A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-022-03125-6 below:

Design and Application Strategies of Natural Polymer Biomaterials in Artificial Ovaries

  • Abir, R., I. Ben-Aharon, R. Garor, et al. Cryopreservation of in vitro matured oocytes in addition to ovarian tissue freezing for fertility preservation in paediatric female cancer patients before and after cancer therapy. Hum. Reprod. 31:750–762, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Agarwal, S., F. A. Alzahrani, and A. Ahmed. Hormone replacement therapy: would it be possible to replicate a functional ovary? Int. J. Mol. Sci. 19:3160, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Amorim, C. A., and A. Shikanov. The artificial ovary: current status and future perspectives. Future Oncol. 12:2323–2332, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Andrade, L. R., L. T. Salgado, M. Farina, et al. Ultrastructure of acidic polysaccharides from the cell walls of brown algae. J. Struct. Biol. 145:216–225, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Arroyo, A. B., and J. Y. Kim. Luteinizing hormone action in human oocyte maturation and quality: signaling pathways, regulation, and clinical impact. Reprod. Sci. 27:1223–1252, 2020.

    Article  CAS  PubMed  Google Scholar 

  • Atlas of the Mammalian Ovary. SpringerLink.

  • Auersperg, N., A. S. Wong, K. C. Choi, et al. Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr. Rev. 22:255–288, 2001.

    CAS  PubMed  Google Scholar 

  • Austin, G. A., F. K. Bruce, and M. S. Brigid. Ovarian tissue cryopreservation in young females through the Oncofertility Consortium’s National Physicians Cooperative. Future Oncol. 14:363–378, 2018.

    Article  Google Scholar 

  • Bacon, R. L., and N. R. Niles. Female reproductive system. In Medical Histology: A Text-Atlas with Introductory Pathology. New York: Springer, 1983, pp. 357–393.

  • Baskar, R., K. A. Lee, R. Yeo, et al. Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci. 9:193–199, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Belousov, A., S. Titov, N. Shved, et al. The extracellular matrix and biocompatible materials in glioblastoma treatment. Front. Bioeng. Biotechnol. 7:341–341, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berkholtz, C. B., L. D. Shea, and T. K. Woodruff. Extracellular matrix functions in follicle maturation. Semin. Reprod. Med. 24:262–269, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, H. M., R. L. Robke, and D. L. Russell. Development and hormonal regulation of the ovarian lymphatic vasculature. Endocrinology. 151:5446–5455, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Brown, H. M., and D. L. Russell. Blood and lymphatic vasculature in the ovary: development, function and disease. Hum. Reprod. Update. 20:29–39, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Bulletti, C., M. E. Coccia, S. Battistoni, et al. Endometriosis and infertility. J. Assist. Reprod. Genet. 27:441–447, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cacciottola, L., T. Y. T. Nguyen, M. C. Chiti, et al. Long-term advantages of ovarian reserve maintenance and follicle development using adipose tissue-derived stem cells in ovarian tissue transplantation. J. Clin. Med. 9:2980, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camboni, A., A. Van Langendonckt, J. Donnez, et al. Alginate beads as a tool to handle, cryopreserve and culture isolated human primordial/primary follicles. Cryobiology. 67:64–69, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Canonico, M., A. Fournier, L. Carcaillon, et al. Postmenopausal hormone therapy and risk of idiopathic venous thromboembolism: results from the E3N cohort study. Arterioscler. Thromb. Vasc. Biol. 30:340–345, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Canonico, M., E. Oger, G. Plu-Bureau, et al. Hormone therapy and venous thromboembolism among postmenopausal women: impact of the route of estrogen administration and progestogens: the ESTHER study. Circulation. 115:840–845, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Carroll, J., and R. G. Gosden. Transplantation of frozen-thawed mouse primordial follicles. Hum. Reprod. 8:1163–1167, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., L. Xue, G. Gong, et al. Collagen-based materials in reproductive medicine and engineered reproductive tissues. J. Leather Sci. Eng. 4:1–15, 2022.

    Article  CAS  Google Scholar 

  • Chiti, M. C., M. M. Dolmans, J. Donnez, et al. Fibrin in reproductive tissue engineering: a review on its application as a biomaterial for fertility preservation. Ann. Biomed. Eng. 45:1650–1663, 2017.

    Article  CAS  PubMed  Google Scholar 

  • Chiti, M. C., M.-M. Dolmans, M. Hobeika, et al. A modified and tailored human follicle isolation procedure improves follicle recovery and survival. J. Ovarian Res. 10:71, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiti, M. C., M. M. Dolmans, C. M. Lucci, et al. Further insights into the impact of mouse follicle stage on graft outcome in an artificial ovary environment. Mol. Hum. Reprod. 23:381–392, 2017.

    Article  CAS  PubMed  Google Scholar 

  • Chiti, M. C., M.-M. Dolmans, L. Mortiaux, et al. A novel fibrin-based artificial ovary prototype resembling human ovarian tissue in terms of architecture and rigidity. J. Assist. Reprod. Genet. 35:41–48, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiti, M. C., M. M. Dolmans, O. Orellana, et al. Influence of follicle stage on artificial ovary outcome using fibrin as a matrix. Hum. Reprod. 31:427–435, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Cho, J., T. H. Kim, S. Jin, et al. Vascular remodeling by placenta-derived mesenchymal stem cells restores ovarian function in ovariectomized rat model via the VEGF pathway. Lab. Invest. 101:304–317, 2021.

    Article  CAS  PubMed  Google Scholar 

  • Choi, J. K., P. Agarwal, H. Huang, et al. The crucial role of mechanical heterogeneity in regulating follicle development and ovulation with engineered ovarian microtissue. Biomaterials. 35:5122–5128, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day, J. R., A. David, A. L. Cichon, et al. Immunoisolating poly(ethylene glycol) based capsules support ovarian tissue survival to restore endocrine function. J. Biomed. Mater. Res. A. 106:1381–1389, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Sousa Victor, R., A. M. da Cunha Santos, B. V. de Sousa, et al. A review on chitosan’s uses as biomaterial: tissue engineering, drug delivery systems and cancer treatment. Materials (Basel). 13:4995, 2020.

    Article  PubMed  Google Scholar 

  • Demeestere, I., P. Simon, S. Emiliani, et al. Orthotopic and heterotopic ovarian tissue transplantation. Hum. Reprod. Update. 15:649–665, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai, N., F. Abdelhafez, A. Calabro, et al. Three dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: a preliminary investigation of a novel biomaterial for in vitro follicle maturation. Reprod. Biol. Endocrinol. 10:29, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai, N., A. Alex, F. AbdelHafez, et al. Three-dimensional in vitro follicle growth: overview of culture models, biomaterials, design parameters and future directions. Reprod. Biol. Endocrinol. 8:119, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dolmans, M.-M. From isolated follicles to the artificial ovary: why and how? Curr. Opin. Endocr. Metab. Res. 18:62–68, 2021.

    Article  Google Scholar 

  • Dolmans, M. M., and C. A. Amorim. Fertility preservation: construction and use of artificial ovaries. Reproduction. 158:15–25, 2019.

    Article  Google Scholar 

  • Dolmans, M. M., and D. D. Manavella. Recent advances in fertility preservation. J. Obstet. Gynaecol. Res. 45:266–279, 2019.

    Article  PubMed  Google Scholar 

  • Dolmans, M.-M., B. Martinez-Madrid, E. Gadisseux, et al. Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice. Reproduction. 134:253–262, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Dolmans, M. M., W. Y. Yuan, A. Camboni, et al. Development of antral follicles after xenografting of isolated small human preantral follicles. Reprod. Biomed. Online. 16:705–711, 2008.

    Article  PubMed  Google Scholar 

  • Donnez, J., and M. M. Dolmans. Natural hormone replacement therapy with a functioning ovary after the menopause: dream or reality? Reprod. Biomed. Online. 37:359–366, 2018.

    Article  PubMed  Google Scholar 

  • Edson, M. A., A. K. Nagaraja, and M. M. Matzuk. The mammalian ovary from genesis to revelation. Endocr. Rev. 30:624–712, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher, T. E., T. A. Molskness, A. Villeda, et al. Vascular endothelial growth factor and angiopoietin production by primate follicles during culture is a function of growth rate, gonadotrophin exposure and oxygen milieu. Hum. Reprod. (Oxf.). 28:3263–3270, 2013.

    Article  CAS  Google Scholar 

  • Francés-Herrero, E., R. Lopez, M. Hellström, et al. Bioengineering trends in female reproduction: a systematic review. Hum. Reprod. Update. 28(6):798–837, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser, H. M. Regulation of the ovarian follicular vasculature. Reprod. Biol. Endocrinol. 4:18, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gargus, E. S., H. B. Rogers, K. E. McKinnon, et al. Engineered reproductive tissues. Nat. Biomed. Eng. 4:381–393, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garverick, H. A., and M. F. Smith. Female reproductive physiology and endocrinology of cattle. Vet. Clin. N. Am. Food Anim. Pract. 9:223–247, 1993.

    Article  CAS  Google Scholar 

  • Gosden, R. G. Restitution of fertility in sterilized mice by transferring primordial ovarian follicles. Hum. Reprod. 5:499–504, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Gougeon, A. Dynamics of follicular growth in the human: a model from preliminary results. Hum. Reprod. (Oxf.). 1:81–87, 1986.

    Article  CAS  Google Scholar 

  • Gougeon, A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr. Rev. 17:121–155, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Gougeon, A. Human ovarian follicular development: from activation of resting follicles to preovulatory maturation. Ann. Endocrinol. (Paris). 71:132–143, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Griffin, M., N. Castro, O. Bas, et al. The current versatility of polyurethane three-dimensional printing for biomedical applications. Tissue Eng. Part B Rev. 26:272–283, 2020.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, P., B. B. Mandal, et al. Tissue-engineered vascular grafts: emerging trends and technologies. Adv. Funct. Mater. 31:2100027, 2021.

    Article  CAS  Google Scholar 

  • Han, D. K., K. D. Park, J. A. Hubbell, et al. Surface characteristics and biocompatibility of lactide-based poly(ethylene glycol) scaffolds for tissue engineering. J. Biomater. Sci. Polym. Ed. 9:667–680, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Hassani, F., B. Ebrahimi, A. Moini, et al. Chitosan hydrogel supports integrity of ovarian follicles during in vitro culture: a preliminary of a novel biomaterial for three dimensional culture of ovarian follicles. Cell J. 21:479–493, 2020.

    PubMed  Google Scholar 

  • Hassanpour, A., T. Talaei-Khozani, E. Kargar-Abarghouei, et al. Decellularized human ovarian scaffold based on a sodium lauryl ester sulfate (SLES)-treated protocol, as a natural three-dimensional scaffold for construction of bioengineered ovaries. Stem. Cell Res. Ther. 9:252, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoibraaten, E., M. Abdelnoor, and P. M. Sandset. Hormone replacement therapy with estradiol and risk of venous thromboembolism population-based case-control study. Thromb. Haemost. 82:1218–1221, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Hopkins, T. I. R., V. L. Bemmer, S. Franks, et al. Micromechanical mapping of the intact ovary interior reveals contrasting mechanical roles for follicles and stroma. Biomaterials.277:121099, 2021.

    Article  CAS  PubMed  Google Scholar 

  • Hou, L., J. J. Kim, Y. J. Woo, et al. Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 310:455–465, 2016.

    Article  Google Scholar 

  • Hummitzsch, K., A. A. Richard, D. Wilhelm, et al. Stem cells, progenitor cells, and lineage decisions in the ovary. Endocr. Rev. 36:65–91, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Hummitzsch, K., et al. Development of the Mammalian Ovary and Follicles. In The Ovary, 3rd ed. Academic Press, New York, 2019, pp. 71–82.

  • Jafari, H., A. Dadashzadeh, S. Moghassemi, et al. Ovarian cell encapsulation in an enzymatically crosslinked silk-based hydrogel with tunable mechanical properties. Gels. 7:138, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamalzaei, P., M. R. Valojerdi, L. Montazeri, et al. Effects of alginate concentration and ovarian cells on in vitro development of mouse preantral follicles: a factorial study. Int. J. Fertil. Steril. 13:330–338, 2020.

    CAS  PubMed  Google Scholar 

  • Jamalzaei, P., M. R. Valojerdi, L. Montazeri, et al. Applicability of hyaluronic acid-alginate hydrogel and ovarian cells for in vitro development of mouse preantral follicles. Cell J. 22:49–60, 2020.

    PubMed  PubMed Central  Google Scholar 

  • Jameson, J. L. Endocrinology Adult and Pediatric: Reproductive Endocrinology, 6th ed. Elsevier, 2016, pp. 3–15.

  • Jiao, Z. M. D. P., and T. K. P. D. Woodruff. Follicle microenvironment-associated alterations in gene expression in the mouse oocyte and its polar body. Fertil. Steril. 99:1453-1459.e1, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Gomez, C. P., and J. A. Cecilia. Chitosan: a natural biopolymer with a wide and varied range of applications. Molecules. 25(17):3981, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez, R. Ovarian organogenesis in mammals: mice cannot tell us everything. Sex. Dev. 3:291–301, 2010.

    Article  Google Scholar 

  • Jin, S. Y., L. Lei, A. Shikanov, et al. A novel two-step strategy for in vitro culture of early-stage ovarian follicles in the mouse. Fertil. Steril. 93:2633–9263, 2010.

    Article  PubMed  Google Scholar 

  • Jorge, S., S. Chang, J. J. Barzilai, et al. Mechanical signaling in reproductive tissues: mechanisms and importance. Reprod. Sci. 21:1093–1100, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamaly, N., B. Yameen, J. Wu, et al. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 116:2602–2663, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, Y., J. Chang, et al. Channels in a porous scaffold: a new player for vascularization. Future Med. 13:615, 2018.

    Google Scholar 

  • Kim, S. H., C. W. Kang, K. S. Min, et al. Matrix metalloproteinases are important for follicular development in normal and miniature pigs. Biotechnol. Lett. 36:1187–1196, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J., A. S. Perez, J. Claflin, et al. Synthetic hydrogel supports the function and regeneration of artificial ovarian tissue in mice. NPJ Regen. Med. 1:16010, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, S. S., H. W. Yang, H. G. Kang, et al. Quantitative assessment of ischemic tissue damage in ovarian cortical tissue with or without antioxidant (ascorbic acid) treatment. Fertil. Steril. 82:679–685, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Kim, E. J., C. Yang, J. Lee, et al. The new biocompatible material for mouse ovarian follicle development in three-dimensional in vitro culture systems. Theriogenology. 144:33–40, 2020.

    Article  CAS  PubMed  Google Scholar 

  • Kniazeva, E., A. N. Hardy, S. A. Boukaidi, et al. Primordial follicle transplantation within designer biomaterial grafts produce live births in a mouse infertility model. Sci. Rep. 5:17709, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreeger, P. K., T. K. Woodruff, and L. D. Shea. Murine granulosa cell morphology and function are regulated by a synthetic Arg–Gly–Asp matrix. Mol. Cell Endocrinol. 205:1–10, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Krotz, S. P., J. C. Robins, T.-M. Ferruccio, et al. In vitro maturation of oocytes via the pre-fabricated self-assembled artificial human ovary. J. Assist. Reprod. Genet. 27:743–750, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, A., Y. S. Negi, et al. Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose. 21:3409–3426, 2014.

    Article  CAS  Google Scholar 

  • Lan, L., Y. Wang, and Y. Fu, et al. Preparation and identification of ovarian decellularized biologic scaffold. J. Wenzhou Med. Univ. 47, 2017.

  • Laronda, M. M., A. E. Jakus, K. A. Whelan, et al. Initiation of puberty in mice following decellularized ovary transplant. Biomaterials. 50:20–29, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laronda, M. M., A. L. Rutz, S. Xiao, et al. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat. Commun. 8:15261, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J. B., et al. Microchannel network hydrogel induced ischemic blood perfusion connection. Nat. Commun. 11(1):615, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J. B., D.-H. Kim, J.-K. Yoon, et al. Vascular-like network prepared using hollow hydrogel microfibers. J. Biosci. Bioeng. 121:336–340, 2016.

    Article  Google Scholar 

  • Lee, J. B., D.-H. Kim, J.-K. Yoon, et al. Microfluidic spun alginate hydrogel microfibers and their application in tissue engineering. Gels. 4(2):38, 2018.

    Article  Google Scholar 

  • Li, L., X. Shi, Y. Shi, et al. The signaling pathways involved in ovarian follicle development. Front. Physiol.12:730196, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim, K. S., M. Baptista, S. Moon, et al. Microchannels in development, survival, and vascularisation of tissue analogues for regenerative medicine. Trends Biotechnol. 37:1189–1201, 2019.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., K. Wu, L. Gao, et al. Biomaterial strategies for the application of reproductive tissue engineering. Bioact. Mater. 14:86–96, 2022.

    Article  CAS  PubMed  Google Scholar 

  • Luyckx, V., M.-M. Dolmans, J. Vanacker, et al. First step in developing a 3D biodegradable fibrin scaffold for an artificial ovary. J. Ovarian Res. 6:83, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luyckx, V., M.-M. Dolmans, J. Vanacker, et al. A new step toward the artificial ovary: survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold. Fertil. Steril. 101:1149–1156, 2014.

    Article  PubMed  Google Scholar 

  • Mainigi, M. A., T. Ord, and R. M. Schultz. Meiotic and developmental competence in mice are compromised following follicle development in vitro using an alginate-based culture system. Biol. Reprod. 85:269–276, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manson, J. A. E., R. T. Chlebowski, M. L. Stefanick, et al. Menopausal hormone therapy and health outcomes during the intervention and extended poststopping phases of the Women’s Health Initiative randomized trials. JAMA. 310:1353–1368, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki, S. Mechanobiology of the female reproductive system. Reprod. Med. Biol. 20:371–401, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng, X., Y. Xing, J. Li, et al. Rebuilding the vascular network: in vivo and in vitro approaches. Front Cell Dev. Biol.9:639299, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  • Michalewski, K., and S. Romanowski. Innervation of the ovary and the oviducts. Folia Morphol. (Warsz). 29:471–477, 1970.

    CAS  PubMed  Google Scholar 

  • Mosesson, M. W. Fibrinogen and fibrin structure and functions. J. Thromb. Haemost. 3:1894–1904, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Na, J., and G. J. Kim. Recent trends in stem cell therapy for premature ovarian insufficiency and its therapeutic potential: a review. J. Ovarian Res. 13:74, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouni, E., C. Bouzin, M. M. Dolmans, et al. Spatiotemporal changes in mechanical matrisome components of the human ovary from prepuberty to menopause. Hum. Reprod. 35:1391–1410, 2020.

    Article  CAS  PubMed  Google Scholar 

  • Pankajakshan, D., and D. K. Agrawal. Mesenchymal stem cell paracrine factors in vascular repair and regeneration. J. Biomed. Technol. Res. 2014. https://doi.org/10.19104/jbtr.2014.107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paolini, M. S., O. S. Fenton, C. Bhattacharya, et al. Polymers for extended-release administration. Biomed. Microdevices. 21:45, 2019.

    Article  PubMed  Google Scholar 

  • Pascoletti, G., M. Di Nardo, G. Fragomeni, et al. Dynamic characterization of the biomechanical behaviour of bovine ovarian cortical tissue and its short-term effect on ovarian tissue and follicles. Materials (Basel). 13:3759, 2020.

    Article  CAS  PubMed  Google Scholar 

  • Paulini, F., J. M. V. Vilela, M. C. Chiti, et al. Survival and growth of human preantral follicles after cryopreservation of ovarian tissue, follicle isolation and short-term xenografting. Reprod. Biomed. Online. 33:425–432, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Pessoa, A. F. C., R. M. P. Rocha, I. R. Brito, et al. Effect of morphological integrity, period, and type of culture system on the in vitro development of isolated caprine preantral follicles. Theriogenology. 82:312–317, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Pors, S. E., M. Ramløse, D. Nikiforov, et al. Initial steps in reconstruction of the human ovary: survival of pre-antral stage follicles in a decellularized human ovarian scaffold. Hum. Reprod. 34:1523–1535, 2019.

    Article  CAS  PubMed  Google Scholar 

  • Raffel, N., R. Dittrich, T. Bäuerle, et al. Novel approach for the assessment of ovarian follicles infiltration in polymeric electrospun patterned scaffolds. PLoS ONE.14:e0215985, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajabzadeh, A. R., et al. Morphological study of isolated ovarian preantral follicles using fibrin gel plus platelet lysate after subcutaneous transplantation. Cell J. 17(1):145–152, 2015.

    PubMed  PubMed Central  Google Scholar 

  • Reeves, G. Specific stroma in the cortex and medulla of the ovary. Cell types and vascular supply in relation to follicular apparatus and ovulation. Obstet. Gynecol. 37:832–844, 1971.

    CAS  PubMed  Google Scholar 

  • Renoux, C., S. Dell’aniello, E. Garbe, et al. Transdermal and oral hormone replacement therapy and the risk of stroke: a nested case-control study. BMJ.340:c2519, 2010.

    Article  PubMed  Google Scholar 

  • Richards, J. S., and S. A. Pangas. The ovary: basic biology and clinical implications. J Clin Invest. 120:963–972, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rios, P. D., E. Kniazeva, H. C. Lee, et al. Retrievable hydrogels for ovarian follicle transplantation and oocyte collection. Biotechnol. Bioeng. 115:2075–2086, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossouw, J. E., G. L. Anderson, R. L. Prentice, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA. 288:321–333, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Sai Bhargava Reddy, M., D. Ponnamma, R. Choudhary, et al. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers (Basel). 13:1105, 2021.

    Article  Google Scholar 

  • Sfakianoudis, K., A. Rapani, S. Grigoriadis, et al. Novel approaches in addressing ovarian insufficiency in 2019: are we there yet? Cell Transplant. 29:963689720926154, 2020.

    Article  PubMed  Google Scholar 

  • Shah, J. S., R. Sabouni, K. C. Cayton Vaught, et al. Biomechanics and mechanical signaling in the ovary: a systematic review. J. Assist. Reprod. Genet. 35:1135–1148, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shea, L. D., T. K. Woodruff, and A. Shikanov. Bioengineering the ovarian follicle microenvironment. Annu. Rev. Biomed. Eng. 16:29–52, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheikholeslam, M., M. E. E. Wright, M. G. Jeschke, et al. Biomaterials for skin substitutes. Adv. Healthc. Mater. 7:10, 2018.

    Article  Google Scholar 

  • Shin, E. Y., et al. Prevention of chemotherapy-induced premature ovarian insufficiency in mice by scaffold-based local delivery of human embryonic stem cell-derived mesenchymal progenitor cells. Stem Cell Res. Ther. 12:431, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sittadjody, S., J. M. Saul, S. Joo, et al. Engineered multilayer ovarian tissue that secretes sex steroids and peptide hormones in response to gonadotropins. Biomaterials. 34:2412–2420, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Sittadjody, S., J. M. Saul, J. P. McQuilling, et al. In vivo transplantation of 3D encapsulated ovarian constructs in rats corrects abnormalities of ovarian failure. Nat. Commun. 8:1858, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, R. M., A. Shikanov, E. Kniazeva, et al. Fibrin-mediated delivery of an ovarian follicle pool in a mouse model of infertility. Tissue Eng. Part A. 20:3021–3030, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonigo, C., I. Beau, N. Binart, et al. the impact of chemotherapy on the ovaries: molecular aspects and the prevention of ovarian damage. Int. J. Mol. Sci. 20:1–17, 2019.

    Article  Google Scholar 

  • Spears, N., F. Lopes, A. Stefansdottir, et al. Ovarian damage from chemotherapy and current approaches to its protection. Hum. Reprod. Update. 25:673–693, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart, S., J. Domínguez-Robles, et al. Implantable polymeric drug delivery devices: classification, manufacture, materials, and clinical applications. Polymers (Basel). 10:1379, 2018.

    Article  PubMed  Google Scholar 

  • Stosich, M. S., et al. Vascularized adipose tissue grafts from human mesenchymal stem cells with bioactive cues and microchannel conduits. Tissue Eng. 13(12):2881–2890, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss, J. F., and C. J. Williams. Ovarian Life Cycle in Yen and Jaffe's Reproductive Endocrinology, 8th ed. Philadelphia: Elsevier, pp. 167–205e9, 2019.

  • Tagler, D., Y. Makanji, T. Tu, et al. Promoting extracellular matrix remodeling via ascorbic acid enhances the survival of primary ovarian follicles encapsulated in alginate hydrogels. Biotechnol. Bioeng. 111:1417–1429, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takei, T., Z. Kitazono, Y. Ozuno, et al. Vascular-like network prepared using hollow hydrogel microfibers. J. Biosci. Bioeng. 121:336–340, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Tamadon, A., K.-H. Park, Y. Y. Kim, et al. Efficient biomaterials for tissue engineering of female reproductive organs. Tissue Eng. Regen. Med. 13:447–454, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao, H., Z. Han, Z. C. Han, et al. Proangiogenic features of mesenchymal stem cells and their therapeutic applications. Stem Cells Int. 2016:1314709, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Telfer, E., C. Torrance, and R. G. Gosden. Morphological study of cultured preantral ovarian follicles of mice after transplantation under the kidney capsule. J. Reprod. Fertil. 89:565–571, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Tu, C., S. Das, A. B. Baker, et al. Nanoscale strategies: treatment for peripheral vascular disease and critical limb ischemia. ACS Nano. 9:3436–3452, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vafaei, A., R. Rahbarghazi, M. Kharaziha, et al. Polycaprolactone fumarate acts as an artificial neural network to promote the biological behavior of neural stem cells. J. Biomed. Mater. Res. B Appl. Biomater. 109:246–256, 2021.

    Article  CAS  PubMed  Google Scholar 

  • Vanacker, J., and C. A. Amorim. Alginate: a versatile biomaterial to encapsulate isolated ovarian follicles. Ann. Biomed. Eng. 45:1633–1649, 2017.

    Article  PubMed  Google Scholar 

  • Wang, H., X. Liu, D. E. Christiansen, et al. Thermoplastic polyurethane with controllable degradation and critical anti-fouling properties. Biomater. Sci. 9:1381–1396, 2021.

    Article  CAS  PubMed  Google Scholar 

  • Wenzel, J. G., and S. Odend’Hal. The mammalian rete ovarii: a literature review. Cornell Vet. 75:411–425, 1985.

    CAS  PubMed  Google Scholar 

  • Wierman, M. E. Sex steroid effects at target tissues: mechanisms of action. Adv. Physiol. Educ. 31:26–33, 2007.

    Article  PubMed  Google Scholar 

  • Wo, J. Y., and A. N. Viswanathan. Impact of radiotherapy on fertility, pregnancy, and neonatal outcomes in female cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 73:1304–1312, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, T., Y. Y. Gao, J. Su, et al. Three-dimensional bioprinting of artificial ovaries by an extrusion-based method using gelatin-methacryloyl bioink. Climacteric. 25:170–178, 2022.

    Article  CAS  PubMed  Google Scholar 

  • Wu, R., K. H. Van der Hoek, N. K. Ryan, et al. Macrophage contributions to ovarian function. Hum. Reprod. Update. 10:119–133, 2004.

    Article  PubMed  Google Scholar 

  • Xiao, S., J. R. Coppeta, H. B. Rogers, et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 8:14584, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, J., M. S. Lawson, R. R. Yeoman, et al. Fibrin promotes development and function of macaque primary follicles during encapsulated three-dimensional culture. Hum. Reprod. (Oxf.). 28:2187–2200, 2013.

    Article  CAS  Google Scholar 

  • Young, E. W., and D. J. Beebe. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev. 39:1036–1048, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang, Y., C. Zhang, M. Cheng, et al. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact. Mater. 6:1791–1809, 2021.

    Article  CAS  PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4