A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-022-02904-5 below:

Modeling of Tumor Growth with Input from Patient-Specific Metabolomic Data

References
  1. Abusalamah, H., J. M. Reel, and C. R. Lupfer. Pyruvate affects inflammatory responses of macrophages during influenza A virus infection. Virus Res. 286:198088, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adeva-Andany, M. M., L. Lopez-Maside, C. Donapetry-Garcia, C. Fernandez-Fernandez, and C. Sixto-Leal. Enzymes involved in branched-chain amino acid metabolism in humans. Amino Acids. 49:1005–1028, 2017.

    Article  CAS  PubMed  Google Scholar 

  3. Ananieva, E. Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World J Biol Chem. 6:281–289, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ananieva, E. A., and A. C. Wilkinson. Branched-chain amino acid metabolism in cancer. Curr Opin Clin Nutr Metab Care. 21:64–70, 2018.

    Article  CAS  PubMed  Google Scholar 

  5. Armitage, E. G., and C. Barbas. Metabolomics in cancer biomarker discovery: current trends and future perspectives. J Pharm Biomed Anal. 87:1–11, 2014.

    Article  CAS  PubMed  Google Scholar 

  6. Aspuria, P. P., S. Y. Lunt, L. Varemo, L. Vergnes, M. Gozo, J. A. Beach, B. Salumbides, K. Reue, W. R. Wiedemeyer, J. Nielsen, B. Y. Karlan, and S. Orsulic. Succinate dehydrogenase inhibition leads to epithelial-mesenchymal transition and reprogrammed carbon metabolism. Cancer Metab. 2:21, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bamji-Stocke, S., V. van Berkel, D. M. Miller, and H. B. Frieboes. A review of metabolism-associated biomarkers in lung cancer diagnosis and treatment. Metabolomics. 14:81, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bearer, E. L., J. S. Lowengrub, H. B. Frieboes, Y. L. Chuang, F. Jin, S. M. Wise, M. Ferrari, D. B. Agus, and V. Cristini. Multiparameter computational modeling of tumor invasion. Cancer Res. 69:4493–4501, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beloborodova, N., I. Bairamov, A. Olenin, V. Shubina, V. Teplova, and N. Fedotcheva. Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils. J Biomed Sci. 19:89, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chanmee, T., P. Ontong, K. Konno, and N. Itano. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel). 6:1670–1690, 2014.

    Article  Google Scholar 

  11. Chen, J., R. A. Chaurio, C. Maueroder, A. Derer, M. Rauh, A. Kost, Y. Liu, X. Mo, A. Hueber, R. Bilyy, M. Herrmann, Y. Zhao, and L. E. Munoz. Inosine released from dying or dead cells stimulates cell proliferation via adenosine receptors. Front Immunol. 8:504, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cho, H. W., S. B. Kim, M. K. Jeong, Y. Park, N. G. Miller, T. R. Ziegler, and D. P. Jones. Discovery of metabolite features for the modelling and analysis of high-resolution NMR spectra. Int J Data Min Bioinform. 2:176–192, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Combs, J. A., and G. M. DeNicola. The non-essential amino acid cysteine becomes essential for tumor proliferation and survival. Cancers (Basel). 11:678, 2019.

    Article  CAS  Google Scholar 

  14. Cooke, J. P., and Y. T. Ghebremariam. Endothelial nicotinic acetylcholine receptors and angiogenesis. Trends Cardiovasc Med. 18:247–253, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cristini, V., H. B. Frieboes, R. Gatenby, S. Caserta, M. Ferrari, and J. Sinek. Morphologic instability and cancer invasion. Clin Cancer Res. 11:6772–6779, 2005.

    Article  CAS  PubMed  Google Scholar 

  16. Curtis, L. T., C. G. England, M. Wu, J. Lowengrub, and H. B. Frieboes. An interdisciplinary computational/experimental approach to evaluate drug-loaded gold nanoparticle tumor cytotoxicity. Nanomedicine (Lond). 11:197–216, 2016.

    Article  CAS  Google Scholar 

  17. Curtis, L. T., V. H. van Berkel, and H. B. Frieboes. Pharmacokinetic/pharmacodynamic modeling of combination-chemotherapy for lung cancer. J Theor Biol. 448:38–52, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daghir-Wojtkowiak, E., P. Wiczling, M. Waszczuk-Jankowska, R. Kaliszan, and M. J. Markuszewski. Multilevel pharmacokinetics-driven modeling of metabolomics data. Metabolomics. 13:31, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  19. de la Cruz-Lopez, K. G., L. J. Castro-Munoz, D. O. Reyes-Hernandez, A. Garcia-Carranca, and J. Manzo-Merino. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front Oncol. 9:1143, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dutta, S., S. Ray, and K. Nagarajan. Glutamic acid as anticancer agent: an overview. Saudi Pharm J. 21:337–343, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Eisenhauer, E. A., P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 45:228–247, 2009.

    Article  CAS  PubMed  Google Scholar 

  22. Elia, I., D. Broekaert, S. Christen, R. Boon, E. Radaelli, M. F. Orth, C. Verfaillie, T. G. P. Grunewald, and S. M. Fendt. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun. 8:15267, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fini, M. A., A. Elias, R. J. Johnson, and R. M. Wright. Contribution of uric acid to cancer risk, recurrence, and mortality. Clin Transl Med. 1:16, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Frieboes, H. B., X. Zheng, C. H. Sun, B. Tromberg, R. Gatenby, and V. Cristini. An integrated computational/experimental model of tumor invasion. Cancer Res. 66:1597–1604, 2006.

    Article  CAS  PubMed  Google Scholar 

  25. Habte-Tsion, H. M., M. Ren, B. Liu, X. Ge, J. Xie, and R. Chen. Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol. 51:189–199, 2016.

    Article  CAS  PubMed  Google Scholar 

  26. Higuchi, S., Y. Osada, Y. Shioiri, N. Tanaka, S. Otomo, and H. Aihara. The modes of anti-inflammatory and analgesic actions of aspirin and salicylic acid. Nihon Yakurigaku Zasshi. 85:49–57, 1985.

    Article  CAS  PubMed  Google Scholar 

  27. Hilvo, M., I. de Santiago, P. Gopalacharyulu, W. D. Schmitt, J. Budczies, M. Kuhberg, M. Dietel, T. Aittokallio, F. Markowetz, C. Denkert, J. Sehouli, C. Frezza, S. Darb-Esfahani, and E. I. Braicu. Accumulated metabolites of hydroxybutyric acid serve as diagnostic and prognostic biomarkers of ovarian high-grade serous carcinomas. Cancer Res. 76:796–804, 2016.

    Article  CAS  PubMed  Google Scholar 

  28. Jung, S. Y., H. S. Song, S. Y. Park, S. H. Chung, and Y. J. Kim. Pyruvate promotes tumor angiogenesis through HIF-1-dependent PAI-1 expression. Int J Oncol. 38:571–576, 2011.

    CAS  PubMed  Google Scholar 

  29. Kalluri, R., and R. A. Weinberg. The basics of epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, Y. S. Malonate metabolism: biochemistry, molecular biology, physiology, and industrial application. J Biochem Mol Biol. 35:443–451, 2002.

    CAS  PubMed  Google Scholar 

  31. Koppula, P., Y. Zhang, J. Shi, W. Li, and B. Gan. The glutamate/cystine antiporter SLC7A11/xCT enhances cancer cell dependency on glucose by exporting glutamate. J Biol Chem. 292:14240–14249, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kratochvill, F., G. Neale, J. M. Haverkamp, L. A. Van de Velde, A. M. Smith, D. Kawauchi, J. McEvoy, M. F. Roussel, M. A. Dyer, J. E. Qualls, and P. J. Murray. TNF counterbalances the emergence of M2 tumor macrophages. Cell Rep. 12:1902–1914, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, M., G. T. Chen, E. Puttock, K. Wang, R. A. Edwards, M. L. Waterman, and J. Lowengrub. Mathematical modeling links Wnt signaling to emergent patterns of metabolism in colon cancer. Mol Syst Biol. 13:912, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee, O., and P. J. O’Brien. Modifications of mitochondrial function by toxicants. Comprehen Toxicol. 1:411–445, 2010.

    Article  Google Scholar 

  35. Leighl, N. B. Treatment paradigms for patients with metastatic non-small-cell lung cancer: first-, second-, and third-line. Curr Oncol. 19:S52-58, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Leonard, F., L. T. Curtis, A. R. Hamed, C. Zhang, E. Chau, D. Sieving, B. Godin, and H. B. Frieboes. Nonlinear response to cancer nanotherapy due to macrophage interactions revealed by mathematical modeling and evaluated in a murine model via CRISPR-modulated macrophage polarization. Cancer Immunol Immunother. 69:731–744, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leonard, F., L. T. Curtis, M. J. Ware, T. Nosrat, X. Liu, K. Yokoi, H. B. Frieboes, and B. Godin. Macrophage polarization contributes to the anti-tumoral efficacy of mesoporous nanovectors loaded with albumin-bound paclitaxel. Front Immunol. 8:693, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Leonard, F., L. T. Curtis, P. Yesantharao, T. Tanei, J. F. Alexander, M. Wu, J. Lowengrub, X. Liu, M. Ferrari, K. Yokoi, H. B. Frieboes, and B. Godin. Enhanced performance of macrophage-encapsulated nanoparticle albumin-bound-paclitaxel in hypo-perfused cancer lesions. Nanoscale. 8:12544–12552, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lim, J. M., G. Kim, and R. L. Levine. Methionine in proteins: it’s not just for protein initiation anymore. Neurochem Res. 44:247–257, 2019.

    Article  CAS  PubMed  Google Scholar 

  40. Ma, E. H., G. Bantug, T. Griss, S. Condotta, R. M. Johnson, B. Samborska, N. Mainolfi, V. Suri, H. Guak, M. L. Balmer, M. J. Verway, T. C. Raissi, H. Tsui, G. Boukhaled, S. H. da Costa, C. Frezza, C. M. Krawczyk, A. Friedman, M. Manfredi, M. J. Richer, C. Hess, and R. G. Jones. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25:345–357, 2017.

    Article  CAS  PubMed  Google Scholar 

  41. Macklin, P., S. McDougall, A. R. Anderson, M. A. Chaplain, V. Cristini, and J. Lowengrub. Multiscale modelling and nonlinear simulation of vascular tumour growth. J Math Biol. 58:765–798, 2009.

    Article  PubMed  Google Scholar 

  42. Mahlbacher, G., L. T. Curtis, J. Lowengrub, and H. B. Frieboes. Mathematical modeling of tumor-associated macrophage interactions with the cancer microenvironment. J. Immunotherapy Cancer. 6:10, 2018.

    Article  Google Scholar 

  43. Marx, V. Biology: the big challenges of big data. Nature. 498:255–260, 2013.

    Article  CAS  PubMed  Google Scholar 

  44. Mathe, E. A., A. D. Patterson, M. Haznadar, S. K. Manna, K. W. Krausz, E. D. Bowman, P. G. Shields, J. R. Idle, P. B. Smith, K. Anami, D. G. Kazandjian, E. Hatzakis, F. J. Gonzalez, and C. C. Harris. Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Res. 74:3259–3270, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mattaini, K. R., M. R. Sullivan, and M. G. Vander Heiden. The importance of serine metabolism in cancer. J Cell Biol. 214:249–257, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mazzio, E. A., N. Boukli, N. Rivera, and K. F. Soliman. Pericellular pH homeostasis is a primary function of the Warburg effect: inversion of metabolic systems to control lactate steady state in tumor cells. Cancer Sci. 103:422–432, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McAuslan, B. R., W. Reilly, G. N. Hannan, K. Schindhelm, B. Milthorpe, and B. A. Saur. Induction of endothelial cell migration by proline analogs and its relevance to angiogenesis. Exp Cell Res. 176:248–257, 1988.

    Article  CAS  PubMed  Google Scholar 

  48. McDougall, S. R., A. R. Anderson, and M. A. Chaplain. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol. 241:564–589, 2006.

    Article  PubMed  Google Scholar 

  49. Medina, M. A. Mathematical modeling of cancer metabolism. Crit Rev Oncol Hematol. 124:37–40, 2018.

    Article  PubMed  Google Scholar 

  50. Mendoza-Juez, B., A. Martinez-Gonzalez, G. F. Calvo, and V. M. Perez-Garcia. A mathematical model for the glucose-lactate metabolism of in vitro cancer cells. Bull Math Biol. 74:1125–1142, 2012.

    Article  CAS  PubMed  Google Scholar 

  51. Miller, H. A., and H. B. Frieboes. Evaluation of drug-loaded gold nanoparticle cytotoxicity as a function of tumor vasculature-induced tissue heterogeneity. Ann Biomed Eng. 47:257–271, 2019.

    Article  PubMed  Google Scholar 

  52. Miller, H. A., and H. B. Frieboes. Pharmacokinetic/pharmacodynamics modeling of drug-loaded PLGA nanoparticles targeting heterogeneously vascularized tumor tissue. Pharm Res. 36:185, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Miller, H. A., X. Yin, S. A. Smith, X. Hu, X. Zhang, J. Yan, D. M. Miller, V. van Berkel, and H. B. Frieboes. Evaluation of disease staging and chemotherapeutic response in non-small cell lung cancer from patient tumor-derived metabolomic data. Lung Cancer. 156:20–30, 2021.

    Article  PubMed  Google Scholar 

  54. Moeslinger, T., R. Friedl, I. Volf, M. Brunner, H. Baran, E. Koller, and P. G. Spieckermann. Urea induces macrophage proliferation by inhibition of inducible nitric oxide synthesis. Kidney Int. 56:581–588, 1999.

    Article  CAS  PubMed  Google Scholar 

  55. Mucaki, E. J., J. Z. L. Zhao, D. J. Lizotte, and P. K. Rogan. Predicting responses to platin chemotherapy agents with biochemically-inspired machine learning. Signal Transduct Target Ther. 4:1, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mudumba, S., A. Menezes, D. Fries, and J. Blankenship. Differentiation of PC12 cells induced by N8-acetylspermidine and by N8-acetylspermidine deacetylase inhibition. Biochem Pharmacol. 63:2011–2018, 2002.

    Article  CAS  PubMed  Google Scholar 

  57. Newman, A. C., and O. D. K. Maddocks. Serine and functional metabolites in cancer. Trends Cell Biol. 27:645–657, 2017.

    Article  CAS  PubMed  Google Scholar 

  58. Patil, M. D., J. Bhaumik, S. Babykutty, U. C. Banerjee, and D. Fukumura. Arginine dependence of tumor cells: targeting a chink in cancer’s armor. Oncogene. 35:4957–4972, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Peng, F., Y. Liu, C. He, Y. Kong, Q. Ouyang, X. Xie, T. Liu, Z. Liu, and J. Peng. Prediction of platinum-based chemotherapy efficacy in lung cancer based on LC-MS metabolomics approach. J Pharm Biomed Anal. 154:95–101, 2018.

    Article  CAS  PubMed  Google Scholar 

  60. Riesberg, L. A., T. L. McDonald, Y. Wang, X. M. Chen, S. W. Holzmer, S. M. Tracy, and K. M. Drescher. Creatinine downregulates TNF-alpha in macrophage and T cell lines. Cytokine. 110:29–38, 2018.

    Article  CAS  PubMed  Google Scholar 

  61. Rodriguez, P. C., and A. C. Ochoa. T cell dysfunction in cancer: role of myeloid cells and tumor cells regulating amino acid availability and oxidative stress. Semin Cancer Biol. 16:66–72, 2006.

    Article  CAS  PubMed  Google Scholar 

  62. Roy, M., and S. D. Finley. Computational model predicts the effects of targeting cellular metabolism in pancreatic cancer. Front Physiol. 8:217, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Roy, M., and S. D. Finley. Metabolic reprogramming dynamics in tumor spheroids: Insights from a multicellular, multiscale model. PLoS Comput Biol. 15:e1007053, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. San-Millan, I., and G. A. Brooks. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg effect. Carcinogenesis. 38:119–133, 2017.

    CAS  PubMed  Google Scholar 

  65. Sellers, K., M. P. Fox, M. Bousamra 2nd., S. P. Slone, R. M. Higashi, D. M. Miller, Y. Wang, J. Yan, M. O. Yuneva, R. Deshpande, A. N. Lane, and T. W. Fan. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J Clin Invest. 125:687–698, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sikalidis, A. K. Amino acids and immune response: a role for cysteine, glutamine, phenylalanine, tryptophan and arginine in T-cell function and cancer? Pathol Oncol Res. 21:9–17, 2015.

    Article  CAS  PubMed  Google Scholar 

  67. Sriyudthsak, K., F. Shiraishi, and M. Y. Hirai. Mathematical modeling and dynamic simulation of metabolic reaction systems using metabolome time series data. Front Mol Biosci. 3:15, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tantawy, A. A., and D. M. Naguib. Arginine, histidine and tryptophan: a new hope for cancer immunotherapy. PharmaNutrition. 8:100148, 2019.

    Article  Google Scholar 

  69. Tian, Y., Z. Wang, X. Liu, J. Duan, G. Feng, Y. Yin, J. Gu, Z. Chen, S. Gao, H. Bai, R. Wan, J. Jiang, J. Liu, C. Zhang, D. Wang, J. Han, X. Zhang, L. Cai, J. He, and J. Wang. Prediction of chemotherapeutic efficacy in non-small cell lung cancer by serum metabolomic profiling. Clin Cancer Res. 24:2100–2109, 2018.

    Article  CAS  PubMed  Google Scholar 

  70. van de Ven, A. L., M. Wu, J. Lowengrub, S. R. McDougall, M. A. Chaplain, V. Cristini, M. Ferrari, and H. B. Frieboes. Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors. AIP Adv. 2:11208, 2012.

    Article  PubMed  Google Scholar 

  71. van den Berg, R. A., H. C. Hoefsloot, J. A. Westerhuis, A. K. Smilde, and M. J. van der Werf. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 7:142, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wanders, D., K. Hobson, and X. Ji. Methionine restriction and cancer biology. Nutrients. 12:684, 2020.

    Article  CAS  PubMed Central  Google Scholar 

  73. Ware, M. J., L. T. Curtis, M. Wu, J. C. Ho, S. J. Corr, S. A. Curley, B. Godin, and H. B. Frieboes. Pancreatic adenocarcinoma response to chemotherapy enhanced with non-invasive radio frequency evaluated via an integrated experimental/computational approach. Sci Rep. 7:3437, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Watanabe, H., M. Okada, Y. Kaji, M. Satouchi, Y. Sato, Y. Yamabe, H. Onaya, M. Endo, M. Sone, and Y. Arai. New response evaluation criteria in solid tumours-revised RECIST guideline (version 1.1). Gan To Kagaku Ryoho. 36:2495–2501, 2009.

    PubMed  Google Scholar 

  75. Wilmore, D. W., and J. K. Shabert. Role of glutamine in immunologic responses. Nutrition. 14:618–626, 1998.

    Article  CAS  PubMed  Google Scholar 

  76. Winkler, M. S., A. Nierhaus, G. Rosler, S. Lezius, O. Harlandt, E. Schwedhelm, R. H. Boger, and S. Kluge. Symmetrical (SDMA) and asymmetrical dimethylarginine (ADMA) in sepsis: high plasma levels as combined risk markers for sepsis survival. Crit Care. 22:216, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wu, H., M. Ying, and X. Hu. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation. Oncotarget. 7:40621–40629, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wu, J. Y., T. W. Huang, Y. T. Hsieh, Y. F. Wang, C. C. Yen, G. L. Lee, C. C. Yeh, Y. J. Peng, Y. Y. Kuo, H. T. Wen, H. C. Lin, C. W. Hsiao, K. K. Wu, H. J. Kung, Y. J. Hsu, and C. C. Kuo. Cancer-derived succinate promotes macrophage polarization and cancer metastasis via succinate receptor. Mol Cell. 77:213–227, 2020.

    Article  CAS  PubMed  Google Scholar 

  79. Wu, M., H. B. Frieboes, S. R. McDougall, M. A. Chaplain, V. Cristini, and J. Lowengrub. The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems. J Theor Biol. 320:131–151, 2013.

    Article  PubMed  Google Scholar 

  80. Wu, Z., D. Wei, W. Gao, Y. Xu, Z. Hu, Z. Ma, C. Gao, X. Zhu, and Q. Li. TPO-induced metabolic reprogramming drives liver metastasis of colorectal cancer CD110+ tumor-initiating cells. Cell Stem Cell. 17:47–59, 2015.

    Article  CAS  PubMed  Google Scholar 

  81. Yang, M., T. Soga, P. J. Pollard, and J. Adam. The emerging role of fumarate as an oncometabolite. Front Oncol. 2:85, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yizhak, K., B. Chaneton, E. Gottlieb, and E. Ruppin. Modeling cancer metabolism on a genome scale. Mol Syst Biol. 11:817, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yu, H., H. Xia, Q. Tang, H. Xu, G. Wei, Y. Chen, X. Dai, Q. Gong, and F. Bi. Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation. Sci Rep. 7:40802, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yu, H. E., F. Wang, F. Yu, Z. L. Zeng, Y. Wang, Y. X. Lu, Y. Jin, D. S. Wang, M. Z. Qiu, H. Y. Pu, T. B. Kang, D. Xie, H. Q. Ju, R. H. Xu, and H. Y. Luo. Suppression of fumarate hydratase activity increases the efficacy of cisplatin-mediated chemotherapy in gastric cancer. Cell Death Dis. 10:413, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yue, Y., W. Huang, J. Liang, J. Guo, J. Ji, Y. Yao, M. Zheng, Z. Cai, L. Lu, and J. Wang. IL4I1 is a novel regulator of m2 macrophage polarization that can inhibit T cell activation via L-tryptophan and arginine depletion and IL-10 production. PLoS ONE. 10:e0142979, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhang, A., H. Sun, G. Yan, P. Wang, Y. Han, and X. Wang. Metabolomics in diagnosis and biomarker discovery of colorectal cancer. Cancer Lett. 345:17–20, 2014.

    Article  CAS  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4