Adams, S., L. M. Wuescher, R. Worth, and E. Yildirim-Ayan. Mechano-immunomodulation: mechanoresponsive changes in macrophage activity and polarization. Ann. Biomed. Eng. 47(11):2213–2231, 2019.
Alfarsi, M. A., S. M. Hamlet, and S. Ivanovski. Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response. J. Biomed. Mater. Res. A 102(1):60–67, 2014.
Anderson, J. M., A. Rodriguez, and D. T. Chang. Foreign body reaction to biomaterials. Semin. Immunol. 20(2):86–100, 2008.
Ardi, V. C., T. A. Kupriyanova, E. I. Deryugina, and J. P. Quigley. Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc. Natl. Acad. Sci. U. S. A. 104(51):20262–20267, 2007.
Arras, M., W. D. Ito, D. Scholz, B. Winkler, J. Schaper, and W. Schaper. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest. 101(1):40–50, 1998.
Bach, L. A. Endothelial cells and the IGF system. J. Mol. Endocrinol. 54(1):R1–13, 2015.
Badylak, S. F., J. E. Valentin, A. K. Ravindra, G. P. McCabe, and A. M. Stewart-Akers. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A 14(11):1835–1842, 2008.
Baluk, P., L. C. Yao, J. Feng, T. Romano, S. S. Jung, J. L. Schreiter, L. Yan, D. J. Shealy, and D. M. McDonald. TNF-alpha drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice. J. Clin. Invest. 119(10):2954–2964, 2009.
Bartneck, M., V. A. Schulte, N. E. Paul, M. Diez, M. C. Lensen, and G. Zwadlo-Klarwasser. Induction of specific macrophage subtypes by defined micro-patterned structures. Acta Biomater. 6(10):3864–3872, 2010.
Blakney, A. K., M. D. Swartzlander, and S. J. Bryant. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. A 100(6):1375–1386, 2012.
Boersema, G. S., N. Grotenhuis, Y. Bayon, J. F. Lange, and Y. M. Bastiaansen-Jenniskens. The effect of biomaterials used for tissue regeneration purposes on polarization of macrophages. Biores Open Access 5(1):6–14, 2016.
Bota, P. C., A. M. Collie, P. Puolakkainen, R. B. Vernon, E. H. Sage, B. D. Ratner, and P. S. Stayton. Biomaterial topography alters healing in vivo and monocyte/macrophage activation in vitro. J. Biomed. Mater. Res. A 95(2):649–657, 2010.
Brancato, S. K., and J. E. Albina. Wound macrophages as key regulators of repair origin, phenotype, and function. Am. J. Pathol. 178(1):19–25, 2011.
Brecht, K., A. Weigert, J. Hu, R. Popp, B. Fisslthaler, T. Korff, I. Fleming, G. Geisslinger, and B. Brune. Macrophages programmed by apoptotic cells promote angiogenesis via prostaglandin E2. FASEB J. 25(7):2408–2417, 2011.
Brown, B. N., R. Londono, S. Tottey, L. Zhang, K. A. Kukla, M. T. Wolf, K. A. Daly, J. E. Reing, and S. F. Badylak. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 8(7):2871, 2012.
Brown, B. N., J. E. Valentin, A. M. Stewart-Akers, G. P. McCabe, and S. F. Badylak. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30(8):1482–1491, 2009.
Cao, J., R. Dong, L. Jiang, Y. Gong, M. Yuan, J. You, W. Meng, Z. Chen, N. Zhang, Q. Weng, H. Zhu, Q. He, M. Ying, and B. Yang. LncRNA-MM2P identified as a modulator of macrophage M2 polarization. Cancer Immunol. Res. 7(2):292–305, 2019.
Carmi, Y., E. Voronov, S. Dotan, N. Lahat, M. A. Rahat, M. Fogel, M. Huszar, M. R. White, C. A. Dinarello, and R. N. Apte. The role of macrophage-derived IL-1 in induction and maintenance of angiogenesis. J. Immunol. 183(7):4705–4714, 2009.
Cha, B. H., S. R. Shin, J. Leijten, Y. C. Li, S. Singh, J. C. Liu, N. Annabi, R. Abdi, M. R. Dokmeci, N. E. Vrana, A. M. Ghaemmaghami, and A. Khademhosseini. Integrin-mediated interactions control macrophage polarization in 3D hydrogels. Adv. Healthcare Mater. 6(21):2017.
Chen, S., L. Ge, H. Wang, Y. Cheng, S. Gorantla, L. Y. Poluektova, A. F. Gombart, and J. Xie. Eluted 25-hydroxyvitamin D3 from radially aligned nanofiber scaffolds enhances cathelicidin production while reducing inflammatory response in human immune system-engrafted mice. Acta Biomater. 97:187–199, 2019.
Chen, L., D. Wang, F. Peng, J. Qiu, L. Ouyang, Y. Qiao, and X. Liu. Nanostructural surfaces with different elastic moduli regulate the immune response by stretching macrophages. Nano Lett. 19(6):3480–3489, 2019.
Chen, S., H. Wang, Y. Su, J. V. John, A. McCarthy, S. L. Wong, and J. Xie. Mesenchymal stem cell-laden, personalized 3D scaffolds with controlled structure and fiber alignment promote diabetic wound healing. Acta Biomater. 108:153–167, 2020.
DeFalco, T., I. Bhattacharya, A. V. Williams, D. M. Sams, and B. Capel. Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis. Proc. Natl. Acad. Sci. U. S. A. 111(23):E2384–E2393, 2014.
Deng, M., J. Tan, C. Hu, T. Hou, W. Peng, J. Liu, B. Yu, Q. Dai, J. Zhou, Y. Yang, R. Dong, C. Ruan, S. Dong, and J. Xu. Modification of PLGA scaffold by MSC-derived extracellular matrix combats macrophage inflammation to initiate bone regeneration via TGF-β-induced protein. Adv. Healthcare Mater. 9(13):2020.
Ding, Y., A.-S. Zhao, T. Liu, Y.-N. Wang, Y. Gao, J.-A. Li, and P. Yang. An Injectable Nanocomposite Hydrogel for Potential Application of Vascularization and Tissue Repair. Ann. Biomed. Eng. 48(5):1511–1523, 2020.
Dipietro, L. A. Wound healing: the role of the macrophage and other immune cells. Shock 4(4):233–240, 1995.
Donnely, E., M. Griffin, and P. E. Butler. Breast reconstruction with a tissue engineering and regenerative medicine approach (systematic review). Ann. Biomed. Eng. 48(1):9–25, 2019.
Fantin, A., J. M. Vieira, G. Gestri, L. Denti, Q. Schwarz, S. Prykhozhij, F. Peri, S. W. Wilson, and C. Ruhrberg. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116(5):829–840, 2010.
Farris, A. L., A. N. Rindone, and W. L. Grayson. Oxygen delivering biomaterials for tissue engineering. J. Mater. Chem. B 4(20):3422–3432, 2016.
Fishman, J. M., M. W. Lowdell, L. Urbani, T. Ansari, A. J. Burns, M. Turmaine, J. North, P. Sibbons, A. M. Seifalian, K. J. Wood, M. A. Birchall, and P. De Coppi. Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model. Proc. Natl. Acad. Sci. U. S. A. 110(35):14360–14365, 2013.
Franz, S., S. Rammelt, D. Scharnweber, and J. C. Simon. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32(28):6692–6709, 2011.
Garg, K., N. A. Pullen, C. A. Oskeritzian, J. J. Ryan, and G. L. Bowlin. Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials 34(18):4439–4451, 2013.
Ghasemi, H., T. Ghazanfari, R. Yaraee, S. Faghihzadeh, and Z. M. Hassan. Roles of IL-8 in ocular inflammations: a review. Ocul. Immunol. Inflamm. 19(6):401–412, 2011.
Graney, P. L., S. Ben-Shaul, S. Landau, A. Bajpai, B. Singh, J. Eager, A. Cohen, S. Levenberg, and K. L. Spiller. Macrophages of diverse phenotypes drive vascularization of engineered tissues. Sci. Adv. 6(18):6391, 2020.
Grotenhuis, N., H. F. E. Toom, N. Kops, Y. Bayon, E. B. Deerenberg, I. M. Mulder, G. J. V. M. van Osch, J. F. Lange, and Y. M. Bastiaansen-Jenniskens. In vitro model to study the biomaterial-dependent reaction of macrophages in an inflammatory environment. BJS 101(8):983–992, 2014.
Gurevich, D. B., C. E. Severn, C. Twomey, A. Greenhough, J. Cash, A. M. Toye, H. Mellor, and P. Martin. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. The EMBO Journal 37(13):2018.
Hellstrom, M., M. Kalen, P. Lindahl, A. Abramsson, and C. Betsholtz. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14):3047–3055, 1999.
Herbert, S. P., and D. Y. Stainier. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat. Rev. Mol. Cell Biol. 12(9):551–564, 2011.
Hibino, N., T. Yi, D. R. Duncan, A. Rathore, E. Dean, Y. Naito, A. Dardik, T. Kyriakides, J. Madri, J. S. Pober, T. Shinoka, and C. K. Breuer. A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts. FASEB J. 25(12):4253–4263, 2011.
Hirose, N., H. Maeda, M. Yamamoto, Y. Hayashi, G. H. Lee, L. Chen, G. Radhakrishnan, P. Rao, and S. Sasaguri. The local injection of peritoneal macrophages induces neovascularization in rat ischemic hind limb muscles. Cell Transplant. 17(1–2):211–222, 2008.
Hisatome, T., Y. Yasunaga, S. Yanada, Y. Tabata, Y. Ikada, and M. Ochi. Neovascularization and bone regeneration by implantation of autologous bone marrow mononuclear cells. Biomaterials 26(22):4550–4556, 2005.
Huang, Z., Q. Luo, F. Yao, C. Qing, J. Ye, Y. Deng, and J. Li. Identification of differentially expressed long non-coding RNAs in polarized macrophages. Sci. Rep. 6:19705, 2016.
Italiani, P., and D. Boraschi. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front. Immunol. 5:514, 2014.
Jadhav, U., S. Chigurupati, S. S. Lakka, and S. Mohanam. Inhibition of matrix metalloproteinase-9 reduces in vitro invasion and angiogenesis in human microvascular endothelial cells. Int. J. Oncol. 25(5):1407–1414, 2004.
Jia, Y., and Y. Zhou. Involvement of lncRNAs and macrophages: potential regulatory link to angiogenesis. J. Immunol. Res. 2020:1704631, 2020.
Jiang, J., S. Chen, H. Wang, M. A. Carlson, A. F. Gombart, and J. Xie. CO2-expanded nanofiber scaffolds maintain activity of encapsulated bioactive materials and promote cellular infiltration and positive host response. Acta Biomater. 68:237–248, 2018.
Johnston, Jr, R. B. Current concepts: immunology: monocytes and macrophages. N. Engl. J. Med. 318(12):747–752, 1988.
Kajahn, J., S. Franz, E. Rueckert, I. Forstreuter, V. Hintze, S. Moeller, and J. C. Simon. Artificial extracellular matrices composed of collagen I and high sulfated hyaluronan modulate monocyte to macrophage differentiation under conditions of sterile inflammation. Biomatter 2(4):226–236, 2012.
Kang, H., S. Wong, Q. Pan, G. Li, and L. Bian. Anisotropic ligand nanogeometry modulates the adhesion and polarization state of macrophages. Nano Lett. 19(3):1963–1975, 2019.
Kaully, T., K. Kaufman-Francis, A. Lesman, and S. Levenberg. Vascularization-the conduit to viable engineered tissues. Tissue Eng. Part B 15(2):159–169, 2009.
Keane, T. J., R. Londono, N. J. Turner, and S. F. Badylak. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33(6):1771–1781, 2012.
Kloc, M., R. M. Ghobrial, J. Wosik, A. Lewicka, S. Lewicki, and J. Z. Kubiak. Macrophage functions in wound healing. J. Tissue Eng. Regen. Med. 13(1):99–109, 2018.
Klopfleisch, R. Macrophage reaction against biomaterials in the mouse model: phenotypes, functions and markers. Acta Biomater. 43:3–13, 2016.
Korn, C., and H. G. Augustin. Mechanisms of vessel pruning and regression. Dev. Cell 34(1):5–17, 2015.
Kou, P. M., and J. E. Babensee. Macrophage and dendritic cell phenotypic diversity in the context of biomaterials. J. Biomed. Mater. Res. A 96(1):239–260, 2011.
la Sala, A., L. Pontecorvo, A. Agresta, G. Rosano, and E. Stabile. Regulation of collateral blood vessel development by the innate and adaptive immune system. Trends Mol. Med. 18(8):494–501, 2012.
Leibovich, S. J., P. J. Polverini, H. M. Shepard, D. M. Wiseman, V. Shively, and N. Nuseir. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 329(6140):630–632, 1987.
Li, X., B. Cho, R. Martin, M. Seu, C. Zhang, Z. Zhou, J. S. Choi, X. Jiang, L. Chen, G. Walia, J. Yan, M. Callanan, H. Liu, K. Colbert, J. Morrissette-McAlmon, W. Grayson, S. Reddy, J. M. Sacks, and H. Q. Mao. Nanofiber-hydrogel composite-mediated angiogenesis for soft tissue reconstruction. Sci. Transl. Med. 11(490):559, 2019.
Li, T., M. Peng, Z. Yang, X. Zhou, Y. Deng, C. Jiang, M. Xiao, and J. Wang. 3D-printed IFN-gamma-loading calcium silicate-beta-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone. Acta Biomater. 71:96–107, 2018.
Lin, J., I. Mohamed, P. Lin, H. Shirahama, U. Milbreta, J. Sieow, Y. Peng, M. Bugiani, S. Wong, H. Levinson, and S. Chew. Modulating macrophage phenotype by sustained MicroRNA delivery improves host-implant integration. Adv. Healthcare Mater. 9(3):2020.
Lopez-Silva, T. L., D. G. Leach, A. Azares, I. C. Li, D. G. Woodside, and J. D. Hartgerink. Chemical functionality of multidomain peptide hydrogels governs early host immune response. Biomaterials 231:2020.
Low-Marchelli, J. M., V. C. Ardi, E. A. Vizcarra, N. van Rooijen, J. P. Quigley, and J. Yang. Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Res. 73(2):662–671, 2013.
Lucke, S., A. Hoene, U. Walschus, A. Kob, J. W. Pissarek, and M. Schlosser. Acute and chronic local inflammatory reaction after implantation of different extracellular porcine dermis collagen matrices in rats. BioMed Res. Int. 2015:2015.
Luo, N., J. Weber, S. Wang, B. Luan, H. Yue, X. Xi, J. Du, Z. Yang, W. Wei, R. Zhou, and G. Ma. PEGylated graphene oxide elicits strong immunological responses despite surface passivation. Nat. Commun. 8:14537, 2017.
Lv, L., Y. Xie, K. Li, T. Hu, X. Lu, Y. Cao, and X. Zheng. Unveiling the mechanism of surface hydrophilicity-modulated macrophage polarization. Adv. Healthcare Mater. 7(19):2018.
Madden, L. R., D. J. Mortisen, E. M. Sussman, S. K. Dupras, J. A. Fugate, J. L. Cuy, K. D. Hauch, M. A. Laflamme, C. E. Murry, and B. D. Ratner. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Nat. Acad. Sci. 107(34):15211–15216, 2010.
Mahon, O. R., D. C. Browe, T. Gonzalez-Fernandez, P. Pitacco, I. T. Whelan, S. Von Euw, C. Hobbs, V. Nicolosi, K. T. Cunningham, K. H. Mills, and D. J. Kelly. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials 239:2020.
Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25(12):677–686, 2004.
Martinez, F. O., and S. Gordon. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6:13, 2014.
Martinez, F. O., S. Gordon, M. Locati, and A. Mantovani. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177(10):7303–7311, 2006.
McPherson, J. M., S. Sawamura, and R. Armstrong. An examination of the biologic response to injectable, glutaraldehyde cross-linked collagen implants. J. Biomed. Mater. Res. 20(1):93–107, 1986.
Mehta, V. B., G. E. Besner, and V. B. Mehta. Besner GE (2007) HB-EGF promotes angiogenesis in endothelial cells via PI3-kinase and MAPK signaling pathways. Growth Fact. (Chur, Switz.) 25(4):253–263, 2007.
Mettouchi, A., S. Klein, W. Guo, M. Lopez-Lago, E. Lemichez, J. Westwick, and F. Giancotti. Integrin-specific activation of Rac controls progression through the G(1) phase of the cell cycle. Mol. Cell 8(1):115–127, 2001.
Mikolajczyk, T. P., R. Nosalski, P. Szczepaniak, K. Budzyn, G. Osmenda, D. Skiba, A. Sagan, J. Wu, A. Vinh, P. J. Marvar, B. Guzik, J. Podolec, G. Drummond, H. E. Lob, D. G. Harrison, and T. J. Guzik. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension. FASEB J. 30(5):1987–1999, 2016.
Mills, C. D., K. Kincaid, J. M. Alt, M. J. Heilman, and A. M. Hill. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164(12):6166–6173, 2000.
Moor, E. M., and J. L. West. Harnessing macrophages for vascularization in tissue engineering. Ann. Biomed. Eng. 47(2):354–365, 2019.
Moreno, J. L., I. Mikhailenko, M. M. Tondravi, and A. D. Keegan. IL-4 promotes the formation of multinucleated giant cells from macrophage precursors by a STAT6-dependent, homotypic mechanism: contribution of E-cadherin. J. Leukoc. Biol. 82(6):1542–1553, 2007.
Mosser, D. M., and J. P. Edwards. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8(12):958–969, 2008.
Neher, M. D., S. Weckbach, M. A. Flierl, M. S. Huber-Lang, and P. F. Stahel. Molecular mechanisms of inflammation and tissue injury after major trauma-is complement the “bad guy”? J. Biomed. Sci. 18:48, 2011.
Niu, Y., L. Wang, N. Yu, P. Xing, Z. Wang, Z. Zhong, Y. Feng, L. Dong, and C. Wang. An “all-in-one” scaffold targeting macrophages to direct endogenous bone repair in situ. Acta Biomater. 111:153–169, 2020.
Novosel, E. C., C. Kleinhans, and P. J. Kluger. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63(4–5):300–311, 2011.
Ong, S., S. Biswas, and S. Wong. MicroRNA-mediated immune modulation as a therapeutic strategy in host-implant integration. Adv. Drug Del. Rev. 88:92–107, 2015.
Patan, S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J. Neurooncol. 50(1–2):1–15, 2000.
Prazeres, P., V. M. Almeida, L. Lousado, J. P. Andreotti, A. E. Paiva, G. S. P. Santos, P. O. Azevedo, L. Souto, G. G. Almeida, R. Filev, A. Mintz, R. Goncalves, and A. Birbrair. Macrophages generate pericytes in the developing brain. Cell. Mol. Neurobiol. 38(4):777–782, 2018.
Rademakers, T., J. M. Horvath, C. A. van Blitterswijk, and V. L. S. LaPointe. Oxygen and nutrient delivery in tissue engineering: approaches to graft vascularization. J. Tissue Eng. Regen. Med. 13(10):1815–1829, 2019.
Ribatti, D., and E. Crivellato. Immune cells and angiogenesis. J. Cell. Mol. Med. 13(9A):2822–2833, 2009.
Ribatti, D., A. Vacca, B. Nico, L. Roncali, and F. Dammacco. Postnatal vasculogenesis. Mech. Dev. 100(2):157–163, 2001.
Risau, W. Mechanisms of angiogenesis. Nature 386(6626):671–674, 1997.
Risau, W., and I. Flamme. Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11:73–91, 1995.
Sainson, R. C. A., D. A. Johnston, H. C. Chu, M. T. Holderfield, M. N. Nakatsu, S. P. Crampton, J. Davis, E. Conn, and C. C. W. Hughes. TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood 111(10):4997–5007, 2008.
Sakurai, E., A. Anand, B. K. Ambati, N. van Rooijen, and J. Ambati. Macrophage depletion inhibits experimental choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 44(8):3578–3585, 2003.
Sharma, D., D. Ross, G. Wang, W. Jia, S. J. Kirkpatrick, and F. Zhao. Upgrading prevascularization in tissue engineering: a review of strategies for promoting highly organized microvascular network formation. Acta Biomater. 95:112–130, 2019.
Silvestre, J. S., Z. Mallat, A. Tedgui, and B. I. Levy. Post-ischaemic neovascularization and inflammation. Cardiovasc. Res. 78(2):242–249, 2008.
Sironi, M., F. O. Martinez, D. D’Ambrosio, M. Gattorno, N. Polentarutti, M. Locati, A. Gregorio, A. Lellem, M. A. Cassatella, J. Van Damme, S. Sozzani, A. Martini, F. Sinigaglia, A. Vecchi, and A. Mantovani. Differential regulation of chemokine production by Fc gamma receptor engagement in human monocytes: association of CCL1 with a distinct form of M2 monocyte activation (M2b, type 2). J. Leukoc. Biol. 80(2):342–349, 2006.
Spiller, K. L., R. R. Anfang, K. J. Spiller, J. Ng, K. R. Nakazawa, J. W. Daulton, and G. Vunjak-Novakovic. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35(15):4477–4488, 2014.
Spiller, K. L., S. Nassiri, C. E. Witherel, R. R. Anfang, J. Ng, K. R. Nakazawa, T. Yu, and G. Vunjak-Novakovic. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials 37:194–207, 2015.
Spiller, K. L., E. A. Wrona, S. Romero-Torres, I. Pallotta, P. L. Graney, C. E. Witherel, L. M. Panicker, R. A. Feldman, A. M. Urbanska, L. Santambrogio, G. Vunjak-Novakovic, and D. O. Freytes. Differential gene expression in human, murine, and cell line-derived macrophages upon polarization. Exp. Cell Res. 347(1):1–13, 2016.
Stratman, A. N., A. E. Schwindt, K. M. Malotte, and G. E. Davis. Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood 116(22):4720–4730, 2010.
Suresh, V., and J. L. West. 3D culture facilitates VEGF-stimulated endothelial differentiation of adipose-derived stem cells. Ann. Biomed. Eng. 48(3):1034–1044, 2019.
Sussman, E. M., M. C. Halpin, J. Muster, R. T. Moon, and B. D. Ratner. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann. Biomed. Eng. 42(7):1508–1516, 2014.
Takeda, Y., S. Costa, E. Delamarre, C. Roncal, R. L. de Oliveira, M. L. Squadrito, V. Finisguerra, S. Deschoemaeker, F. Bruyere, M. Wenes, A. Hamm, J. Serneels, J. Magat, T. Bhattacharyya, A. Anisimov, B. F. Jordan, K. Alitalo, P. Maxwell, B. Gallez, Z. W. Zhuang, Y. Saito, M. Simons, M. De Palma, and M. Mazzone. Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature 479(7371):U122–U153, 2011.
Tanaka, R., Y. Saito, Y. Fujiwara, J. I. Jo, and Y. Tabata. Preparation of fibrin hydrogels to promote the recruitment of anti-inflammatory macrophages. Acta Biomater. 89:152–165, 2019.
Tang, L., T. A. Jennings, and J. W. Eaton. Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc. Natl. Acad. Sci. U. S. A. 95(15):8841–8846, 1998.
Tolg, C., S. R. Hamilton, E. Zalinska, L. McCulloch, R. Amin, N. Akentieva, F. Winnik, R. Savani, D. J. Bagli, L. G. Luyt, M. K. Cowman, J. B. McCarthy, and E. A. Turley. A RHAMM mimetic peptide blocks hyaluronan signaling and reduces inflammation and fibrogenesis in excisional skin wounds. Am. J. Pathol. 181(4):1250–1270, 2012.
Tous, E., H. M. Weber, M. H. Lee, K. J. Koomalsingh, T. Shuto, N. Kondo, J. H. Gorman, D. Lee, R. C. Gorman, and J. A. Burdick. Tunable hydrogel-microsphere composites that modulate local inflammation and collagen bulking. Acta Biomater. 8(9):3218–3227, 2012.
Urschel, K., and I. Cicha. TNF-α in the cardiovascular system: from physiology to therapy. Int. J. Interf. Cytokine Mediat Res. 7:9–25, 2015.
Vasconcelos, D. P., A. C. Fonseca, M. Costa, I. F. Amaral, M. A. Barbosa, A. P. Aguas, and J. N. Barbosa. Macrophage polarization following chitosan implantation. Biomaterials 34(38):9952–9959, 2013.
Wang, Z., Y. Cui, J. Wang, X. Yang, Y. Wu, K. Wang, X. Gao, D. Li, Y. Li, X. L. Zheng, Y. Zhu, D. Kong, and Q. Zhao. The effect of thick fibers and large pores of electrospun poly(epsilon-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials 35(22):5700–5710, 2014.
Wang, J., M. Liu, Q. Wu, Q. Li, L. Gao, Y. Jiang, B. Deng, W. Huang, W. Bi, Z. Chen, and Y. E. Chin. viaHuman embryonic stem cell-derived cardiovascular progenitors repair infarcted hearts through modulation of macrophages activation of signal transducer and activator of transcription 6. Antioxid. Redox Signal. 31(5):369–386, 2019.
Wang, W., J. Wang, S. F. Dong, C. H. Liu, P. Italiani, S. H. Sun, J. Xu, D. Boraschi, S. P. Ma, and D. Qu. Immunomodulatory activity of andrographolide on macrophage activation and specific antibody response. Acta Pharmacol. Sin. 31(2):191–201, 2010.
Wang, Y., D. Yao, L. Li, Z. Qian, W. He, R. Ding, H. Liu, and Y. Fan. Effect of electrospun silk fibroin-silk sericin films on macrophage polarization and vascularization. ACS Biomater. Sci. Eng. 6:3502–3512, 2020.
Waters, M., P. VandeVord, and M. Van Dyke. Keratin biomaterials augment anti-inflammatory macrophage phenotype in vitro. Acta Biomater. 66:213–223, 2018.
Yamamoto, S., M. Muramatsu, E. Azuma, M. Ikutani, Y. Nagai, H. Sagara, B. N. Koo, S. Kita, E. O’Donnell, T. Osawa, H. Takahashi, K. I. Takano, M. Dohmoto, M. Sugimori, I. Usui, Y. Watanabe, N. Hatakeyama, T. Iwamoto, I. Komuro, K. Takatsu, K. Tobe, S. Niida, N. Matsuda, M. Shibuya, and M. Sasahara. A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Sci. Rep. 7(1):3855, 2017.
Yang, L., L. M. DeBusk, K. Fukuda, B. Fingleton, B. Green-Jarvis, Y. Shyr, L. M. Matrisian, D. P. Carbone, and P. C. Lin. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6(4):409–421, 2004.
Ye, W., J. Wang, D. Lin, and Z. Ding. The immunomodulatory role of irisin on osteogenesis via AMPK-mediated macrophage polarization. Int. J. Biol. Macromol. 146:25–35, 2020.
Young, S. A., L. E. Flynn, and B. G. Amsden. Adipose-derived stem cells in a resilient in situ forming hydrogel modulate macrophage phenotype. Tissue Eng. Part A 24:1784–1797, 2018.
Zhang, L., Z. Cao, T. Bai, L. Carr, J.-R. Ella-Menye, C. Irvin, B. D. Ratner, and S. Jiang. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31(6):553–556, 2013.
Zhang, J., and C. A. Peng. Blockade of macrophage adhesion to CD200-treated polystyrene culture surface. J. Biomed. Mater. Res. A 109(3):365–373, 2020.
Zhao, F., B. Lei, X. Li, Y. Mo, R. Wang, D. Chen, and X. Chen. Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials 178:36–47, 2018.
Zheng, Z., Y. Chen, H. Hong, Y. Shen, Y. Wang, J. Sun, and X. Wang. The “Yin and Yang” of immunomodulatory magnesium-enriched graphene oxide nanoscrolls decorated biomimetic scaffolds in promoting bone regeneration. Adv. Healthcare Mater. 10(2):2000631, 2021.
Zhu, Y., Z. Ma, L. Kong, Y. He, H. F. Chan, and H. Li. Modulation of macrophages by bioactive glass/sodium alginate hydrogel is crucial in skin regeneration enhancement. Biomaterials 256:2020.
Zhu, M., Y. Wu, W. Li, X. Dong, H. Chang, K. Wang, P. Wu, J. Zhang, G. Fan, L. Wang, J. Liu, H. Wang, and D. Kong. Biodegradable and elastomeric vascular grafts enable vascular remodeling. Biomaterials 183:306–318, 2018.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4