):975–978, 2017. https://doi.org/10.1016/j.jpedsurg.2017.03.022.
C. A. Figueroa Villalba et al., 2022 Thrombosis in extracorporeal membrane oxygenation (ECMO) circuits. ASAIO Journal (American Society for Artificial Internal Organs. 68(8): 1083–1092. https://doi.org/10.1097/MAT.0000000000001605
Hastings, S. M., D. N. Ku, S. Wagoner, K. O. Maher, and S. Deshpande. Sources of circuit thrombosis in pediatric extracorporeal membrane oxygenation. ASAIO Journal (American Society for Artificial Internal Organs). 63(1):86–92, 2017. https://doi.org/10.1097/MAT.0000000000000444.
Conrad, S. A., and D. Wang. Evaluation of recirculation during venovenous extracorporeal membrane oxygenation using computational fluid dynamics incorporating fluid-structure interaction. ASAIO Journal (American Society for Artificial Internal Organs: 1992). 67(8):943–953, 2021. https://doi.org/10.1097/MAT.0000000000001314.
Xie, A., T. D. Yan, and P. Forrest. Recirculation in venovenous extracorporeal membrane oxygenation. Journal of Critical Care. 36:107–110, 2016. https://doi.org/10.1016/j.jcrc.2016.05.027.
Abrams, D., M. Bacchetta, and D. Brodie. Recirculation in venovenous extracorporeal membrane oxygenation. ASAIO Journal (American Society for Artificial Internal Organs). 61(2):115–121, 2015. https://doi.org/10.1097/MAT.0000000000000179.
Liebau, G. Ber ein ventilloses pumpprinzip. Naturwissenschaften. 41(14):327, 1954. https://doi.org/10.1007/BF00644490.
A. Aghilinejad, B. Rogers, H. Geng, and N. M. Pahlevan, 2023 On the longitudinal wave pumping in fluid-filled compliant tubes, Physics of Fluids, 35(9), https://doi.org/10.1063/5.0165150
S. Timmermann and J. T. Ottesen, «Novel characteristics of valveless pumping», Physics of Fluids, vol. 21, no. 5, 2009. https://doi.org/10.1063/1.3114603
Manopoulos, C., et al. Net flow generation in closed-loop valveless pumping. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 234(11):2126–2142, 2020. https://doi.org/10.1177/0954406220904110.
Hickerson, A. I., and M. Gharib. On the resonance of a pliant tube as a mechanism for valveless pumping. J. Fluid Mech. 555:141, 2006. https://doi.org/10.1017/S0022112006009220.
Sarvazyan, N. Building valveless impedance pumps from biological components: progress and challenges. Frontiers in physiology.12:770906, 2021. https://doi.org/10.3389/fphys.2021.770906.
J. Anatol et al., 2024 An assessment of the suitability of a Liebau pump in biomedical applications. Physics of Fluids, vol. 36, no. 1, 2024. https://doi.org/10.1063/5.0186726
J. Anatol et al., 2023 Experimental characterization of an asymmetric valveless pump based on soft robotics technology. Physics of Fluids, vol. 35, no. 6, 2023. https://doi.org/10.1063/5.0150978
Anatol, J., et al. Experimental study of an asymmetric valveless pump to elucidate insights into strategies for pediatric extravascular flow augmentation. Scientific Reports. 12(1):22165, 2022. https://doi.org/10.1038/s41598-022-26524-0.
Avrahami, I., and M. Gharib. Computational studies of resonance wave pumping in compliant tubes. J. Fluid Mech. 608:139–160, 2008. https://doi.org/10.1017/S0022112008002012.
Wen, C.-Y., and H.-T. Chang. Design and characterization of valveless impedance pumps. J. mech. 25(4):345–354, 2009. https://doi.org/10.1017/S1727719100002835.
Kenner, T. Biological asymmetry and cardiovascular blood transport. Cardiovascular Engineering. 4(2):209–218, 2004. https://doi.org/10.1023/B:CARE.0000031550.14659.06.
T. T. Bringley et al., 2008 An experimental investigation and a simple model of a valveless pump. Physics of Fluids, vol. 20, no. 3, 2008. https://doi.org/10.1063/1.2890790
Celi, S., et al. 3D printing in modern cardiology. Current Pharmaceutical Design. 27(16):1918–1930, 2021. https://doi.org/10.2174/1381612826666200622132440.
Fanni, B. M., et al. An integrated in-vitro and in-silico workflow to study the pulmonary bifurcation hemodynamics. Computers & Fluids. 260:105912, 2023. https://doi.org/10.1016/j.compfluid.2023.105912.
Vignali, E., et al. High-versatility left ventricle pump and aortic mock circulatory loop development for patient-specific hemodynamic in vitro analysis. ASAIO Journal (American Society for Artificial Internal Organs). 68(10):1272–1281, 2022. https://doi.org/10.1097/MAT.0000000000001651.
Banfi, C., et al. Veno-venous extracorporeal membrane oxygenation: cannulation techniques. Journal of Thoracic Disease. 8(12):3762–3773, 2016. https://doi.org/10.21037/jtd.2016.12.88.
Bardi, F., E. Gasparotti, E. Vignali, S. Avril, and S. Celi. A hybrid mock circulatory loop for fluid dynamic characterization of 3D anatomical phantoms. IEEE Transactions on Bio-Medical Engineering. 70(5):1651–1661, 2023. https://doi.org/10.1109/TBME.2022.3224581.
Markl, M., et al. Time-resolved three-dimensional magnetic resonance velocity mapping of cardiovascular flow paths in volunteers and patients with fontan circulation. European Journal of Cardio-Thoracic Surgery: Official Journal of the European Association for Cardio-thoracic Surgery. 39(2):206–212, 2011. https://doi.org/10.1016/j.ejcts.2010.05.026.
Hickerson, A. I., D. Rinderknecht, and M. Gharib. Experimental study of the behavior of a valveless impedance pump. Exp Fluids. 38(4):534–540, 2005. https://doi.org/10.1007/s00348-005-0946-z.
Westenberg, J. J. M., et al. Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking. Radiology. 249(3):792–800, 2008. https://doi.org/10.1148/radiol.2492080146.
Kayser, H. W., B. C. Stoel, E. E. van der Wall, R. J. van der Geest, and A. de Roos. MR velocity mapping of tricuspid flow: correction for through-plane motion. Journal of Magnetic Resonance Imaging: JMRI. 7(4):669–673, 1997. https://doi.org/10.1002/JMRI.188007041.
Takagi, S., and T. Saijo. Study of a piston pump without valves: 1st report, on a pipe-capacity-system with a T-junction. Bulletin of JSME. 26(218):1366–1372, 1983. https://doi.org/10.1299/JSME1958.26.1366.
Lehle, K., et al. Flow dynamics of different adult ECMO systems: a clinical evaluation. Artificial organs. 38(5):391–398, 2014. https://doi.org/10.1111/aor.12180.
Patel, A. C., et al. Dynamic changes in aortic vascular stiffness in patients bridged to transplant with continuous-flow left ventricular assist devices. JACC. Heart Failure. 5(6):449–459, 2017. https://doi.org/10.1016/j.jchf.2016.12.009.
Willey, J. Z., et al. Outcomes after stroke complicating left ventricular assist device. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation. 35(8):1003–1009, 2016. https://doi.org/10.1016/j.healun.2016.03.014.
Vincent, D., et al. Pulsatile ECMO: the future of mechanical circulatory support for severe cardiogenic shock. JACC Basic to Translational Science. 9(4):456–458, 2024. https://doi.org/10.1016/j.jacbts.2024.02.015.
Extracorporeal Life Support Organization. ELSO Guidelines for Cardiopulmonary Extracorporeal Life Support. Version 1.4. Ann Arbor, MI: Extracorporeal Life Support Organization; 2017.
C. Manopoulos and D. Mathioulakis, «Flow Rate Augmentation of Valveless Pumping via a Time-Dependent Stenosis: A Novel Device», Fluids, vol. 8, no. 9, 2023. 10.3390/fluids8090249
C. Manopoulos and D. Mathioulakis, «Valveless Pumping with an Unsteady Stenosis in an Open Tank Configuration », Fluids, vol. 9, no. 6, 2024. 10.3390/fluids9060141
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4