A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-024-03672-0 below:

A Novel Valveless Pulsatile Flow Pump for Extracorporeal Blood Circulation

  • S. Torregrosa et al., Oxigenación de membrana extracorpórea para soporte cardíaco o respiratorio en adultos. 1134-0096, vol. 16, no. 2, pp. 163–177, 2009. https://doi.org/10.1016/S1134-0096(09)70162-7

  • Chakaramakkil, M. J., and C. Sivathasan. ECMO and short-term support for cardiogenic shock in heart failure. Current Cardiology Reports. 20(10):87, 2018. https://doi.org/10.1007/s11886-018-1041-4.

    Article  PubMed  Google Scholar 

  • MacLaren, G., A. Combes, and R. H. Bartlett. Contemporary extracorporeal membrane oxygenation for adult respiratory failure: life support in the new era. Intensive Care Medicine. 38(2):210–220, 2012. https://doi.org/10.1007/s00134-011-2439-2.

    Article  PubMed  Google Scholar 

  • Abrams, D., A. Combes, and D. Brodie. Extracorporeal membrane oxygenation in cardiopulmonary disease in adults. Journal of the American College of Cardiology. 63(25):2769–2778, 2014. https://doi.org/10.1016/j.jacc.2014.03.046.

    Article  PubMed  Google Scholar 

  • Combes, A., et al. Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Critical Care Medicine. 36(5):1404–1411, 2008. https://doi.org/10.1097/CCM.0b013e31816f7cf7.

    Article  PubMed  Google Scholar 

  • Dangers, L., et al. Extracorporeal membrane oxygenation for acute decompensated heart failure. Critical Care Medicine. 45(8):1359–1366, 2017. https://doi.org/10.1097/CCM.0000000000002485.

    Article  PubMed  Google Scholar 

  • Zapol, W. M., et al. Extracorporeal membrane oxygenation in severe acute respiratory failure. JAMA. 242(20):2195–2196, 1979. https://doi.org/10.1001/jama.1979.03300200023016.

    Article  Google Scholar 

  • Hill J. Donald et al., Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (Shock-Lung Syndrome), 1972. https://doi.org/10.1056/NEJM197203232861204

  • Khoshbin, E., et al. Poly-methyl pentene oxygenators have improved gas exchange capability and reduced transfusion requirements in adult extracorporeal membrane oxygenation. ASAIO Journal. 51(3):281–287, 2005. https://doi.org/10.1097/01.mat.0000159741.33681.f1.

    Article  CAS  PubMed  Google Scholar 

  • Maslach-Hubbard, A., and S. L. Bratton. Extracorporeal membrane oxygenation for pediatric respiratory failure: history, development and current status. World Journal of Critical Care Medicine. 2(4):29–39, 2013. https://doi.org/10.5492/wjccm.v2.i4.29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Javidfar, J., et al. Use of bicaval dual-lumen catheter for adult venovenous extracorporeal membrane oxygenation. The Annals of Thoracic Surgery. 91(6):1763–1768, 2011. https://doi.org/10.1016/j.athoracsur.2011.03.002.

    Article  PubMed  Google Scholar 

  • Wang, D., et al. Wang-zwische double lumen cannula-toward a percutaneous and ambulatory paracorporeal artificial lung. ASAIO Journal American Society for Artificial Internal Organs 1992. 54(6):606–611, 2008. https://doi.org/10.1097/MAT.0b013e31818c69ab.

    Article  PubMed  Google Scholar 

  • Sauer, C. M., D. D. Yuh, and P. Bonde. Extracorporeal membrane oxygenation use has increased by 433% in adults in the United States from 2006 to 2011. ASAIO Journal (American Society for Artificial Internal Organs 1992). 61(1):31–36, 2015. https://doi.org/10.1097/MAT.0000000000000160.

    Article  CAS  PubMed  Google Scholar 

  • Allen, S., et al. A review of the fundamental principles and evidence base in the use of extracorporeal membrane oxygenation (ECMO) in critically ill adult patients. Journal of Intensive Care Medicine. 26(1):13–26, 2011. https://doi.org/10.1177/0885066610384061.

    Article  PubMed  Google Scholar 

  • Paden, M. L., S. A. Conrad, P. T. Rycus, and R. R. Thiagarajan. Extracorporeal life support organization registry report 2012. ASAIO Journal (American Society for Artificial Internal Organs 1992). 59(3):202–210, 2013. https://doi.org/10.1097/MAT.0b013e3182904a52.

    Article  PubMed  Google Scholar 

  • Tonna, J. E., et al. Management of adult patients supported with venovenous extracorporeal membrane oxygenation (VV ECMO): guideline from the extracorporeal life support organization (ELSO). ASAIO Journal (American Society for Artificial Internal Organs). 67(6):601–610, 2021. https://doi.org/10.1097/MAT.0000000000001432.

    Article  CAS  Google Scholar 

  • Vignali, E., E. Gasparotti, D. Haxhiademi, and S. Celi. Fluid dynamic model for extracorporeal membrane oxygenation support and perfusion in cardiogenic shock. Physics of Fluids. 35(11):2023, 2023. https://doi.org/10.1063/5.0174259.

    Article  CAS  Google Scholar 

  • Stephens, A. F., et al. Comparison of circulatory unloading techniques for venoarterial extracorporeal membrane oxygenatio. ASAIO Journal (American Society for Artificial Internal Organs). 67(6):623–631, 2021. https://doi.org/10.1097/MAT.0000000000001268.

    Article  Google Scholar 

  • D. Han et al., Computational fluid dynamics analysis and experimental hemolytic performance of three clinical centrifugal blood pumps: Revolution, Rotaflow and CentriMag, Medicine in novel technology and devices, vol. 15, 2022. https://doi.org/10.1016/j.medntd.2022.100153

  • Chaves, R. C. D. F., R. R. Filho, et al. Oxigenação por membrana extracorpórea: revisão da literatura. Revista Brasileira de Terapia Intensiva. 31(3):410–424, 2019. https://doi.org/10.5935/0103-507X.20190063.

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson, S., and G. Peek. The role of ECMO in neonatal & paediatric patients. Paediatrics and Child Health. 25(5):222–227, 2015. https://doi.org/10.1016/j.paed.2015.03.005.

    Article  Google Scholar 

  • Maratta, C., et al. Extracorporeal life support organization (ELSO): 2020 pediatric respiratory ELSO guideline. ASAIO Journal (American Society for Artificial Internal Organs 1992). 66(9):975–979, 2020. https://doi.org/10.1097/MAT.0000000000001223.

    Article  PubMed  Google Scholar 

  • Rehder, K. J., et al. Technological advances in extracorporeal membrane oxygenation for respiratory failure. Expert Review of Respiratory Medicine. 6(4):377–384, 2012. https://doi.org/10.1586/ers.12.31.

    Article  CAS  PubMed  Google Scholar 

  • Lequier, L., S. B. Horton, D. M. McMullan, and R. H. Bartlett. Extracorporeal membrane oxygenation circuitry. Pediatric critical Care Medicine: a Journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies. 14(5 Suppl 1):S7-12, 2013. https://doi.org/10.1097/PCC.0b013e318292dd10.

    Article  PubMed  Google Scholar 

  • Moon, Y. S., S. Ohtsubo, M. R. Gomez, J. K. Moon, and Y. Nose. Comparison of centrifugal and roller pump hemolysis rates at low flow. Artificial Organs. 20(5):579–581, 1996. https://doi.org/10.1111/J.1525-1594.1996.TB04485.X.

    Article  CAS  PubMed  Google Scholar 

  • Tulman, D. B., et al. Veno-venous ECMO: a synopsis of nine key potential challenges, considerations, and controversies. BMC anesthesiology. 14:65, 2014. https://doi.org/10.1186/1471-2253-14-65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Merwe, J., E. Paul, and F. L. Rosenfeldt. Early gastrointestinal complications from ventricular assist devices is increased by non-pulsatile flow. Heart, Lung & Circulation. 29(2):295–300, 2020. https://doi.org/10.1016/j.hlc.2019.01.009.

    Article  Google Scholar 

  • Illum, B., et al. Evaluation, treatment, and impact of neurologic injury in adult patients on extracorporeal membrane oxygenation: a review. Current Treatment Options in Neurology. 23(5):15, 2021. https://doi.org/10.1007/s11940-021-00671-7.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Brien, C., J. Monteagudo, C. Schad, E. Cheung, and W. Middlesworth. Centrifugal pumps and hemolysis in pediatric extracorporeal membrane oxygenation (ECMO) patients: an analysis of extracorporeal life support organization (ELSO) registry data. Journal of Pediatric Surgery. 52(6):975–978, 2017. https://doi.org/10.1016/j.jpedsurg.2017.03.022.

    Article  PubMed  Google Scholar 

  • C. A. Figueroa Villalba et al., 2022 Thrombosis in extracorporeal membrane oxygenation (ECMO) circuits. ASAIO Journal (American Society for Artificial Internal Organs. 68(8): 1083–1092. https://doi.org/10.1097/MAT.0000000000001605

  • Hastings, S. M., D. N. Ku, S. Wagoner, K. O. Maher, and S. Deshpande. Sources of circuit thrombosis in pediatric extracorporeal membrane oxygenation. ASAIO Journal (American Society for Artificial Internal Organs). 63(1):86–92, 2017. https://doi.org/10.1097/MAT.0000000000000444.

    Article  CAS  Google Scholar 

  • Conrad, S. A., and D. Wang. Evaluation of recirculation during venovenous extracorporeal membrane oxygenation using computational fluid dynamics incorporating fluid-structure interaction. ASAIO Journal (American Society for Artificial Internal Organs: 1992). 67(8):943–953, 2021. https://doi.org/10.1097/MAT.0000000000001314.

    Article  CAS  PubMed  Google Scholar 

  • Xie, A., T. D. Yan, and P. Forrest. Recirculation in venovenous extracorporeal membrane oxygenation. Journal of Critical Care. 36:107–110, 2016. https://doi.org/10.1016/j.jcrc.2016.05.027.

    Article  PubMed  Google Scholar 

  • Abrams, D., M. Bacchetta, and D. Brodie. Recirculation in venovenous extracorporeal membrane oxygenation. ASAIO Journal (American Society for Artificial Internal Organs). 61(2):115–121, 2015. https://doi.org/10.1097/MAT.0000000000000179.

    Article  CAS  Google Scholar 

  • Liebau, G. Ber ein ventilloses pumpprinzip. Naturwissenschaften. 41(14):327, 1954. https://doi.org/10.1007/BF00644490.

    Article  Google Scholar 

  • A. Aghilinejad, B. Rogers, H. Geng, and N. M. Pahlevan, 2023 On the longitudinal wave pumping in fluid-filled compliant tubes, Physics of Fluids, 35(9), https://doi.org/10.1063/5.0165150

  • S. Timmermann and J. T. Ottesen, «Novel characteristics of valveless pumping», Physics of Fluids, vol. 21, no. 5, 2009. https://doi.org/10.1063/1.3114603

  • Manopoulos, C., et al. Net flow generation in closed-loop valveless pumping. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 234(11):2126–2142, 2020. https://doi.org/10.1177/0954406220904110.

    Article  CAS  Google Scholar 

  • Hickerson, A. I., and M. Gharib. On the resonance of a pliant tube as a mechanism for valveless pumping. J. Fluid Mech. 555:141, 2006. https://doi.org/10.1017/S0022112006009220.

    Article  Google Scholar 

  • Sarvazyan, N. Building valveless impedance pumps from biological components: progress and challenges. Frontiers in physiology.12:770906, 2021. https://doi.org/10.3389/fphys.2021.770906.

    Article  PubMed  Google Scholar 

  • J. Anatol et al., 2024 An assessment of the suitability of a Liebau pump in biomedical applications. Physics of Fluids, vol. 36, no. 1, 2024. https://doi.org/10.1063/5.0186726

  • J. Anatol et al., 2023 Experimental characterization of an asymmetric valveless pump based on soft robotics technology. Physics of Fluids, vol. 35, no. 6, 2023. https://doi.org/10.1063/5.0150978

  • Anatol, J., et al. Experimental study of an asymmetric valveless pump to elucidate insights into strategies for pediatric extravascular flow augmentation. Scientific Reports. 12(1):22165, 2022. https://doi.org/10.1038/s41598-022-26524-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avrahami, I., and M. Gharib. Computational studies of resonance wave pumping in compliant tubes. J. Fluid Mech. 608:139–160, 2008. https://doi.org/10.1017/S0022112008002012.

    Article  Google Scholar 

  • Wen, C.-Y., and H.-T. Chang. Design and characterization of valveless impedance pumps. J. mech. 25(4):345–354, 2009. https://doi.org/10.1017/S1727719100002835.

    Article  Google Scholar 

  • Kenner, T. Biological asymmetry and cardiovascular blood transport. Cardiovascular Engineering. 4(2):209–218, 2004. https://doi.org/10.1023/B:CARE.0000031550.14659.06.

    Article  Google Scholar 

  • T. T. Bringley et al., 2008 An experimental investigation and a simple model of a valveless pump. Physics of Fluids, vol. 20, no. 3, 2008. https://doi.org/10.1063/1.2890790

  • Celi, S., et al. 3D printing in modern cardiology. Current Pharmaceutical Design. 27(16):1918–1930, 2021. https://doi.org/10.2174/1381612826666200622132440.

    Article  CAS  PubMed  Google Scholar 

  • Fanni, B. M., et al. An integrated in-vitro and in-silico workflow to study the pulmonary bifurcation hemodynamics. Computers & Fluids. 260:105912, 2023. https://doi.org/10.1016/j.compfluid.2023.105912.

    Article  CAS  Google Scholar 

  • Vignali, E., et al. High-versatility left ventricle pump and aortic mock circulatory loop development for patient-specific hemodynamic in vitro analysis. ASAIO Journal (American Society for Artificial Internal Organs). 68(10):1272–1281, 2022. https://doi.org/10.1097/MAT.0000000000001651.

    Article  Google Scholar 

  • Banfi, C., et al. Veno-venous extracorporeal membrane oxygenation: cannulation techniques. Journal of Thoracic Disease. 8(12):3762–3773, 2016. https://doi.org/10.21037/jtd.2016.12.88.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bardi, F., E. Gasparotti, E. Vignali, S. Avril, and S. Celi. A hybrid mock circulatory loop for fluid dynamic characterization of 3D anatomical phantoms. IEEE Transactions on Bio-Medical Engineering. 70(5):1651–1661, 2023. https://doi.org/10.1109/TBME.2022.3224581.

    Article  PubMed  Google Scholar 

  • Markl, M., et al. Time-resolved three-dimensional magnetic resonance velocity mapping of cardiovascular flow paths in volunteers and patients with fontan circulation. European Journal of Cardio-Thoracic Surgery: Official Journal of the European Association for Cardio-thoracic Surgery. 39(2):206–212, 2011. https://doi.org/10.1016/j.ejcts.2010.05.026.

    Article  PubMed  Google Scholar 

  • Hickerson, A. I., D. Rinderknecht, and M. Gharib. Experimental study of the behavior of a valveless impedance pump. Exp Fluids. 38(4):534–540, 2005. https://doi.org/10.1007/s00348-005-0946-z.

    Article  Google Scholar 

  • Westenberg, J. J. M., et al. Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking. Radiology. 249(3):792–800, 2008. https://doi.org/10.1148/radiol.2492080146.

    Article  PubMed  Google Scholar 

  • Kayser, H. W., B. C. Stoel, E. E. van der Wall, R. J. van der Geest, and A. de Roos. MR velocity mapping of tricuspid flow: correction for through-plane motion. Journal of Magnetic Resonance Imaging: JMRI. 7(4):669–673, 1997. https://doi.org/10.1002/JMRI.188007041.

    Article  CAS  PubMed  Google Scholar 

  • Takagi, S., and T. Saijo. Study of a piston pump without valves: 1st report, on a pipe-capacity-system with a T-junction. Bulletin of JSME. 26(218):1366–1372, 1983. https://doi.org/10.1299/JSME1958.26.1366.

    Article  Google Scholar 

  • Lehle, K., et al. Flow dynamics of different adult ECMO systems: a clinical evaluation. Artificial organs. 38(5):391–398, 2014. https://doi.org/10.1111/aor.12180.

    Article  CAS  PubMed  Google Scholar 

  • Patel, A. C., et al. Dynamic changes in aortic vascular stiffness in patients bridged to transplant with continuous-flow left ventricular assist devices. JACC. Heart Failure. 5(6):449–459, 2017. https://doi.org/10.1016/j.jchf.2016.12.009.

    Article  PubMed  Google Scholar 

  • Willey, J. Z., et al. Outcomes after stroke complicating left ventricular assist device. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation. 35(8):1003–1009, 2016. https://doi.org/10.1016/j.healun.2016.03.014.

    Article  PubMed  Google Scholar 

  • Vincent, D., et al. Pulsatile ECMO: the future of mechanical circulatory support for severe cardiogenic shock. JACC Basic to Translational Science. 9(4):456–458, 2024. https://doi.org/10.1016/j.jacbts.2024.02.015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Extracorporeal Life Support Organization. ELSO Guidelines for Cardiopulmonary Extracorporeal Life Support. Version 1.4. Ann Arbor, MI: Extracorporeal Life Support Organization; 2017.

  • C. Manopoulos and D. Mathioulakis, «Flow Rate Augmentation of Valveless Pumping via a Time-Dependent Stenosis: A Novel Device», Fluids, vol. 8, no. 9, 2023. 10.3390/fluids8090249

  • C. Manopoulos and D. Mathioulakis, «Valveless Pumping with an Unsteady Stenosis in an Open Tank Configuration », Fluids, vol. 9, no. 6, 2024. 10.3390/fluids9060141


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4