Vepari, C., and D. L. Kaplan. Silk as a biomaterial. Progress in Polymer Science. 32(8):991–1007, 2007.
Sun, W., D. A. Gregory, M. A. Tomeh, and X. Zhao. Silk fibroin as a functional biomaterial for tissue engineering. International Journal of Molecular Sciences. 22:1499, 2021.
Lee, O. J., M. T. Sultan, H. Hong, Y. J. Lee, J. S. Lee, H. Lee, S. H. Kim, and C. H. Park. Recent advances in fluorescent silk fibroin. Frontiers in Materials. 2020. https://doi.org/10.3389/fmats.2020.00050.
Mandal, B. B., and S. C. Kundu. Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials. 30(15):2956–2965, 2009.
Gupta, P., J. C. Moses, and B. B. Mandal. Surface patterning and innate physicochemical attributes of silk films concomitantly govern vascular cell dynamics. ACS Biomaterials Science & Engineering. 5(2):933–949, 2019.
Manchineella, S., G. Thrivikraman, B. Basu, and T. Govindaraju. Surface-functionalized silk fibroin films as a platform to guide neuron-like differentiation of human mesenchymal stem cells. ACS Applied Materials & Interfaces. 8(35):22849–22859, 2016.
Nam, S. Y., L. M. Ricles, L. J. Suggs, and S. Y. Emelianov. Imaging strategies for tissue engineering applications. Tissue Engineering Part B: Reviews. 21(1):88–102, 2014.
Chatterjee, K., F. W. Pratiwi, F. C. M. Wu, P. Chen, and B.-C. Chen. Recent progress in light sheet microscopy for biological applications. Applied Spectroscopy. 72(8):1137–1169, 2018.
Nguyen, C. D., P. K. O’Neal, N. Kulkarni, E. Yang, and D. Kang. Scattering-based light-sheet microscopy for rapid cellular imaging of fresh tissue. Lasers in Surgery and Medicine. 53(6):872–879, 2021.
Levin, B., S. Leanne Redmond, R. Rajkhowa, R. H. Eikelboom, R. J. Marano, and M. D. Atlas. Preliminary results of the application of a silk fibroin scaffold to otology. Otolaryngology—Head and Neck Surgery. 142(3):S33–S35, 2010.
Shen, Y., S. L. Redmond, J. M. Papadimitriou, B. M. Teh, S. Yan, Y. Wang, M. D. Atlas, R. J. Marano, M. Zheng, and R. J. Dilley. The biocompatibility of silk fibroin and acellular collagen scaffolds for tissue engineering in the ear. Biomedical Materials. 9(1):015015, 2014.
Chao, P.-H.G., S. Yodmuang, X. Wang, L. Sun, D. L. Kaplan, and G. Vunjak-Novakovic. Silk hydrogel for cartilage tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 95B(1):84–90, 2010.
Meinel, L., R. Fajardo, S. Hofmann, R. Langer, J. Chen, B. Snyder, G. Vunjak-Novakovic, and D. Kaplan. Silk implants for the healing of critical size bone defects. Bone. 37(5):688–698, 2005.
Kaplan, D. L., K. Chwalek, D. Sood, W. L. Cantley, J. D. White, and M. Tang-Schomer. Engineered 3D Silk-collagen-based model of polarized neural tissue. Journal of Visualized Experiments. 104:52970, 2015.
Chwalek, K., M. D. Tang-Schomer, F. G. Omenetto, and D. L. Kaplan. In vitro bioengineered model of cortical brain tissue. Nature Protocols. 10(9):1362–1373, 2015.
Claus, A., A. Sweeney, D. M. Sankepalle, B. Li, D. Wong, M. Xavierselvan, and S. Mallidi. 3D ultrasound-guided photoacoustic imaging to monitor the effects of suboptimal tyrosine kinase inhibitor therapy in pancreatic tumors. Frontiers in Oncology. 2022. https://doi.org/10.3389/fonc.2022.915319.
Wang, L. V., and J. Yao. A practical guide to photoacoustic tomography in the life sciences. Nature Methods. 13(8):627–638, 2016.
Attia, A. B. E., G. Balasundaram, M. Moothanchery, U. S. Dinish, R. Bi, V. Ntziachristos, and M. Olivo. A review of clinical photoacoustic imaging: current and future trends. Photoacoustics. 16:100144, 2019.
Weber, J., P. C. Beard, and S. E. Bohndiek. Contrast agents for molecular photoacoustic imaging. Nature Methods. 13(8):639–650, 2016.
John, S., S. Hester, M. Basij, A. Paul, M. Xavierselvan, M. Mehrmohammadi, and S. Mallidi. Niche preclinical and clinical applications of photoacoustic imaging with endogenous contrast. Photoacoustics. 32:100533, 2023.
Choi, W., B. Park, S. Choi, D. Oh, J. Kim, and C. Kim. Recent advances in contrast-enhanced photoacoustic imaging: overcoming the physical and practical challenges. Chemical Reviews. 123(11):7379–7419, 2023.
Yoon, S., S. Aglyamov, A. Karpiouk, and S. Emelianov. A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force. Physics in Medicine & Biology. 57(15):4871, 2012.
Nightingale, K. Acoustic Radiation Force Impulse (ARFI) imaging: a review. Current Medical Imaging. 7(4):328–339, 2011.
Czernuszewicz, T. J., J. W. Homeister, M. C. Caughey, Y. Wang, H. Zhu, B. Y. Huang, E. R. Lee, C. A. Zamora, M. A. Farber, J. J. Fulton, P. F. Ford, W. A. Marston, R. Vallabhaneni, T. C. Nichols, and C. M. Gallippi. Performance of acoustic radiation force impulse ultrasound imaging for carotid plaque characterization with histologic validation. Journal of Vascular Surgery. 66(6):1749-1757.e3, 2017.
Kim, J., A. Seo, J.-Y. Kim, S. H. Choi, H.-J. Yoon, E. Kim, and J. Y. Hwang. A multimodal biomicroscopic system based on high-frequency acoustic radiation force impulse and multispectral imaging techniques for tumor characterization ex vivo. Scientific Reports. 7(1):17518, 2017.
Qian, X., T. Ma, M. Yu, X. Chen, K. K. Shung, and Q. Zhou. Multi-functional ultrasonic micro-elastography imaging system. Scientific Reports. 7(1):1230, 2017.
Hwang, J. Y., B. J. Kang, C. Lee, H. H. Kim, J. Park, Q. Zhou, and K. K. Shung. Non-contact acoustic radiation force impulse microscopy via photoacoustic detection for probing breast cancer cell mechanics. Biomed. Opt. Express. 6(1):11–22, 2015.
Rockwood, D. N., R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan. Materials fabrication from Bombyx mori silk fibroin. Nature Protocols. 6(10):1612–1631, 2011.
ANSI Standard Z136.1 for safe use of lasers, Laser Institute of America 2014.
U. Food, D. Administration, Marketing clearance of diagnostic ultrasound systems and transducers: guidance for industry and Food and Drug Administration staff, Center for Devices and Radiological Health, US Food and Drug Administration, Rockville, Tech. Rep (2019).
Greenspan, M., and C. E. Tschiegg. Tables of the speed of sound in water. The Journal of the Acoustical Society of America. 31(1):75–76, 1959.
Nguyen, C. D., S. A. Edwards, T. W. Iorizzo, B. N. Longo, A. N. Yaroslavsky, D. L. Kaplan, and S. Mallidi. Investigation of silk as a phantom material for ultrasound and photoacoustic imaging. Photoacoustics. 28:100416, 2022.
Pinton, G. F., J. J. Dahl, and G. E. Trahey. Rapid tracking of small displacements with ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 53(6):1103–1117, 2006.
Murphy, C. M., M. G. Haugh, and F. J. O’Brien. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 31(3):461–466, 2010.
Zhang, Y., W. Fan, Z. Ma, C. Wu, W. Fang, G. Liu, and Y. Xiao. The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7. Acta Biomaterialia. 6(8):3021–3028, 2010.
Kochhar, D., M. K. DeBari, and R. D. Abbott. The materiobiology of silk: exploring the biophysical influence of silk biomaterials on directing cellular behaviors. Frontiers in Bioengineering and Biotechnology. 2021. https://doi.org/10.3389/fbioe.2021.697981.
Papenburg, B. J., J. Liu, G. A. Higuera, A. M. C. Barradas, J. de Boer, C. A. van Blitterswijk, M. Wessling, and D. Stamatialis. Development and analysis of multi-layer scaffolds for tissue engineering. Biomaterials. 30(31):6228–6239, 2009.
Krumholz, A., D. M. Shcherbakova, J. Xia, L. V. Wang, and V. V. Verkhusha. Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins. Scientific Reports. 4(1):3939, 2014.
Li, L., J. Z. Roger, F. L. Gina, D. V. M. George Stoica, and V. W. Lihong. Photoacoustic imaging of lacZ gene expression in vivo. Journal of Biomedical Optics. 12(2):020504, 2007.
Xavierselvan, M., J. Cook, J. Duong, N. Diaz, K. Homan, and S. Mallidi. Photoacoustic nanodroplets for oxygen enhanced photodynamic therapy of cancer. Photoacoustics. 25:100306, 2022.
Mallidi, S., G. P. Luke, and S. Emelianov. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends in Biotechnology. 29(5):213–221, 2011.
Liu, J., F. Wu, M. Wang, M. Tao, Z. Liu, and Z. Hai. Caspase-3-responsive fluorescent/photoacoustic imaging of tumor apoptosis. Analytical Chemistry. 95(25):9404–9408, 2023.
Chang, W. G., and L. E. Niklason. A short discourse on vascular tissue engineering. npj Regenerative Medicine. 2(1):7, 2017.
Shrestha, B., F. DeLuna, M. A. Anastasio, J. Yong Ye, and E. M. Brey. Photoacoustic imaging in tissue engineering and regenerative medicine. Tissue Engineering Part B Reviews. 26(1):79–102, 2019.
Xu, H.-L., D.-L. ZhuGe, P.-P. Chen, M.-Q. Tong, M.-T. Lin, X. Jiang, Y.-W. Zheng, B. Chen, X.-K. Li, and Y.-Z. Zhao. Silk fibroin nanoparticles dyeing indocyanine green for imaging-guided photo-thermal therapy of glioblastoma. Drug Delivery. 25(1):364–375, 2018.
Mayanglambam, S. S., and T. Anjali. Photoacoustic elastography imaging: a review. Journal of Biomedical Optics. 24(4):040902, 2019.
Modrák, M., M. Trebuňová, A. F. Balogová, R. Hudák, and J. Živčák. Biodegradable materials for tissue engineering: development, classification and current applications. Journal of Functional Biomaterials. 14:159, 2023.
Shih, C.-C., P.-Y. Chen, T. Ma, Q. Zhou, K. K. Shung, and C.-C. Huang. Development of an intravascular ultrasound elastography based on a dual-element transducer. Royal Society Open Science. 5(4):180138, 2018.
Y. Li, G. Lu, Q. Zhou, Z. Chen, Advances in Endoscopic Photoacoustic Imaging, Photonics, 2021.
Ng, A., and J. Swanevelder. Resolution in ultrasound imaging. Continuing Education in Anaesthesia Critical Care & Pain. 11(5):186–192, 2011.
Strohm, E. M., M. J. Moore, and M. C. Kolios. High resolution ultrasound and photoacoustic imaging of single cells. Photoacoustics. 4(1):36–42, 2016.
Roh, T. T., Y. Chen, H. T. Paul, C. Guo, and D. L. Kaplan. 3D bioengineered tissue model of the large intestine to study inflammatory bowel disease. Biomaterials. 225:119517, 2019.
Dehner, C., I. Olefir, K. B. Chowdhury, D. Jüstel, and V. Ntziachristos. Deep-learning-based electrical noise removal enables high spectral optoacoustic contrast in deep tissue. IEEE Transactions on Medical Imaging. 41(11):3182–3193, 2022.
A. Paul, S. Mallidi, U-Net enhanced real-time LED-based photoacoustic imaging, Journal of Biophotonics n/a(n/a) (2024) e202300465.
Li, X., V. T. C. Tsang, L. Kang, Y. Zhang, and T. T. W. Wong. High-speed high-resolution laser diode-based photoacoustic microscopy for in vivo microvasculature imaging. Visual Computing for Industry, Biomedicine, and Art. 4(1):1, 2021.
Zhu, Y., T. Feng, Q. Cheng, X. Wang, S. Du, N. Sato, J. Yuan, and M. K. A. Singh. Towards clinical translation of LED-based photoacoustic imaging: a review. Sensors. 20:2484, 2020.
Arumugaraj, M., G. Vipul, N. Vasilis, and P. Jaya. Deep learning methods hold promise for light fluence compensation in three-dimensional optoacoustic imaging. Journal of Biomedical Optics. 27(10):106004, 2022.
Zhou, X., N. Akhlaghi, K. A. Wear, B. S. Garra, T. J. Pfefer, and W. C. Vogt. Evaluation of fluence correction algorithms in multispectral photoacoustic imaging. Photoacoustics. 19:100181, 2020.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4