A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-024-03617-7 below:

Multi-parametric Photoacoustic Imaging Combined with Acoustic Radiation Force Impulse Imaging for Applications in Tissue Engineering

References
  1. Vepari, C., and D. L. Kaplan. Silk as a biomaterial. Progress in Polymer Science. 32(8):991–1007, 2007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Sun, W., D. A. Gregory, M. A. Tomeh, and X. Zhao. Silk fibroin as a functional biomaterial for tissue engineering. International Journal of Molecular Sciences. 22:1499, 2021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lee, O. J., M. T. Sultan, H. Hong, Y. J. Lee, J. S. Lee, H. Lee, S. H. Kim, and C. H. Park. Recent advances in fluorescent silk fibroin. Frontiers in Materials. 2020. https://doi.org/10.3389/fmats.2020.00050.

    Article  Google Scholar 

  4. Mandal, B. B., and S. C. Kundu. Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials. 30(15):2956–2965, 2009.

    Article  PubMed  CAS  Google Scholar 

  5. Gupta, P., J. C. Moses, and B. B. Mandal. Surface patterning and innate physicochemical attributes of silk films concomitantly govern vascular cell dynamics. ACS Biomaterials Science & Engineering. 5(2):933–949, 2019.

    Article  CAS  Google Scholar 

  6. Manchineella, S., G. Thrivikraman, B. Basu, and T. Govindaraju. Surface-functionalized silk fibroin films as a platform to guide neuron-like differentiation of human mesenchymal stem cells. ACS Applied Materials & Interfaces. 8(35):22849–22859, 2016.

    Article  CAS  Google Scholar 

  7. Nam, S. Y., L. M. Ricles, L. J. Suggs, and S. Y. Emelianov. Imaging strategies for tissue engineering applications. Tissue Engineering Part B: Reviews. 21(1):88–102, 2014.

    Article  PubMed  Google Scholar 

  8. Chatterjee, K., F. W. Pratiwi, F. C. M. Wu, P. Chen, and B.-C. Chen. Recent progress in light sheet microscopy for biological applications. Applied Spectroscopy. 72(8):1137–1169, 2018.

    Article  PubMed  CAS  Google Scholar 

  9. Nguyen, C. D., P. K. O’Neal, N. Kulkarni, E. Yang, and D. Kang. Scattering-based light-sheet microscopy for rapid cellular imaging of fresh tissue. Lasers in Surgery and Medicine. 53(6):872–879, 2021.

    Article  PubMed  Google Scholar 

  10. Levin, B., S. Leanne Redmond, R. Rajkhowa, R. H. Eikelboom, R. J. Marano, and M. D. Atlas. Preliminary results of the application of a silk fibroin scaffold to otology. Otolaryngology—Head and Neck Surgery. 142(3):S33–S35, 2010.

    PubMed  Google Scholar 

  11. Shen, Y., S. L. Redmond, J. M. Papadimitriou, B. M. Teh, S. Yan, Y. Wang, M. D. Atlas, R. J. Marano, M. Zheng, and R. J. Dilley. The biocompatibility of silk fibroin and acellular collagen scaffolds for tissue engineering in the ear. Biomedical Materials. 9(1):015015, 2014.

    Article  PubMed  Google Scholar 

  12. Chao, P.-H.G., S. Yodmuang, X. Wang, L. Sun, D. L. Kaplan, and G. Vunjak-Novakovic. Silk hydrogel for cartilage tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 95B(1):84–90, 2010.

    Article  CAS  Google Scholar 

  13. Meinel, L., R. Fajardo, S. Hofmann, R. Langer, J. Chen, B. Snyder, G. Vunjak-Novakovic, and D. Kaplan. Silk implants for the healing of critical size bone defects. Bone. 37(5):688–698, 2005.

    Article  PubMed  CAS  Google Scholar 

  14. Kaplan, D. L., K. Chwalek, D. Sood, W. L. Cantley, J. D. White, and M. Tang-Schomer. Engineered 3D Silk-collagen-based model of polarized neural tissue. Journal of Visualized Experiments. 104:52970, 2015.

    Google Scholar 

  15. Chwalek, K., M. D. Tang-Schomer, F. G. Omenetto, and D. L. Kaplan. In vitro bioengineered model of cortical brain tissue. Nature Protocols. 10(9):1362–1373, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Claus, A., A. Sweeney, D. M. Sankepalle, B. Li, D. Wong, M. Xavierselvan, and S. Mallidi. 3D ultrasound-guided photoacoustic imaging to monitor the effects of suboptimal tyrosine kinase inhibitor therapy in pancreatic tumors. Frontiers in Oncology. 2022. https://doi.org/10.3389/fonc.2022.915319.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang, L. V., and J. Yao. A practical guide to photoacoustic tomography in the life sciences. Nature Methods. 13(8):627–638, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Attia, A. B. E., G. Balasundaram, M. Moothanchery, U. S. Dinish, R. Bi, V. Ntziachristos, and M. Olivo. A review of clinical photoacoustic imaging: current and future trends. Photoacoustics. 16:100144, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Weber, J., P. C. Beard, and S. E. Bohndiek. Contrast agents for molecular photoacoustic imaging. Nature Methods. 13(8):639–650, 2016.

    Article  PubMed  CAS  Google Scholar 

  20. John, S., S. Hester, M. Basij, A. Paul, M. Xavierselvan, M. Mehrmohammadi, and S. Mallidi. Niche preclinical and clinical applications of photoacoustic imaging with endogenous contrast. Photoacoustics. 32:100533, 2023.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Choi, W., B. Park, S. Choi, D. Oh, J. Kim, and C. Kim. Recent advances in contrast-enhanced photoacoustic imaging: overcoming the physical and practical challenges. Chemical Reviews. 123(11):7379–7419, 2023.

    Article  PubMed  CAS  Google Scholar 

  22. Yoon, S., S. Aglyamov, A. Karpiouk, and S. Emelianov. A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force. Physics in Medicine & Biology. 57(15):4871, 2012.

    Article  Google Scholar 

  23. Nightingale, K. Acoustic Radiation Force Impulse (ARFI) imaging: a review. Current Medical Imaging. 7(4):328–339, 2011.

    Article  Google Scholar 

  24. Czernuszewicz, T. J., J. W. Homeister, M. C. Caughey, Y. Wang, H. Zhu, B. Y. Huang, E. R. Lee, C. A. Zamora, M. A. Farber, J. J. Fulton, P. F. Ford, W. A. Marston, R. Vallabhaneni, T. C. Nichols, and C. M. Gallippi. Performance of acoustic radiation force impulse ultrasound imaging for carotid plaque characterization with histologic validation. Journal of Vascular Surgery. 66(6):1749-1757.e3, 2017.

    Article  PubMed  Google Scholar 

  25. Kim, J., A. Seo, J.-Y. Kim, S. H. Choi, H.-J. Yoon, E. Kim, and J. Y. Hwang. A multimodal biomicroscopic system based on high-frequency acoustic radiation force impulse and multispectral imaging techniques for tumor characterization ex vivo. Scientific Reports. 7(1):17518, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Qian, X., T. Ma, M. Yu, X. Chen, K. K. Shung, and Q. Zhou. Multi-functional ultrasonic micro-elastography imaging system. Scientific Reports. 7(1):1230, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hwang, J. Y., B. J. Kang, C. Lee, H. H. Kim, J. Park, Q. Zhou, and K. K. Shung. Non-contact acoustic radiation force impulse microscopy via photoacoustic detection for probing breast cancer cell mechanics. Biomed. Opt. Express. 6(1):11–22, 2015.

    Article  PubMed  Google Scholar 

  28. Rockwood, D. N., R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan. Materials fabrication from Bombyx mori silk fibroin. Nature Protocols. 6(10):1612–1631, 2011.

    Article  PubMed  CAS  Google Scholar 

  29. ANSI Standard Z136.1 for safe use of lasers, Laser Institute of America 2014.

  30. U. Food, D. Administration, Marketing clearance of diagnostic ultrasound systems and transducers: guidance for industry and Food and Drug Administration staff, Center for Devices and Radiological Health, US Food and Drug Administration, Rockville, Tech. Rep (2019).

  31. Greenspan, M., and C. E. Tschiegg. Tables of the speed of sound in water. The Journal of the Acoustical Society of America. 31(1):75–76, 1959.

    Article  Google Scholar 

  32. Nguyen, C. D., S. A. Edwards, T. W. Iorizzo, B. N. Longo, A. N. Yaroslavsky, D. L. Kaplan, and S. Mallidi. Investigation of silk as a phantom material for ultrasound and photoacoustic imaging. Photoacoustics. 28:100416, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pinton, G. F., J. J. Dahl, and G. E. Trahey. Rapid tracking of small displacements with ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 53(6):1103–1117, 2006.

    Article  PubMed  Google Scholar 

  34. Murphy, C. M., M. G. Haugh, and F. J. O’Brien. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 31(3):461–466, 2010.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang, Y., W. Fan, Z. Ma, C. Wu, W. Fang, G. Liu, and Y. Xiao. The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7. Acta Biomaterialia. 6(8):3021–3028, 2010.

    Article  PubMed  CAS  Google Scholar 

  36. Kochhar, D., M. K. DeBari, and R. D. Abbott. The materiobiology of silk: exploring the biophysical influence of silk biomaterials on directing cellular behaviors. Frontiers in Bioengineering and Biotechnology. 2021. https://doi.org/10.3389/fbioe.2021.697981.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Papenburg, B. J., J. Liu, G. A. Higuera, A. M. C. Barradas, J. de Boer, C. A. van Blitterswijk, M. Wessling, and D. Stamatialis. Development and analysis of multi-layer scaffolds for tissue engineering. Biomaterials. 30(31):6228–6239, 2009.

    Article  PubMed  CAS  Google Scholar 

  38. Krumholz, A., D. M. Shcherbakova, J. Xia, L. V. Wang, and V. V. Verkhusha. Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins. Scientific Reports. 4(1):3939, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li, L., J. Z. Roger, F. L. Gina, D. V. M. George Stoica, and V. W. Lihong. Photoacoustic imaging of lacZ gene expression in vivo. Journal of Biomedical Optics. 12(2):020504, 2007.

    Article  PubMed  Google Scholar 

  40. Xavierselvan, M., J. Cook, J. Duong, N. Diaz, K. Homan, and S. Mallidi. Photoacoustic nanodroplets for oxygen enhanced photodynamic therapy of cancer. Photoacoustics. 25:100306, 2022.

    Article  PubMed  Google Scholar 

  41. Mallidi, S., G. P. Luke, and S. Emelianov. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends in Biotechnology. 29(5):213–221, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Liu, J., F. Wu, M. Wang, M. Tao, Z. Liu, and Z. Hai. Caspase-3-responsive fluorescent/photoacoustic imaging of tumor apoptosis. Analytical Chemistry. 95(25):9404–9408, 2023.

    Article  PubMed  CAS  Google Scholar 

  43. Chang, W. G., and L. E. Niklason. A short discourse on vascular tissue engineering. npj Regenerative Medicine. 2(1):7, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shrestha, B., F. DeLuna, M. A. Anastasio, J. Yong Ye, and E. M. Brey. Photoacoustic imaging in tissue engineering and regenerative medicine. Tissue Engineering Part B Reviews. 26(1):79–102, 2019.

    Article  Google Scholar 

  45. Xu, H.-L., D.-L. ZhuGe, P.-P. Chen, M.-Q. Tong, M.-T. Lin, X. Jiang, Y.-W. Zheng, B. Chen, X.-K. Li, and Y.-Z. Zhao. Silk fibroin nanoparticles dyeing indocyanine green for imaging-guided photo-thermal therapy of glioblastoma. Drug Delivery. 25(1):364–375, 2018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Mayanglambam, S. S., and T. Anjali. Photoacoustic elastography imaging: a review. Journal of Biomedical Optics. 24(4):040902, 2019.

    Google Scholar 

  47. Modrák, M., M. Trebuňová, A. F. Balogová, R. Hudák, and J. Živčák. Biodegradable materials for tissue engineering: development, classification and current applications. Journal of Functional Biomaterials. 14:159, 2023.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shih, C.-C., P.-Y. Chen, T. Ma, Q. Zhou, K. K. Shung, and C.-C. Huang. Development of an intravascular ultrasound elastography based on a dual-element transducer. Royal Society Open Science. 5(4):180138, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Y. Li, G. Lu, Q. Zhou, Z. Chen, Advances in Endoscopic Photoacoustic Imaging, Photonics, 2021.

  50. Ng, A., and J. Swanevelder. Resolution in ultrasound imaging. Continuing Education in Anaesthesia Critical Care & Pain. 11(5):186–192, 2011.

    Article  Google Scholar 

  51. Strohm, E. M., M. J. Moore, and M. C. Kolios. High resolution ultrasound and photoacoustic imaging of single cells. Photoacoustics. 4(1):36–42, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Roh, T. T., Y. Chen, H. T. Paul, C. Guo, and D. L. Kaplan. 3D bioengineered tissue model of the large intestine to study inflammatory bowel disease. Biomaterials. 225:119517, 2019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Dehner, C., I. Olefir, K. B. Chowdhury, D. Jüstel, and V. Ntziachristos. Deep-learning-based electrical noise removal enables high spectral optoacoustic contrast in deep tissue. IEEE Transactions on Medical Imaging. 41(11):3182–3193, 2022.

    Article  PubMed  Google Scholar 

  54. A. Paul, S. Mallidi, U-Net enhanced real-time LED-based photoacoustic imaging, Journal of Biophotonics n/a(n/a) (2024) e202300465.

  55. Li, X., V. T. C. Tsang, L. Kang, Y. Zhang, and T. T. W. Wong. High-speed high-resolution laser diode-based photoacoustic microscopy for in vivo microvasculature imaging. Visual Computing for Industry, Biomedicine, and Art. 4(1):1, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhu, Y., T. Feng, Q. Cheng, X. Wang, S. Du, N. Sato, J. Yuan, and M. K. A. Singh. Towards clinical translation of LED-based photoacoustic imaging: a review. Sensors. 20:2484, 2020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Arumugaraj, M., G. Vipul, N. Vasilis, and P. Jaya. Deep learning methods hold promise for light fluence compensation in three-dimensional optoacoustic imaging. Journal of Biomedical Optics. 27(10):106004, 2022.

    Google Scholar 

  58. Zhou, X., N. Akhlaghi, K. A. Wear, B. S. Garra, T. J. Pfefer, and W. C. Vogt. Evaluation of fluence correction algorithms in multispectral photoacoustic imaging. Photoacoustics. 19:100181, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4