A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-022-02902-7 below:

Heart-on-Chip for Combined Cellular Dynamics Measurements and Computational Modeling Towards Clinical Applications

References
  1. Abecasis, B., P. Gomes-Alves, S. Rosa, P. J. Gouveia, L. Ferreira, M. Serra, and P. M. Alves. Unveiling the molecular crosstalk in a human induced pluripotent stem cell-derived cardiac model. Biotechnol. Bioeng. 116(5):1245–1252, 2019. https://doi.org/10.1002/bit.26929.

    Article  CAS  PubMed  Google Scholar 

  2. Adadi, N., M. Yadid, I. Gal, M. Asulin, R. Feiner, R. Edri, and T. Dvir. Electrospun fibrous PVDF-TrFe scaffolds for cardiac tissue engineering, differentiation, and maturation. Adv. Mater. Technol. 5(3):1900820, 2020. https://doi.org/10.1002/admt.201900820.

    Article  CAS  Google Scholar 

  3. Agarwal, A., J. A. Goss, A. Cho, M. L. McCain, and K. K. Parker. Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip. 13(18):3599–3608, 2013. https://doi.org/10.1039/C3LC50350J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aguado-Sierra, J., A. Krishnamurthy, C. Villongco, J. Chuang, E. Howard, M. J. Gonzales, J. Omens, D. E. Krummen, S. Narayan, R. C. P. Kerckhoffs, and A. D. McCulloch. Patient-specific modeling of dyssynchronous heart failure: a case study. Prog. Biophys. Mol. Biol. 107(1):147–155, 2011. https://doi.org/10.1016/j.pbiomolbio.2011.06.014.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alassaf, A., G. Tansik, V. Mayo, L. Wubker, D. Carbonero, and A. Agarwal. Engineering anisotropic cardiac monolayers on microelectrode arrays for non-invasive analyses of electrophysiological properties. Analyst. 145(1):139–149, 2020. https://doi.org/10.1039/C9AN01339C.

    Article  CAS  Google Scholar 

  6. Alonzo, M., S. AnilKumar, B. Roman, N. Tasnim, and B. Joddar. 3D bioprinting of cardiac tissue and cardiac stem cell therapy. Transl. Res. 211:64–83, 2019. https://doi.org/10.1016/j.trsl.2019.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Arts, T., R. S. Reneman, and P. C. Veenstra. A model of the mechanics of the left ventricle. Ann. Biomed. Eng. 7(3):299–318, 1979. https://doi.org/10.1007/BF02364118.

    Article  CAS  PubMed  Google Scholar 

  8. Arzani, A., G.-Y. Suh, R. L. Dalman, and S. C. Shadden. A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms. Am. J. Physiol.-Heart Circ. Physiol. 307(12):H1786–H1795, 2014. https://doi.org/10.1152/ajpheart.00461.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Atzberger, P. J., P. R. Kramer, and C. S. Peskin. A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales. J. Comput. Phys. 224(2):1255–1292, 2007. https://doi.org/10.1016/j.jcp.2006.11.015.

    Article  Google Scholar 

  10. Bai, Y., P. Tofel, Z. Hadas, J. Smilek, P. Losak, P. Skarvada, and R. Macku. Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input. Mech. Syst. Signal Process. 106:303–318, 2018. https://doi.org/10.1016/j.ymssp.2018.01.006.

    Article  Google Scholar 

  11. Belik, M. E.; Usyk, T. P.; McCulloch, A. D. Computational Methods for Cardiac Electrophysiology. In Handbook of Numerical Analysis; Computational Models for the Human Body; Elsevier, 2004; Vol. 12, pp 129–187. https://doi.org/10.1016/S1570-8659(03)12002-9.

  12. Bertassoni, L. E., M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip. 14(13):2202–2211, 2014. https://doi.org/10.1039/C4LC00030G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beussman, K. M., M. L. Rodriguez, A. Leonard, N. Taparia, C. R. Thompson, and N. J. Sniadecki. Micropost arrays for measuring stem cell-derived cardiomyocyte contractility. Methods. 94:43–50, 2016. https://doi.org/10.1016/j.ymeth.2015.09.005.

    Article  CAS  PubMed  Google Scholar 

  14. Blausen com. Medical Gallery of Blausen Medical 2014. WikiJournal of Medicine 2014, 1 (2). https://doi.org/10.15347/WJM/2014.010.

  15. Burridge, P. W., A. Holmström, and J. C. Wu. Chemically defined culture and cardiomyocyte differentiation of human pluripotent stem cells. Curr. Protoc. Human Genet. 87(1):10, 2015. https://doi.org/10.1002/0471142905.hg2103s87.

    Article  Google Scholar 

  16. Campbell, K. S. Filament compliance effects can explain tension overshoots during force development. Biophys. J. 91(11):4102–4109, 2006. https://doi.org/10.1529/biophysj.106.087312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cardiac Electrophysiology: From Cell to Bedside - 7th Edition https://www.elsevier.com/books/cardiac-electrophysiology-from-cell-to-bedside/zipes/978-0-323-44733-1 (accessed 2021 -07 -22).

  18. Campbell, S. G., F. V. Lionetti, K. S. Campbell, and A. D. McCulloch. Coupling of adjacent tropomyosins enhances cross-bridge-mediated cooperative activation in a Markov model of the cardiac thin filament. Biophys. J. 98(10):2254–2264, 2010. https://doi.org/10.1016/j.bpj.2010.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cansız, B., H. Dal, and M. Kaliske. Computational cardiology: a modified hill model to describe the electro-visco-elasticity of the myocardium. Comput. Methods Appl. Mech. Eng. 315:434–466, 2017. https://doi.org/10.1016/j.cma.2016.10.009.

    Article  Google Scholar 

  20. Chan, Y.-C., S. Ting, Y.-K. Lee, K.-M. Ng, J. Zhang, Z. Chen, C.-W. Siu, S. K. W. Oh, and H.-F. Tse. Electrical stimulation promotes maturation of cardiomyocytes derived from human embryonic stem cells. J. Cardiovasc. Trans. Res. 6(6):989–999, 2013. https://doi.org/10.1007/s12265-013-9510-z.

    Article  Google Scholar 

  21. Chen, G.-H., J. Tang, and S. Leng. Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med. Phys. 35(2):660–663, 2008. https://doi.org/10.1118/1.2836423.

    Article  PubMed  Google Scholar 

  22. Chen, Y., L. Zhang, and G. Chen. Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips. Electrophoresis. 29(9):1801–1814, 2008. https://doi.org/10.1002/elps.200700552.

    Article  CAS  PubMed  Google Scholar 

  23. Cheng, W., N. Klauke, H. Sedgwick, G. L. Smith, and J. M. Cooper. Metabolic monitoring of the electrically stimulated single heart cell within a microfluidic platform. Lab Chip. 6(11):1424–1431, 2006. https://doi.org/10.1039/B608202E.

    Article  CAS  PubMed  Google Scholar 

  24. Cherry, E. M., J. R. Ehrlich, S. Nattel, and F. H. Fenton. Pulmonary vein reentry—properties and size matter: insights from a computational analysis. Heart Rhythm. 4(12):1553–1562, 2007. https://doi.org/10.1016/j.hrthm.2007.08.017.

    Article  PubMed  Google Scholar 

  25. Choi, J. R., K. W. Yong, J. Y. Choi, and A. C. Cowie. Recent advances in photo-crosslinkable hydrogels for biomedical applications. BioTechniques. 66(1):40–53, 2019. https://doi.org/10.2144/btn-2018-0083.

    Article  CAS  PubMed  Google Scholar 

  26. Christensen, R. H., B. J. von Scholten, L. L. Lehrskov, P. Rossing, and P. G. Jørgensen. Epicardial adipose tissue: an emerging biomarker of cardiovascular complications in type 2 diabetes? Therap. Adv. Endocrinol. 2020. https://doi.org/10.1177/2042018820928824.

    Article  Google Scholar 

  27. Cohen-Karni, T., Q. Qing, Q. Li, Y. Fang, and C. M. Lieber. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 10(3):1098–1102, 2010. https://doi.org/10.1021/nl1002608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Colin-York, H., and M. Fritzsche. The future of traction force microscopy. Curr. Opin. Biomed. Eng. 5:1–5, 2018. https://doi.org/10.1016/j.cobme.2017.10.002.

    Article  Google Scholar 

  29. Correia, C., A. Koshkin, P. Duarte, D. Hu, M. Carido, M. J. Sebastião, P. Gomes-Alves, D. A. Elliott, I. J. Domian, A. P. Teixeira, P. M. Alves, and M. Serra. 3D aggregate culture improves metabolic maturation of human pluripotent stem cell derived cardiomyocytes. Biotechnol. Bioeng. 115(3):630–644, 2018. https://doi.org/10.1002/bit.26504.

    Article  CAS  PubMed  Google Scholar 

  30. Daniel, T. L., A. C. Trimble, and P. Bryant Chase. Compliant realignment of binding sites in muscle: transient behavior and mechanical tuning. Biophys. J. 74(4):1611–1621, 1998. https://doi.org/10.1016/S0006-3495(98)77875-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dasi, L. P., H. A. Simon, P. Sucosky, and A. P. Yoganathan. Fluid mechanics of artificial heart valves. Clin. Exp. Pharmacol. Physiol. 36(2):225–237, 2009. https://doi.org/10.1111/j.1440-1681.2008.05099.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Decock, J., M. Schlenk, and J.-B. Salmon. In situ photo-patterning of pressure-resistant hydrogel membranes with controlled permeabilities in PEGDA microfluidic channels. Lab Chip. 18(7):1075–1083, 2018. https://doi.org/10.1039/C7LC01342F.

    Article  CAS  PubMed  Google Scholar 

  33. Deutsch, J., D. Motlagh, B. Russell, and T. A. Desai. Fabrication of microtextured membranes for cardiac myocyte attachment and orientation. J. Biomed. Mater. Res. 53(3):267–275, 2000. https://doi.org/10.1002/(SICI)1097-4636(2000)53:3%3c267::AID-JBM12%3e3.0.CO;2-J.

    Article  CAS  PubMed  Google Scholar 

  34. Dong, L., A. B. Closson, C. Jin, I. Trase, Z. Chen, and J. X. J. Zhang. Vibration-energy-harvesting system: transduction mechanisms, frequency tuning techniques, and biomechanical applications. Adv. Mater. Technol. 4(10):1900177, 2019. https://doi.org/10.1002/admt.201900177.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dvir, T., B. P. Timko, M. D. Brigham, S. R. Naik, S. S. Karajanagi, O. Levy, H. Jin, K. K. Parker, R. Langer, and D. S. Kohane. Nanowired three-dimensional cardiac patches. Nat. Nanotechnol. 6(11):720–725, 2011. https://doi.org/10.1038/nnano.2011.160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eisenberg, E., and T. L. Hill. Muscle contraction and free energy transduction in biological systems. Science. 227(4690):999–1006, 1985. https://doi.org/10.1126/science.3156404.

    Article  CAS  PubMed  Google Scholar 

  37. Eleonora, G., P. V. Sandeep, V. Niels, W. J. Antony, D. Dobromir, and J. José. Human atrial action potential and Ca2+ model. Circ. Res. 109(9):1055–1066, 2011. https://doi.org/10.1161/CIRCRESAHA.111.253955.

    Article  CAS  Google Scholar 

  38. Ellis, B. W., A. Acun, U. I. Can, and P. Zorlutuna. Human IPSC-derived myocardium-on-chip with capillary-like flow for personalized medicine. Biomicrofluidics. 11(2):24105, 2017. https://doi.org/10.1063/1.4978468.

    Article  CAS  Google Scholar 

  39. Fenwick, A. J., A. M. Wood, and B. C. W. Tanner. Effects of cross-bridge compliance on the force-velocity relationship and muscle power output. PLoS ONE.12(12):e0190335, 2017. https://doi.org/10.1371/journal.pone.0190335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. FitzHugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6):445–466, 1961. https://doi.org/10.1016/S0006-3495(61)86902-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Friend, J., and L. Yeo. Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics. 4(2):26502, 2010. https://doi.org/10.1063/1.3259624.

    Article  CAS  Google Scholar 

  42. Giridharan, G. A., M.-D. Nguyen, R. Estrada, V. Parichehreh, T. Hamid, M. A. Ismahil, S. D. Prabhu, and P. Sethu. Microfluidic cardiac cell culture model (ΜCCCM). Anal. Chem. 82(18):7581–7587, 2010. https://doi.org/10.1021/ac1012893.

    Article  CAS  PubMed  Google Scholar 

  43. Grandi, E., F. S. Pasqualini, and D. M. Bers. A novel computational model of the human ventricular action potential and Ca transient. J. Mol. Cell. Cardiol. 48(1):112–121, 2010. https://doi.org/10.1016/j.yjmcc.2009.09.019.

    Article  CAS  PubMed  Google Scholar 

  44. Griffith, B. E., X. Luo, D. M. McQUEEN, and C. S. Peskin. Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int. J. Appl. Mech. 01(01):137–177, 2009. https://doi.org/10.1142/S1758825109000113.

    Article  Google Scholar 

  45. Grosberg, A., A. P. Nesmith, J. A. Goss, M. D. Brigham, M. L. McCain, and K. K. Parker. Muscle on a chip: in vitro contractility assays for smooth and striated muscle. J. Pharmacol. Toxicol. Methods. 65(3):126–135, 2012.

    Article  CAS  Google Scholar 

  46. Guccione, J. M., A. D. McCulloch, and L. K. Waldman. Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113(1):42–55, 1991. https://doi.org/10.1115/1.2894084.

    Article  CAS  PubMed  Google Scholar 

  47. Gurev, V., J. Constantino, J. J. Rice, and N. A. Trayanova. Distribution of electromechanical delay in the heart: insights from a three-dimensional electromechanical model. Biophys. J. 99(3):745–754, 2010. https://doi.org/10.1016/j.bpj.2010.05.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Habibi, M., S. T. M. Dawson, and A. Arzani. Data-driven pulsatile blood flow physics with dynamic mode decomposition. Fluids. 5(3):111, 2020. https://doi.org/10.3390/fluids5030111.

    Article  CAS  Google Scholar 

  49. Hayes, H. B., A. M. Nicolini, C. A. Arrowood, S. A. Chvatal, D. W. Wolfson, H. C. Cho, D. D. Sullivan, J. Chal, B. Fermini, M. Clements, J. D. Ross, and D. C. Millard. Novel method for action potential measurements from intact cardiac monolayers with multiwell microelectrode array technology. Sci. Rep. 9(1):11893, 2019. https://doi.org/10.1038/s41598-019-48174-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hill, A. V. The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. Series B Biol. Sci. 126(843):136–195, 1938. https://doi.org/10.1098/rspb.1938.0050.

    Article  Google Scholar 

  51. Hill, T. L., E. Eisenberg, Y. D. Chen, and R. J. Podolsky. Some self-consistent two-state sliding filament models of muscle contraction. Biophys. J. 15(4):335–372, 1975. https://doi.org/10.1016/S0006-3495(75)85823-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hodgkin (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology - Wiley Online Library https://physoc.onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1113/jphysiol.1952.sp004764 (accessed 2021 -04 -02).

  53. Huang, J., P. M. Carrica, and F. Stern. Semi-coupled air/water immersed boundary approach for curvilinear dynamic overset grids with application to ship hydrodynamics. Int. J. Numer. Methods Fluids. 58(6):591–624, 2008. https://doi.org/10.1002/fld.1758.

    Article  Google Scholar 

  54. Huebsch, N., P. Loskill, N. Deveshwar, C. I. Spencer, L. M. Judge, M. A. Mandegar, B. C. Fox, T. M. A. Mohamed, Z. Ma, A. Mathur, A. M. Sheehan, A. Truong, M. Saxton, J. Yoo, D. Srivastava, T. A. Desai, P.-L. So, K. E. Healy, and B. R. Conklin. Miniaturized IPS-cell-derived cardiac muscles for physiologically relevant drug response analyses. Sci. Rep. 6(1):24726–24726, 2016. https://doi.org/10.1038/srep24726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hund, T. J., and Y. Rudy. Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation. 110(20):3168–3174, 2004. https://doi.org/10.1161/01.CIR.0000147231.69595.D3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huxley, A. F. Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7:255–318, 1957.

    Article  CAS  Google Scholar 

  57. Huxley, A. F., and R. M. Simmons. Proposed mechanism of force generation in striated muscle. Nature. 233(5321):533–538, 1971. https://doi.org/10.1038/233533a0.

    Article  CAS  PubMed  Google Scholar 

  58. Israeli, Y., M. Gabalski, K. Ball, A. Wasserman, J. Zou, G. Ni, C. Zhou, and A. Aguirre. Generation of heart organoids modeling early human cardiac development under defined conditions. JAMA. 2020. https://doi.org/10.1101/2020.06.25.171611.

    Article  Google Scholar 

  59. Iyer, V., R. Mazhari, and R. L. Winslow. A computational model of the human left-ventricular epicardial myocyte. Biophys. J. 87(3):1507–1525, 2004. https://doi.org/10.1529/biophysj.104.043299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jie, X., V. Gurev, and N. Trayanova. Mechanisms of mechanically induced spontaneous arrhythmias in acute regional ischemia. Circ. Res. 106(1):185–192, 2010. https://doi.org/10.1161/CIRCRESAHA.109.210864.

    Article  CAS  PubMed  Google Scholar 

  61. Jung, H., K. Sung, K. S. Nayak, E. Y. Kim, and J. C. Ye. K-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn. Reson. Med. 61(1):103–116, 2009. https://doi.org/10.1002/mrm.21757.

    Article  PubMed  Google Scholar 

  62. Kamakura, T., T. Makiyama, K. Sasaki, Y. Yoshida, Y. Wuriyanghai, J. Chen, T. Hattori, S. Ohno, T. Kita, M. Horie, S. Yamanaka, and T. Kimura. Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ. J. 77(5):1307–1314, 2013. https://doi.org/10.1253/circj.CJ-12-0987.

    Article  CAS  PubMed  Google Scholar 

  63. Kaushik, G., and A. J. Engler. Chapter nine - from stem cells to cardiomyocytes: the role of forces in cardiac maturation, aging, and disease. In: Progress in Molecular Biology and Translational Science. Mechanotransduction, edited by A. J. Engler, and S. Kumar. Academic Press: Boca Raton, 2014.

    Google Scholar 

  64. Kayvanpour, E., T. Mansi, F. Sedaghat-Hamedani, A. Amr, D. Neumann, B. Georgescu, P. Seegerer, A. Kamen, J. Haas, K. S. Frese, M. Irawati, E. Wirsz, V. King, S. Buss, D. Mereles, E. Zitron, A. Keller, H. A. Katus, D. Comaniciu, and B. Meder. Towards personalized cardiology: multi-scale modeling of the failing heart. PLos ONE.10(7):e0134869, 2015. https://doi.org/10.1371/journal.pone.0134869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kerckhoffs, R. C. P., O. P. Faris, P. H. M. Bovendeerd, F. W. Prinzen, K. Smits, E. R. McVEIGH, and T. Arts. Timing of depolarization and contraction in the paced canine left ventricle: model and experiment. J. Cardiovasc. Electrophysiol. 14(s10):S188–S195, 2003. https://doi.org/10.1046/j.1540.8167.90310.x.

    Article  PubMed  Google Scholar 

  66. Kerckhoffs, R. C. P., S. N. Healy, T. P. Usyk, and A. D. McCulloch. Computational methods for cardiac electromechanics. Proc. IEEE. 94(4):769–783, 2006. https://doi.org/10.1109/JPROC.2006.871772.

    Article  Google Scholar 

  67. Kim, D.-S., Y. W. Choi, A. Shanmugasundaram, Y.-J. Jeong, J. Park, N.-E. Oyunbaatar, E.-S. Kim, M. Choi, and D.-W. Lee. Highly durable crack sensor integrated with silicone rubber cantilever for measuring cardiac contractility. Nat. Commun. 11(1):535–535, 2020. https://doi.org/10.1038/s41467-019-14019-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim, D.-H., P. Kim, I. Song, J. M. Cha, S. H. Lee, B. Kim, and K. Y. Suh. Guided three-dimensional growth of functional cardiomyocytes on polyethylene glycol nanostructures. Langmuir. 22(12):5419–5426, 2006. https://doi.org/10.1021/la060283u.

    Article  CAS  PubMed  Google Scholar 

  69. Kim, D.-H., J. Park, K. Y. Suh, P. Kim, S. K. Choi, S. Ryu, S. Park, S. H. Lee, and B. Kim. Fabrication of patterned micromuscles with high activity for powering biohybrid microdevices. Sens. Actuat. B. 117(2):391–400, 2006. https://doi.org/10.1016/j.snb.2005.11.051.

    Article  CAS  Google Scholar 

  70. Klauke, N., G. L. Smith, and J. Cooper. Stimulation of single isolated adult ventricular myocytes within a low volume using a planar microelectrode array. Biophys. J. 85(3):1766–1774, 2003. https://doi.org/10.1016/S0006-3495(03)74606-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kolanowski, T. J., M. Busek, M. Schubert, A. Dmitrieva, B. Binnewerg, J. Pöche, K. Fisher, F. Schmieder, S. Grünzner, S. Hansen, A. Richter, A. El-Armouche, F. Sonntag, and K. Guan. Enhanced structural maturation of human induced pluripotent stem cell-derived cardiomyocytes under a controlled microenvironment in a microfluidic system. Acta Biomater. 102:273–286, 2020. https://doi.org/10.1016/j.actbio.2019.11.044.

    Article  CAS  PubMed  Google Scholar 

  72. Kroll, K., M. Chabria, K. Wang, F. Häusermann, F. Schuler, and L. Polonchuk. Electro-mechanical conditioning of human IPSC-derived cardiomyocytes for translational research. Prog. Biophys. Mol. Biol. 130:212–222, 2017. https://doi.org/10.1016/j.pbiomolbio.2017.07.003.

    Article  CAS  PubMed  Google Scholar 

  73. Lai, J. H., G. Kajiyama, R. L. Smith, W. Maloney, and F. Yang. Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels. Sci. Rep. 3(1):3553, 2013. https://doi.org/10.1038/srep03553.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Land, S., and S. A. Niederer. A spatially detailed model of isometric contraction based on competitive binding of troponin I. Explains cooperative interactions between tropomyosin and crossbridges. PLoS Comput. Biol. 11(8):e1004376, 2015. https://doi.org/10.1371/journal.pcbi.1004376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Land, S., S.-J. Park-Holohan, N. P. Smith, C. G. dos Remedios, J. C. Kentish, and S. A. Niederer. A model of cardiac contraction based on novel measurements of tension development in human cardiomyocytes. J. Mol. Cell. Cardiol. 106:68–83, 2017. https://doi.org/10.1016/j.yjmcc.2017.03.008.

    Article  CAS  PubMed  Google Scholar 

  76. Landesberg, A., and S. Sideman. Coupling calcium binding to troponin C and cross-bridge cycling in skinned cardiac cells. Am. J. Physiol.-Heart Circ. Physiol. 266(3):H1260–H1271, 1994. https://doi.org/10.1152/ajpheart.1994.266.3.H1260.

    Article  CAS  Google Scholar 

  77. Lapp, H., T. Bruegmann, D. Malan, S. Friedrichs, C. Kilgus, A. Heidsieck, and P. Sasse. Frequency-dependent drug screening using optogenetic stimulation of human IPSC-derived cardiomyocytes. Sci. Rep. 7(1):9629–9629, 2017. https://doi.org/10.1038/s41598-017-09760-7.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lee, A. W. C., A. Crozier, E. R. Hyde, P. Lamata, M. Truong, M. Sohal, T. Jackson, J. M. Behar, S. Claridge, A. Shetty, E. Sammut, G. Plank, C. A. Rinaldi, and S. Niederer. Biophysical modeling to determine the optimization of left ventricular pacing site and AV/VV delays in the acute and chronic phase of cardiac resynchronization therapy. J. Cardiovasc. Electrophysiol. 28(2):208–215, 2017. https://doi.org/10.1111/jce.13134.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lee, S.-Y., D.-S. Kim, E.-S. Kim, and D.-W. Lee. Nano-textured polyimide cantilever for enhancing the contractile behavior of cardiomyocytes and its application to cardiac toxicity screening. Sens. Actuat. B.301:126995, 2019. https://doi.org/10.1016/j.snb.2019.126995.

    Article  CAS  Google Scholar 

  80. Lind, J. U., T. A. Busbee, A. D. Valentine, F. S. Pasqualini, H. Yuan, M. Yadid, S.-J. Park, A. Kotikian, A. P. Nesmith, P. H. Campbell, J. J. Vlassak, J. A. Lewis, and K. K. Parker. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. 16(3):303–308, 2017. https://doi.org/10.1038/nmat4782.

    Article  CAS  PubMed  Google Scholar 

  81. Lindblad, D. S., C. R. Murphey, J. W. Clark, and W. R. Giles. A model of the action potential and underlying membrane currents in a rabbit atrial cell. Am. J. Physiol. Heart Circ. Physiol. 271(4):H1666–H1696, 1996. https://doi.org/10.1152/ajpheart.1996.271.4.H1666.

    Article  CAS  Google Scholar 

  82. Liu, H., O. A. Bolonduro, N. Hu, J. Ju, A. A. Rao, B. M. Duffy, Z. Huang, L. D. Black, and B. P. Timko. Heart-on-a-chip model with integrated extra- and intracellular bioelectronics for monitoring cardiac electrophysiology under acute hypoxia. Nano Lett. 20(4):2585–2593, 2020. https://doi.org/10.1021/acs.nanolett.0c00076.

    Article  CAS  PubMed  Google Scholar 

  83. Liu, J., N. Sun, M. A. Bruce, J. C. Wu, and M. J. Butte. Atomic force mechanobiology of pluripotent stem cell-derived cardiomyocytes. PLoS ONE.7(5):e37559, 2012. https://doi.org/10.1371/journal.pone.0037559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lundy, S. D., W.-Z. Zhu, M. Regnier, and M. A. Laflamme. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 22(14):1991–2002, 2013. https://doi.org/10.1089/scd.2012.0490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Luo, C. H., and Y. Rudy. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ. Res. 74(6):1071–1096, 1994. https://doi.org/10.1161/01.RES.74.6.1071.

    Article  CAS  PubMed  Google Scholar 

  86. Ma, D., H. Wei, Y. Zhao, J. Lu, G. Li, N. B. E. Sahib, T. H. Tan, K. Y. Wong, W. Shim, P. Wong, S. A. Cook, and R. Liew. Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells. Int. J. Cardiol. 168(6):5277–5286, 2013. https://doi.org/10.1016/j.ijcard.2013.08.015.

    Article  PubMed  Google Scholar 

  87. Mahajan, A., Y. Shiferaw, D. Sato, A. Baher, R. Olcese, L.-H. Xie, M.-J. Yang, P.-S. Chen, J. G. Restrepo, A. Karma, A. Garfinkel, Z. Qu, and J. N. Weiss. A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophys. J. 94(2):392–410, 2008. https://doi.org/10.1529/biophysj.106.98160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Marsano, A., C. Conficconi, M. Lemme, P. Occhetta, E. Gaudiello, E. Votta, G. Cerino, A. Redaelli, and M. Rasponi. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip. 16(3):599–610, 2016. https://doi.org/10.1039/C5LC01356A.

    Article  CAS  PubMed  Google Scholar 

  89. Mironov, V., R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald. Organ printing: tissue spheroids as building blocks. Biomaterials. 30(12):2164–2174, 2009. https://doi.org/10.1016/j.biomaterials.2008.12.084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mozneb, M., A. Mirza, and C.-Z. Li. Non-invasive plasmonic based real time characterization of cardiac drugs on cardiomyocytes functional behavior. Anal. Chem. 92(2):2244–2250, 2019. https://doi.org/10.1021/acs.analchem.9b04956.

    Article  CAS  Google Scholar 

  91. Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8):773–785, 2014. https://doi.org/10.1038/nbt.2958.

    Article  CAS  PubMed  Google Scholar 

  92. Nash, M. P., and P. J. Hunter. Computational mechanics of the heart. J. Elast. 61(1):113–141, 2000. https://doi.org/10.1023/A:1011084330767.

    Article  Google Scholar 

  93. Nguyen, M.-D., J. P. Tinney, F. Yuan, T. J. Roussel, A. El-Baz, G. Giridharan, B. B. Keller, and P. Sethu. Cardiac cell culture model as a left ventricle mimic for cardiac tissue generation. Anal. Chem. 85(18):8773–8779, 2013. https://doi.org/10.1021/ac401910d.

    Article  CAS  PubMed  Google Scholar 

  94. Niederer, S. A., and N. P. Smith. A mathematical model of the slow force response to stretch in rat ventricular myocytes. Biophys. J. 92(11):4030–4044, 2007. https://doi.org/10.1529/biophysj.106.095463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Niederer, S. A., and N. P. Smith. The role of the frank-starling law in the transduction of cellular work to whole organ pump function: a computational modeling analysis. PLoS Comput. Biol.5(4):e1000371, 2009. https://doi.org/10.1371/journal.pcbi.1000371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Noble, D., and Y. Rudy. Models of cardiac ventricular action potentials: iterative interaction between experiment and simulation. Philos. Trans. R. Soc. Lond. Series A. 359(1783):1127–1142, 2001. https://doi.org/10.1098/rsta.2001.0820.

    Article  Google Scholar 

  97. Norotte, C., F. S. Marga, L. E. Niklason, and G. Forgacs. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 30(30):5910–5917, 2009. https://doi.org/10.1016/j.biomaterials.2009.06.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nunes, S. S., J. W. Miklas, J. Liu, R. Aschar-Sobbi, Y. Xiao, B. Zhang, J. Jiang, S. Massé, M. Gagliardi, A. Hsieh, N. Thavandiran, M. A. Laflamme, K. Nanthakumar, G. J. Gross, P. H. Backx, G. Keller, and M. Radisic. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat. Methods. 10(8):781–787, 2013. https://doi.org/10.1038/nmeth.2524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nygren, A., C. Fiset, L. Firek, J. W. Clark, D. S. Lindblad, R. B. Clark, and W. R. Giles. Mathematical model of an adult human atrial cell. Circ. Res. 82(1):63–81, 1998. https://doi.org/10.1161/01.RES.82.1.63.

    Article  CAS  PubMed  Google Scholar 

  100. Ogasawara, T., S. Okano, H. Ichimura, S. Kadota, Y. Tanaka, I. Minami, M. Uesugi, Y. Wada, N. Saito, K. Okada, K. Kuwahara, and Y. Shiba. Impact of extracellular matrix on engraftment and maturation of pluripotent stem cell-derived cardiomyocytes in a rat myocardial infarct model. Sci. Rep. 7(1):8630, 2017. https://doi.org/10.1038/s41598-017-09217-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Oyunbaatar, N.-E., D.-H. Lee, S. J. Patil, E.-S. Kim, and D.-W. Lee. Biomechanical characterization of cardiomyocyte using PDMS pillar with microgrooves. Sensors. 2016. https://doi.org/10.3390/s16081258.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Pandit, S. V., R. B. Clark, W. R. Giles, and S. S. Demir. A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys. J. 81(6):3029–3051, 2001. https://doi.org/10.1016/S0006-3495(01)75943-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Parsa, H., B. Z. Wang, and G. Vunjak-Novakovic. A microfluidic platform for the high-throughput study of pathological cardiac hypertrophy. Lab Chip. 17(19):3264–3271, 2017. https://doi.org/10.1039/C7LC00415J.

    Article  CAS  PubMed  Google Scholar 

  104. Pavesi, A., F. Piraino, G. B. Fiore, K. M. Farino, M. Moretti, and M. Rasponi. How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications. Lab Chip. 11(9):1593–1595, 2011. https://doi.org/10.1039/C1LC20084D.

    Article  CAS  PubMed  Google Scholar 

  105. Peskin, C. S. The immersed boundary method. Acta Numer. 11:479–517, 2002. https://doi.org/10.1017/S0962492902000077.

    Article  Google Scholar 

  106. Plouffe, B. D., M. A. Brown, R. K. Iyer, M. Radisic, and S. K. Murthy. Controlled capture and release of cardiac fibroblasts using peptide-functionalized alginate gels in microfluidic channels. Lab Chip. 9(11):1507–1510, 2009. https://doi.org/10.1039/B823523F.

    Article  CAS  PubMed  Google Scholar 

  107. Qian, F., C. Huang, Y.-D. Lin, A. N. Ivanovskaya, T. J. O’Hara, R. H. Booth, C. J. Creek, H. A. Enright, D. A. Soscia, A. M. Belle, R. Liao, F. C. Lightstone, K. S. Kulp, and E. K. Wheeler. Simultaneous electrical recording of cardiac electrophysiology and contraction on chip. Lab Chip. 17(10):1732–1739, 2017. https://doi.org/10.1039/C7LC00210F.

    Article  CAS  PubMed  Google Scholar 

  108. Rastogi, S. K., J. Bliley, D. J. Shiwarski, G. Raghavan, A. W. Feinberg, and T. Cohen-Karni. Graphene microelectrode arrays for electrical and optical measurements of human stem cell-derived cardiomyocytes. Cell. Mol. Bioeng. 11(5):407–418, 2018. https://doi.org/10.1007/s12195-018-0525-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Razumova, M. V., A. E. Bukatina, and K. B. Campbell. Stiffness-distortion sarcomere model for muscle simulation. J. Appl. Physiol. 87(5):1861–1876, 1999. https://doi.org/10.1152/jappl.1999.87.5.1861.

    Article  CAS  PubMed  Google Scholar 

  110. Rice, J. J., G. Stolovitzky, Y. Tu, and P. P. de Tombe. Ising model of cardiac thin filament activation with nearest-neighbor cooperative interactions. Biophys. J. 84(2):897–909, 2003. https://doi.org/10.1016/S0006-3495(03)74907-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rice, J. J., R. L. Winslow, and W. C. Hunter. Comparison of putative cooperative mechanisms in cardiac muscle: length dependence and dynamic responses. Am. J. Physiol. Heart Circ. Physiol. 276(5):H1734–H1754, 1999. https://doi.org/10.1152/ajpheart.1999.276.5.H1734.

    Article  CAS  Google Scholar 

  112. Scherl, I., B. Strom, J. K. Shang, O. Williams, B. L. Polagye, and S. L. Brunton. Robust principal component analysis for modal decomposition of corrupt fluid flows. Phys. Rev. Fluids.5(5):054401, 2020. https://doi.org/10.1103/PhysRevFluids.5.054401.

    Article  Google Scholar 

  113. SCLS-Channel. Multi-scale multi-physics heart simulator UT-heart

  114. Seo, H.-R., H. J. Joo, D. H. Kim, L.-H. Cui, S.-C. Choi, J.-H. Kim, S. W. Cho, K. B. Lee, and D.-S. Lim. Nanopillar surface topology promotes cardiomyocyte differentiation through Cofilin-mediated cytoskeleton rearrangement. ACS Appl. Mater. Interfaces. 9(20):16803–16812, 2017. https://doi.org/10.1021/acsami.7b01555.

    Article  CAS  PubMed  Google Scholar 

  115. Shang, Y., Z. Chen, F. Fu, L. Sun, C. Shao, W. Jin, H. Liu, and Y. Zhao. Cardiomyocyte-driven structural color actuation in anisotropic inverse opals. ACS Nano. 13(1):796–802, 2019. https://doi.org/10.1021/acsnano.8b08230.

    Article  CAS  PubMed  Google Scholar 

  116. Souders, C. A., S. L. K. Bowers, and T. A. Baudino. Cardiac fibroblast: the renaissance cell. Circ. Res. 105(12):1164–1176, 2009. https://doi.org/10.1161/CIRCRESAHA.109.209809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Stancescu, M., P. Molnar, C. W. McAleer, W. McLamb, C. J. Long, C. Oleaga, J.-M. Prot, and J. J. Hickman. A phenotypic in vitro model for the main determinants of human whole heart function. Biomaterials. 60:20–30, 2015. https://doi.org/10.1016/j.biomaterials.2015.04.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sun, J., and H. Tan. Alginate-based biomaterials for regenerative medicine applications. Materials. 2013. https://doi.org/10.3390/ma6041285.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Suzuki, I., M. Fukuda, K. Shirakawa, H. Jiko, and M. Gotoh. Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials. Biosens. Bioelectron. 49:270–275, 2013. https://doi.org/10.1016/j.bios.2013.05.023.

    Article  CAS  PubMed  Google Scholar 

  120. Takeuchi, M., T. Kozuka, E. Kim, A. Ichikawa, Y. Hasegawa, Q. Huang, and T. Fukuda. On-chip fabrication of cell-attached microstructures using photo-cross-linkable biodegradable hydrogel. J. Funct. Biomater. 11(1):18, 2020. https://doi.org/10.3390/jfb11010018.

    Article  CAS  PubMed Central  Google Scholar 

  121. Tan, H. Y., W. K. Loke, and N.-T. Nguyen. A reliable method for bonding polydimethylsiloxane (PDMS) to polymethylmethacrylate (PMMA) and its application in micropumps. Sens. Actuat. B. 151(1):133–139, 2010. https://doi.org/10.1016/j.snb.2010.09.035.

    Article  CAS  Google Scholar 

  122. Tanaka, Y., K. Morishima, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, and T. Kitamori. Demonstration of a PDMS-based bio-microactuator using cultured cardiomyocytes to drive polymer micropillars. Lab Chip. 6(2):230–235, 2006. https://doi.org/10.1039/B512099C.

    Article  CAS  PubMed  Google Scholar 

  123. Taylor, D. Fewer new drugs from the pharmaceutical industry. BMJ. 326(7386):408–409, 2003. https://doi.org/10.1136/bmj.326.7386.408.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Tewari, S. G., S. M. Bugenhagen, B. M. Palmer, and D. A. Beard. Dynamics of cross-bridge cycling, ATP hydrolysis, force generation, and deformation in cardiac muscle. J. Mol. Cell. Cardiol. 96:11–25, 2016. https://doi.org/10.1016/j.yjmcc.2015.02.006.

    Article  CAS  PubMed  Google Scholar 

  125. Tian, B., T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, and C. M. Lieber. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science. 329(5993):830–834, 2010. https://doi.org/10.1126/science.1192033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Timko, B. P., T. Cohen-Karni, G. Yu, Q. Qing, B. Tian, and C. M. Lieber. Electrical recording from hearts with flexible nanowire device arrays. Nano Lett. 9(2):914–918, 2009. https://doi.org/10.1021/nl900096z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Trayanova, N. A., and R. Winslow. Whole-heart modeling. Circ. Res. 108(1):113–128, 2011. https://doi.org/10.1161/CIRCRESAHA.110.223610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ugolini, G. S., M. Rasponi, A. Pavesi, R. Santoro, R. Kamm, G. B. Fiore, M. Pesce, and M. Soncini. On-chip assessment of human primary cardiac fibroblasts proliferative responses to uniaxial cyclic mechanical strain. Biotechnol. Bioeng. 113(4):859–869, 2016. https://doi.org/10.1002/bit.25847.

    Article  CAS  PubMed  Google Scholar 

  129. Usyk, T. P., and A. D. McCulloch. Relationship between regional shortening and asynchronous electrical activation in a three-dimensional model of ventricular electromechanics. J. Cardiovasc. Electrophysiol. 14(s10):S196–S202, 2003. https://doi.org/10.1046/j.1540.8167.90311.x.

    Article  PubMed  Google Scholar 

  130. Virtanen, J., M. Toivanen, T. Toimela, T. Heinonen, and S. Tuukkanen. Direct measurement of contraction force in human cardiac tissue model using piezoelectric cantilever sensor technique. Curr. Appl. Phys. 20(1):155–160, 2020. https://doi.org/10.1016/j.cap.2019.10.020.

    Article  Google Scholar 

  131. Vreeker, A., L. van Stuijvenberg, T. J. Hund, P. J. Mohler, P. G. J. Nikkels, and T. A. B. van Veen. Assembly of the cardiac intercalated disk during pre- and postnatal development of the human heart. PLoS ONE.9(4):e94722, 2014. https://doi.org/10.1371/journal.pone.0094722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Waldbaur, A., H. Rapp, K. Länge, and B. E. Rapp. Let there be chip—towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Analy. Methods. 3(12):2681–2716, 2011. https://doi.org/10.1039/C1AY05253E.

    Article  CAS  Google Scholar 

  133. Wang, L., W. Dou, M. Malhi, M. Zhu, H. Liu, J. Plakhotnik, Z. Xu, Q. Zhao, J. Chen, S. Chen, R. Hamilton, C. A. Simmons, J. T. Maynes, and Y. Sun. Microdevice platform for continuous measurement of contractility, beating rate, and beating rhythm of human-induced pluripotent stem cell-cardiomyocytes inside a controlled incubator environment. ACS Appl. Mater. Interfaces. 10(25):21173–21183, 2018. https://doi.org/10.1021/acsami.8b05407.

    Article  CAS  PubMed  Google Scholar 

  134. Washio, T., J. Okada, S. Sugiura, and T. Hisada. Approximation for cooperative interactions of a spatially-detailed cardiac sarcomere model. Cel. Mol. Bioeng. 5(1):113–126, 2012. https://doi.org/10.1007/s12195-011-0219-2.

    Article  Google Scholar 

  135. Weber, A. On the role of calcium in the activity of adenosine 5′-triphosphate hydrolysis by actomyosin. J. Biol. Chem. 234(10):2764–2769, 1959. https://doi.org/10.1016/S0021-9258(18)69777-7.

    Article  CAS  PubMed  Google Scholar 

  136. Wei, X., C. Qin, C. Gu, C. He, Q. Yuan, M. Liu, L. Zhuang, H. Wan, and P. Wang. A novel bionic in vitro bioelectronic tongue based on cardiomyocytes and microelectrode array for bitter and umami detection. Biosens. Bioelectron.145:111673, 2019. https://doi.org/10.1016/j.bios.2019.111673.

    Article  CAS  PubMed  Google Scholar 

  137. Werdich, A. A., E. A. Lima, B. Ivanov, I. Ges, M. E. Anderson, J. P. Wikswo, and F. J. Baudenbacher. A microfluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellular potential recordings. Lab Chip. 4(4):357–362, 2004. https://doi.org/10.1039/B315648F.

    Article  CAS  PubMed  Google Scholar 

  138. Wong, A. Y. K. Mechanics of cardiac muscle, based on Huxley’s model: mathematical simulation of isometric contraction. J. Biomech. 4(6):529–540, 1971. https://doi.org/10.1016/0021-9290(71)90042-X.

    Article  CAS  PubMed  Google Scholar 

  139. Woodcock, E. A., and S. J. Matkovich. Cardiomyocytes structure, function and associated pathologies. Int. J. Biochem. Cell Biol. 37(9):1746–1751, 2005. https://doi.org/10.1016/j.biocel.2005.04.011.

    Article  CAS  PubMed  Google Scholar 

  140. Xin, M., E. N. Olson, and R. Bassel-Duby. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat. Rev. Mol. Cell. Biol. 14(8):529–541, 2013. https://doi.org/10.1038/nrm3619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yakushenko, A., Z. Gong, V. Maybeck, B. Hofmann, E. Gu, M. D. Dawson, A. Offenhaeusser, and B. Wolfrum. On-chip optical stimulation and electrical recording from cells. J. Biomed. Opt. 18(11):1–8, 2013. https://doi.org/10.1117/1.JBO.18.11.111402.

    Article  Google Scholar 

  142. Yang, M., and X. Zhang. Electrical assisted patterning of cardiac myocytes with controlled macroscopic anisotropy using a microfluidic dielectrophoresis chip. Sens. Actuat. A. 135(1):73–79, 2007. https://doi.org/10.1016/j.sna.2006.06.071.

    Article  CAS  Google Scholar 

  143. Yin, S., X. Zhang, C. Zhan, J. Wu, J. Xu, and J. Cheung. Measuring single cardiac myocyte contractile force via moving a magnetic bead. Biophys. J. 88(2):1489–1495, 2005. https://doi.org/10.1529/biophysj.104.048157.

    Article  CAS  PubMed  Google Scholar 

  144. Yoshida, S., S. Miyagawa, S. Fukushima, T. Kawamura, N. Kashiyama, F. Ohashi, T. Toyofuku, K. Toda, and Y. Sawa. Maturation of human induced pluripotent stem cell-derived cardiomyocytes by soluble factors from human mesenchymal stem cells. Mol. Therapy. 26(11):2681–2695, 2018. https://doi.org/10.1016/j.ymthe.2018.08.012.

    Article  CAS  Google Scholar 

  145. Zahalak, G. I. A distribution-moment approximation for kinetic theories of muscular contraction. Math. Biosci. 55(1):89–114, 1981. https://doi.org/10.1016/0025-5564(81)90014-6.

    Article  Google Scholar 

  146. Zhang, B., A. Korolj, B. F. L. Lai, and M. Radisic. Advances in organ-on-a-chip engineering. Nat. Rev. Mater. 3(8):257–278, 2018. https://doi.org/10.1038/s41578-018-0034-7.

    Article  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4