A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-021-02832-w below:

Macrophage Polarization in Response to Biomaterials for Vascularization

References
  1. Adams, S., L. M. Wuescher, R. Worth, and E. Yildirim-Ayan. Mechano-immunomodulation: mechanoresponsive changes in macrophage activity and polarization. Ann. Biomed. Eng. 47(11):2213–2231, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alfarsi, M. A., S. M. Hamlet, and S. Ivanovski. Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response. J. Biomed. Mater. Res. A 102(1):60–67, 2014.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson, J. M., A. Rodriguez, and D. T. Chang. Foreign body reaction to biomaterials. Semin. Immunol. 20(2):86–100, 2008.

    Article  CAS  PubMed  Google Scholar 

  4. Ardi, V. C., T. A. Kupriyanova, E. I. Deryugina, and J. P. Quigley. Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc. Natl. Acad. Sci. U. S. A. 104(51):20262–20267, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arras, M., W. D. Ito, D. Scholz, B. Winkler, J. Schaper, and W. Schaper. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest. 101(1):40–50, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bach, L. A. Endothelial cells and the IGF system. J. Mol. Endocrinol. 54(1):R1–13, 2015.

    Article  CAS  PubMed  Google Scholar 

  7. Badylak, S. F., J. E. Valentin, A. K. Ravindra, G. P. McCabe, and A. M. Stewart-Akers. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A 14(11):1835–1842, 2008.

    Article  CAS  PubMed  Google Scholar 

  8. Baluk, P., L. C. Yao, J. Feng, T. Romano, S. S. Jung, J. L. Schreiter, L. Yan, D. J. Shealy, and D. M. McDonald. TNF-alpha drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice. J. Clin. Invest. 119(10):2954–2964, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bartneck, M., V. A. Schulte, N. E. Paul, M. Diez, M. C. Lensen, and G. Zwadlo-Klarwasser. Induction of specific macrophage subtypes by defined micro-patterned structures. Acta Biomater. 6(10):3864–3872, 2010.

    Article  CAS  PubMed  Google Scholar 

  10. Blakney, A. K., M. D. Swartzlander, and S. J. Bryant. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. A 100(6):1375–1386, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Boersema, G. S., N. Grotenhuis, Y. Bayon, J. F. Lange, and Y. M. Bastiaansen-Jenniskens. The effect of biomaterials used for tissue regeneration purposes on polarization of macrophages. Biores Open Access 5(1):6–14, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bota, P. C., A. M. Collie, P. Puolakkainen, R. B. Vernon, E. H. Sage, B. D. Ratner, and P. S. Stayton. Biomaterial topography alters healing in vivo and monocyte/macrophage activation in vitro. J. Biomed. Mater. Res. A 95(2):649–657, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Brancato, S. K., and J. E. Albina. Wound macrophages as key regulators of repair origin, phenotype, and function. Am. J. Pathol. 178(1):19–25, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brecht, K., A. Weigert, J. Hu, R. Popp, B. Fisslthaler, T. Korff, I. Fleming, G. Geisslinger, and B. Brune. Macrophages programmed by apoptotic cells promote angiogenesis via prostaglandin E2. FASEB J. 25(7):2408–2417, 2011.

    Article  CAS  PubMed  Google Scholar 

  15. Brown, B. N., R. Londono, S. Tottey, L. Zhang, K. A. Kukla, M. T. Wolf, K. A. Daly, J. E. Reing, and S. F. Badylak. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 8(7):2871, 2012.

    Article  Google Scholar 

  16. Brown, B. N., J. E. Valentin, A. M. Stewart-Akers, G. P. McCabe, and S. F. Badylak. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30(8):1482–1491, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cao, J., R. Dong, L. Jiang, Y. Gong, M. Yuan, J. You, W. Meng, Z. Chen, N. Zhang, Q. Weng, H. Zhu, Q. He, M. Ying, and B. Yang. LncRNA-MM2P identified as a modulator of macrophage M2 polarization. Cancer Immunol. Res. 7(2):292–305, 2019.

    Article  CAS  PubMed  Google Scholar 

  18. Carmi, Y., E. Voronov, S. Dotan, N. Lahat, M. A. Rahat, M. Fogel, M. Huszar, M. R. White, C. A. Dinarello, and R. N. Apte. The role of macrophage-derived IL-1 in induction and maintenance of angiogenesis. J. Immunol. 183(7):4705–4714, 2009.

    Article  CAS  PubMed  Google Scholar 

  19. Cha, B. H., S. R. Shin, J. Leijten, Y. C. Li, S. Singh, J. C. Liu, N. Annabi, R. Abdi, M. R. Dokmeci, N. E. Vrana, A. M. Ghaemmaghami, and A. Khademhosseini. Integrin-mediated interactions control macrophage polarization in 3D hydrogels. Adv. Healthcare Mater. 6(21):2017.

    Article  CAS  Google Scholar 

  20. Chen, S., L. Ge, H. Wang, Y. Cheng, S. Gorantla, L. Y. Poluektova, A. F. Gombart, and J. Xie. Eluted 25-hydroxyvitamin D3 from radially aligned nanofiber scaffolds enhances cathelicidin production while reducing inflammatory response in human immune system-engrafted mice. Acta Biomater. 97:187–199, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, L., D. Wang, F. Peng, J. Qiu, L. Ouyang, Y. Qiao, and X. Liu. Nanostructural surfaces with different elastic moduli regulate the immune response by stretching macrophages. Nano Lett. 19(6):3480–3489, 2019.

    Article  CAS  PubMed  Google Scholar 

  22. Chen, S., H. Wang, Y. Su, J. V. John, A. McCarthy, S. L. Wong, and J. Xie. Mesenchymal stem cell-laden, personalized 3D scaffolds with controlled structure and fiber alignment promote diabetic wound healing. Acta Biomater. 108:153–167, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DeFalco, T., I. Bhattacharya, A. V. Williams, D. M. Sams, and B. Capel. Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis. Proc. Natl. Acad. Sci. U. S. A. 111(23):E2384–E2393, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Deng, M., J. Tan, C. Hu, T. Hou, W. Peng, J. Liu, B. Yu, Q. Dai, J. Zhou, Y. Yang, R. Dong, C. Ruan, S. Dong, and J. Xu. Modification of PLGA scaffold by MSC-derived extracellular matrix combats macrophage inflammation to initiate bone regeneration via TGF-β-induced protein. Adv. Healthcare Mater. 9(13):2020.

    Article  CAS  Google Scholar 

  25. Ding, Y., A.-S. Zhao, T. Liu, Y.-N. Wang, Y. Gao, J.-A. Li, and P. Yang. An Injectable Nanocomposite Hydrogel for Potential Application of Vascularization and Tissue Repair. Ann. Biomed. Eng. 48(5):1511–1523, 2020.

    Article  PubMed  Google Scholar 

  26. Dipietro, L. A. Wound healing: the role of the macrophage and other immune cells. Shock 4(4):233–240, 1995.

    Article  CAS  PubMed  Google Scholar 

  27. Donnely, E., M. Griffin, and P. E. Butler. Breast reconstruction with a tissue engineering and regenerative medicine approach (systematic review). Ann. Biomed. Eng. 48(1):9–25, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fantin, A., J. M. Vieira, G. Gestri, L. Denti, Q. Schwarz, S. Prykhozhij, F. Peri, S. W. Wilson, and C. Ruhrberg. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116(5):829–840, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Farris, A. L., A. N. Rindone, and W. L. Grayson. Oxygen delivering biomaterials for tissue engineering. J. Mater. Chem. B 4(20):3422–3432, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fishman, J. M., M. W. Lowdell, L. Urbani, T. Ansari, A. J. Burns, M. Turmaine, J. North, P. Sibbons, A. M. Seifalian, K. J. Wood, M. A. Birchall, and P. De Coppi. Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model. Proc. Natl. Acad. Sci. U. S. A. 110(35):14360–14365, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Franz, S., S. Rammelt, D. Scharnweber, and J. C. Simon. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32(28):6692–6709, 2011.

    Article  CAS  PubMed  Google Scholar 

  32. Garg, K., N. A. Pullen, C. A. Oskeritzian, J. J. Ryan, and G. L. Bowlin. Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials 34(18):4439–4451, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ghasemi, H., T. Ghazanfari, R. Yaraee, S. Faghihzadeh, and Z. M. Hassan. Roles of IL-8 in ocular inflammations: a review. Ocul. Immunol. Inflamm. 19(6):401–412, 2011.

    Article  CAS  PubMed  Google Scholar 

  34. Graney, P. L., S. Ben-Shaul, S. Landau, A. Bajpai, B. Singh, J. Eager, A. Cohen, S. Levenberg, and K. L. Spiller. Macrophages of diverse phenotypes drive vascularization of engineered tissues. Sci. Adv. 6(18):6391, 2020.

    Article  CAS  Google Scholar 

  35. Grotenhuis, N., H. F. E. Toom, N. Kops, Y. Bayon, E. B. Deerenberg, I. M. Mulder, G. J. V. M. van Osch, J. F. Lange, and Y. M. Bastiaansen-Jenniskens. In vitro model to study the biomaterial-dependent reaction of macrophages in an inflammatory environment. BJS 101(8):983–992, 2014.

    Article  CAS  Google Scholar 

  36. Gurevich, D. B., C. E. Severn, C. Twomey, A. Greenhough, J. Cash, A. M. Toye, H. Mellor, and P. Martin. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. The EMBO Journal 37(13):2018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hellstrom, M., M. Kalen, P. Lindahl, A. Abramsson, and C. Betsholtz. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14):3047–3055, 1999.

    Article  CAS  PubMed  Google Scholar 

  38. Herbert, S. P., and D. Y. Stainier. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat. Rev. Mol. Cell Biol. 12(9):551–564, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hibino, N., T. Yi, D. R. Duncan, A. Rathore, E. Dean, Y. Naito, A. Dardik, T. Kyriakides, J. Madri, J. S. Pober, T. Shinoka, and C. K. Breuer. A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts. FASEB J. 25(12):4253–4263, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hirose, N., H. Maeda, M. Yamamoto, Y. Hayashi, G. H. Lee, L. Chen, G. Radhakrishnan, P. Rao, and S. Sasaguri. The local injection of peritoneal macrophages induces neovascularization in rat ischemic hind limb muscles. Cell Transplant. 17(1–2):211–222, 2008.

    Article  PubMed  Google Scholar 

  41. Hisatome, T., Y. Yasunaga, S. Yanada, Y. Tabata, Y. Ikada, and M. Ochi. Neovascularization and bone regeneration by implantation of autologous bone marrow mononuclear cells. Biomaterials 26(22):4550–4556, 2005.

    Article  CAS  PubMed  Google Scholar 

  42. Huang, Z., Q. Luo, F. Yao, C. Qing, J. Ye, Y. Deng, and J. Li. Identification of differentially expressed long non-coding RNAs in polarized macrophages. Sci. Rep. 6:19705, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Italiani, P., and D. Boraschi. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front. Immunol. 5:514, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Jadhav, U., S. Chigurupati, S. S. Lakka, and S. Mohanam. Inhibition of matrix metalloproteinase-9 reduces in vitro invasion and angiogenesis in human microvascular endothelial cells. Int. J. Oncol. 25(5):1407–1414, 2004.

    CAS  PubMed  Google Scholar 

  45. Jia, Y., and Y. Zhou. Involvement of lncRNAs and macrophages: potential regulatory link to angiogenesis. J. Immunol. Res. 2020:1704631, 2020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Jiang, J., S. Chen, H. Wang, M. A. Carlson, A. F. Gombart, and J. Xie. CO2-expanded nanofiber scaffolds maintain activity of encapsulated bioactive materials and promote cellular infiltration and positive host response. Acta Biomater. 68:237–248, 2018.

    Article  CAS  PubMed  Google Scholar 

  47. Johnston, Jr, R. B. Current concepts: immunology: monocytes and macrophages. N. Engl. J. Med. 318(12):747–752, 1988.

    Article  PubMed  Google Scholar 

  48. Kajahn, J., S. Franz, E. Rueckert, I. Forstreuter, V. Hintze, S. Moeller, and J. C. Simon. Artificial extracellular matrices composed of collagen I and high sulfated hyaluronan modulate monocyte to macrophage differentiation under conditions of sterile inflammation. Biomatter 2(4):226–236, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kang, H., S. Wong, Q. Pan, G. Li, and L. Bian. Anisotropic ligand nanogeometry modulates the adhesion and polarization state of macrophages. Nano Lett. 19(3):1963–1975, 2019.

    Article  CAS  PubMed  Google Scholar 

  50. Kaully, T., K. Kaufman-Francis, A. Lesman, and S. Levenberg. Vascularization-the conduit to viable engineered tissues. Tissue Eng. Part B 15(2):159–169, 2009.

    Article  CAS  Google Scholar 

  51. Keane, T. J., R. Londono, N. J. Turner, and S. F. Badylak. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33(6):1771–1781, 2012.

    Article  CAS  PubMed  Google Scholar 

  52. Kloc, M., R. M. Ghobrial, J. Wosik, A. Lewicka, S. Lewicki, and J. Z. Kubiak. Macrophage functions in wound healing. J. Tissue Eng. Regen. Med. 13(1):99–109, 2018.

    PubMed  Google Scholar 

  53. Klopfleisch, R. Macrophage reaction against biomaterials in the mouse model: phenotypes, functions and markers. Acta Biomater. 43:3–13, 2016.

    Article  CAS  PubMed  Google Scholar 

  54. Korn, C., and H. G. Augustin. Mechanisms of vessel pruning and regression. Dev. Cell 34(1):5–17, 2015.

    Article  CAS  PubMed  Google Scholar 

  55. Kou, P. M., and J. E. Babensee. Macrophage and dendritic cell phenotypic diversity in the context of biomaterials. J. Biomed. Mater. Res. A 96(1):239–260, 2011.

    Article  PubMed  CAS  Google Scholar 

  56. la Sala, A., L. Pontecorvo, A. Agresta, G. Rosano, and E. Stabile. Regulation of collateral blood vessel development by the innate and adaptive immune system. Trends Mol. Med. 18(8):494–501, 2012.

    Article  PubMed  CAS  Google Scholar 

  57. Leibovich, S. J., P. J. Polverini, H. M. Shepard, D. M. Wiseman, V. Shively, and N. Nuseir. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 329(6140):630–632, 1987.

    Article  CAS  PubMed  Google Scholar 

  58. Li, X., B. Cho, R. Martin, M. Seu, C. Zhang, Z. Zhou, J. S. Choi, X. Jiang, L. Chen, G. Walia, J. Yan, M. Callanan, H. Liu, K. Colbert, J. Morrissette-McAlmon, W. Grayson, S. Reddy, J. M. Sacks, and H. Q. Mao. Nanofiber-hydrogel composite-mediated angiogenesis for soft tissue reconstruction. Sci. Transl. Med. 11(490):559, 2019.

    Article  CAS  Google Scholar 

  59. Li, T., M. Peng, Z. Yang, X. Zhou, Y. Deng, C. Jiang, M. Xiao, and J. Wang. 3D-printed IFN-gamma-loading calcium silicate-beta-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone. Acta Biomater. 71:96–107, 2018.

    Article  CAS  PubMed  Google Scholar 

  60. Lin, J., I. Mohamed, P. Lin, H. Shirahama, U. Milbreta, J. Sieow, Y. Peng, M. Bugiani, S. Wong, H. Levinson, and S. Chew. Modulating macrophage phenotype by sustained MicroRNA delivery improves host-implant integration. Adv. Healthcare Mater. 9(3):2020.

    Article  CAS  Google Scholar 

  61. Lopez-Silva, T. L., D. G. Leach, A. Azares, I. C. Li, D. G. Woodside, and J. D. Hartgerink. Chemical functionality of multidomain peptide hydrogels governs early host immune response. Biomaterials 231:2020.

    Article  CAS  PubMed  Google Scholar 

  62. Low-Marchelli, J. M., V. C. Ardi, E. A. Vizcarra, N. van Rooijen, J. P. Quigley, and J. Yang. Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Res. 73(2):662–671, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lucke, S., A. Hoene, U. Walschus, A. Kob, J. W. Pissarek, and M. Schlosser. Acute and chronic local inflammatory reaction after implantation of different extracellular porcine dermis collagen matrices in rats. BioMed Res. Int. 2015:2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Luo, N., J. Weber, S. Wang, B. Luan, H. Yue, X. Xi, J. Du, Z. Yang, W. Wei, R. Zhou, and G. Ma. PEGylated graphene oxide elicits strong immunological responses despite surface passivation. Nat. Commun. 8:14537, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lv, L., Y. Xie, K. Li, T. Hu, X. Lu, Y. Cao, and X. Zheng. Unveiling the mechanism of surface hydrophilicity-modulated macrophage polarization. Adv. Healthcare Mater. 7(19):2018.

    Article  CAS  Google Scholar 

  66. Madden, L. R., D. J. Mortisen, E. M. Sussman, S. K. Dupras, J. A. Fugate, J. L. Cuy, K. D. Hauch, M. A. Laflamme, C. E. Murry, and B. D. Ratner. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Nat. Acad. Sci. 107(34):15211–15216, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mahon, O. R., D. C. Browe, T. Gonzalez-Fernandez, P. Pitacco, I. T. Whelan, S. Von Euw, C. Hobbs, V. Nicolosi, K. T. Cunningham, K. H. Mills, and D. J. Kelly. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials 239:2020.

    Article  CAS  PubMed  Google Scholar 

  68. Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25(12):677–686, 2004.

    Article  CAS  PubMed  Google Scholar 

  69. Martinez, F. O., and S. Gordon. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6:13, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Martinez, F. O., S. Gordon, M. Locati, and A. Mantovani. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177(10):7303–7311, 2006.

    Article  CAS  PubMed  Google Scholar 

  71. McPherson, J. M., S. Sawamura, and R. Armstrong. An examination of the biologic response to injectable, glutaraldehyde cross-linked collagen implants. J. Biomed. Mater. Res. 20(1):93–107, 1986.

    Article  CAS  PubMed  Google Scholar 

  72. Mehta, V. B., G. E. Besner, and V. B. Mehta. Besner GE (2007) HB-EGF promotes angiogenesis in endothelial cells via PI3-kinase and MAPK signaling pathways. Growth Fact. (Chur, Switz.) 25(4):253–263, 2007.

    Article  CAS  Google Scholar 

  73. Mettouchi, A., S. Klein, W. Guo, M. Lopez-Lago, E. Lemichez, J. Westwick, and F. Giancotti. Integrin-specific activation of Rac controls progression through the G(1) phase of the cell cycle. Mol. Cell 8(1):115–127, 2001.

    Article  CAS  PubMed  Google Scholar 

  74. Mikolajczyk, T. P., R. Nosalski, P. Szczepaniak, K. Budzyn, G. Osmenda, D. Skiba, A. Sagan, J. Wu, A. Vinh, P. J. Marvar, B. Guzik, J. Podolec, G. Drummond, H. E. Lob, D. G. Harrison, and T. J. Guzik. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension. FASEB J. 30(5):1987–1999, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mills, C. D., K. Kincaid, J. M. Alt, M. J. Heilman, and A. M. Hill. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164(12):6166–6173, 2000.

    Article  CAS  PubMed  Google Scholar 

  76. Moor, E. M., and J. L. West. Harnessing macrophages for vascularization in tissue engineering. Ann. Biomed. Eng. 47(2):354–365, 2019.

    Article  Google Scholar 

  77. Moreno, J. L., I. Mikhailenko, M. M. Tondravi, and A. D. Keegan. IL-4 promotes the formation of multinucleated giant cells from macrophage precursors by a STAT6-dependent, homotypic mechanism: contribution of E-cadherin. J. Leukoc. Biol. 82(6):1542–1553, 2007.

    Article  CAS  PubMed  Google Scholar 

  78. Mosser, D. M., and J. P. Edwards. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8(12):958–969, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Neher, M. D., S. Weckbach, M. A. Flierl, M. S. Huber-Lang, and P. F. Stahel. Molecular mechanisms of inflammation and tissue injury after major trauma-is complement the “bad guy”? J. Biomed. Sci. 18:48, 2011.

    Article  CAS  Google Scholar 

  80. Niu, Y., L. Wang, N. Yu, P. Xing, Z. Wang, Z. Zhong, Y. Feng, L. Dong, and C. Wang. An “all-in-one” scaffold targeting macrophages to direct endogenous bone repair in situ. Acta Biomater. 111:153–169, 2020.

    Article  CAS  PubMed  Google Scholar 

  81. Novosel, E. C., C. Kleinhans, and P. J. Kluger. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63(4–5):300–311, 2011.

    Article  CAS  PubMed  Google Scholar 

  82. Ong, S., S. Biswas, and S. Wong. MicroRNA-mediated immune modulation as a therapeutic strategy in host-implant integration. Adv. Drug Del. Rev. 88:92–107, 2015.

    Article  CAS  Google Scholar 

  83. Patan, S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J. Neurooncol. 50(1–2):1–15, 2000.

    Article  CAS  PubMed  Google Scholar 

  84. Prazeres, P., V. M. Almeida, L. Lousado, J. P. Andreotti, A. E. Paiva, G. S. P. Santos, P. O. Azevedo, L. Souto, G. G. Almeida, R. Filev, A. Mintz, R. Goncalves, and A. Birbrair. Macrophages generate pericytes in the developing brain. Cell. Mol. Neurobiol. 38(4):777–782, 2018.

    Article  CAS  PubMed  Google Scholar 

  85. Rademakers, T., J. M. Horvath, C. A. van Blitterswijk, and V. L. S. LaPointe. Oxygen and nutrient delivery in tissue engineering: approaches to graft vascularization. J. Tissue Eng. Regen. Med. 13(10):1815–1829, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ribatti, D., and E. Crivellato. Immune cells and angiogenesis. J. Cell. Mol. Med. 13(9A):2822–2833, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ribatti, D., A. Vacca, B. Nico, L. Roncali, and F. Dammacco. Postnatal vasculogenesis. Mech. Dev. 100(2):157–163, 2001.

    Article  CAS  PubMed  Google Scholar 

  88. Risau, W. Mechanisms of angiogenesis. Nature 386(6626):671–674, 1997.

    Article  CAS  PubMed  Google Scholar 

  89. Risau, W., and I. Flamme. Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11:73–91, 1995.

    Article  CAS  PubMed  Google Scholar 

  90. Sainson, R. C. A., D. A. Johnston, H. C. Chu, M. T. Holderfield, M. N. Nakatsu, S. P. Crampton, J. Davis, E. Conn, and C. C. W. Hughes. TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood 111(10):4997–5007, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sakurai, E., A. Anand, B. K. Ambati, N. van Rooijen, and J. Ambati. Macrophage depletion inhibits experimental choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 44(8):3578–3585, 2003.

    Article  PubMed  Google Scholar 

  92. Sharma, D., D. Ross, G. Wang, W. Jia, S. J. Kirkpatrick, and F. Zhao. Upgrading prevascularization in tissue engineering: a review of strategies for promoting highly organized microvascular network formation. Acta Biomater. 95:112–130, 2019.

    Article  CAS  PubMed  Google Scholar 

  93. Silvestre, J. S., Z. Mallat, A. Tedgui, and B. I. Levy. Post-ischaemic neovascularization and inflammation. Cardiovasc. Res. 78(2):242–249, 2008.

    Article  CAS  PubMed  Google Scholar 

  94. Sironi, M., F. O. Martinez, D. D’Ambrosio, M. Gattorno, N. Polentarutti, M. Locati, A. Gregorio, A. Lellem, M. A. Cassatella, J. Van Damme, S. Sozzani, A. Martini, F. Sinigaglia, A. Vecchi, and A. Mantovani. Differential regulation of chemokine production by Fc gamma receptor engagement in human monocytes: association of CCL1 with a distinct form of M2 monocyte activation (M2b, type 2). J. Leukoc. Biol. 80(2):342–349, 2006.

    Article  CAS  PubMed  Google Scholar 

  95. Spiller, K. L., R. R. Anfang, K. J. Spiller, J. Ng, K. R. Nakazawa, J. W. Daulton, and G. Vunjak-Novakovic. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35(15):4477–4488, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Spiller, K. L., S. Nassiri, C. E. Witherel, R. R. Anfang, J. Ng, K. R. Nakazawa, T. Yu, and G. Vunjak-Novakovic. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials 37:194–207, 2015.

    Article  CAS  PubMed  Google Scholar 

  97. Spiller, K. L., E. A. Wrona, S. Romero-Torres, I. Pallotta, P. L. Graney, C. E. Witherel, L. M. Panicker, R. A. Feldman, A. M. Urbanska, L. Santambrogio, G. Vunjak-Novakovic, and D. O. Freytes. Differential gene expression in human, murine, and cell line-derived macrophages upon polarization. Exp. Cell Res. 347(1):1–13, 2016.

    Article  CAS  PubMed  Google Scholar 

  98. Stratman, A. N., A. E. Schwindt, K. M. Malotte, and G. E. Davis. Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood 116(22):4720–4730, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Suresh, V., and J. L. West. 3D culture facilitates VEGF-stimulated endothelial differentiation of adipose-derived stem cells. Ann. Biomed. Eng. 48(3):1034–1044, 2019.

    Article  PubMed  Google Scholar 

  100. Sussman, E. M., M. C. Halpin, J. Muster, R. T. Moon, and B. D. Ratner. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann. Biomed. Eng. 42(7):1508–1516, 2014.

    Article  PubMed  Google Scholar 

  101. Takeda, Y., S. Costa, E. Delamarre, C. Roncal, R. L. de Oliveira, M. L. Squadrito, V. Finisguerra, S. Deschoemaeker, F. Bruyere, M. Wenes, A. Hamm, J. Serneels, J. Magat, T. Bhattacharyya, A. Anisimov, B. F. Jordan, K. Alitalo, P. Maxwell, B. Gallez, Z. W. Zhuang, Y. Saito, M. Simons, M. De Palma, and M. Mazzone. Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature 479(7371):U122–U153, 2011.

    Article  CAS  Google Scholar 

  102. Tanaka, R., Y. Saito, Y. Fujiwara, J. I. Jo, and Y. Tabata. Preparation of fibrin hydrogels to promote the recruitment of anti-inflammatory macrophages. Acta Biomater. 89:152–165, 2019.

    Article  CAS  PubMed  Google Scholar 

  103. Tang, L., T. A. Jennings, and J. W. Eaton. Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc. Natl. Acad. Sci. U. S. A. 95(15):8841–8846, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tolg, C., S. R. Hamilton, E. Zalinska, L. McCulloch, R. Amin, N. Akentieva, F. Winnik, R. Savani, D. J. Bagli, L. G. Luyt, M. K. Cowman, J. B. McCarthy, and E. A. Turley. A RHAMM mimetic peptide blocks hyaluronan signaling and reduces inflammation and fibrogenesis in excisional skin wounds. Am. J. Pathol. 181(4):1250–1270, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tous, E., H. M. Weber, M. H. Lee, K. J. Koomalsingh, T. Shuto, N. Kondo, J. H. Gorman, D. Lee, R. C. Gorman, and J. A. Burdick. Tunable hydrogel-microsphere composites that modulate local inflammation and collagen bulking. Acta Biomater. 8(9):3218–3227, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Urschel, K., and I. Cicha. TNF-α in the cardiovascular system: from physiology to therapy. Int. J. Interf. Cytokine Mediat Res. 7:9–25, 2015.

    CAS  Google Scholar 

  107. Vasconcelos, D. P., A. C. Fonseca, M. Costa, I. F. Amaral, M. A. Barbosa, A. P. Aguas, and J. N. Barbosa. Macrophage polarization following chitosan implantation. Biomaterials 34(38):9952–9959, 2013.

    Article  CAS  PubMed  Google Scholar 

  108. Wang, Z., Y. Cui, J. Wang, X. Yang, Y. Wu, K. Wang, X. Gao, D. Li, Y. Li, X. L. Zheng, Y. Zhu, D. Kong, and Q. Zhao. The effect of thick fibers and large pores of electrospun poly(epsilon-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials 35(22):5700–5710, 2014.

    Article  CAS  PubMed  Google Scholar 

  109. Wang, J., M. Liu, Q. Wu, Q. Li, L. Gao, Y. Jiang, B. Deng, W. Huang, W. Bi, Z. Chen, and Y. E. Chin. viaHuman embryonic stem cell-derived cardiovascular progenitors repair infarcted hearts through modulation of macrophages activation of signal transducer and activator of transcription 6. Antioxid. Redox Signal. 31(5):369–386, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, W., J. Wang, S. F. Dong, C. H. Liu, P. Italiani, S. H. Sun, J. Xu, D. Boraschi, S. P. Ma, and D. Qu. Immunomodulatory activity of andrographolide on macrophage activation and specific antibody response. Acta Pharmacol. Sin. 31(2):191–201, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, Y., D. Yao, L. Li, Z. Qian, W. He, R. Ding, H. Liu, and Y. Fan. Effect of electrospun silk fibroin-silk sericin films on macrophage polarization and vascularization. ACS Biomater. Sci. Eng. 6:3502–3512, 2020.

    Article  CAS  PubMed  Google Scholar 

  112. Waters, M., P. VandeVord, and M. Van Dyke. Keratin biomaterials augment anti-inflammatory macrophage phenotype in vitro. Acta Biomater. 66:213–223, 2018.

    Article  CAS  PubMed  Google Scholar 

  113. Yamamoto, S., M. Muramatsu, E. Azuma, M. Ikutani, Y. Nagai, H. Sagara, B. N. Koo, S. Kita, E. O’Donnell, T. Osawa, H. Takahashi, K. I. Takano, M. Dohmoto, M. Sugimori, I. Usui, Y. Watanabe, N. Hatakeyama, T. Iwamoto, I. Komuro, K. Takatsu, K. Tobe, S. Niida, N. Matsuda, M. Shibuya, and M. Sasahara. A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Sci. Rep. 7(1):3855, 2017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Yang, L., L. M. DeBusk, K. Fukuda, B. Fingleton, B. Green-Jarvis, Y. Shyr, L. M. Matrisian, D. P. Carbone, and P. C. Lin. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6(4):409–421, 2004.

    Article  CAS  PubMed  Google Scholar 

  115. Ye, W., J. Wang, D. Lin, and Z. Ding. The immunomodulatory role of irisin on osteogenesis via AMPK-mediated macrophage polarization. Int. J. Biol. Macromol. 146:25–35, 2020.

    Article  CAS  PubMed  Google Scholar 

  116. Young, S. A., L. E. Flynn, and B. G. Amsden. Adipose-derived stem cells in a resilient in situ forming hydrogel modulate macrophage phenotype. Tissue Eng. Part A 24:1784–1797, 2018.

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, L., Z. Cao, T. Bai, L. Carr, J.-R. Ella-Menye, C. Irvin, B. D. Ratner, and S. Jiang. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31(6):553–556, 2013.

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, J., and C. A. Peng. Blockade of macrophage adhesion to CD200-treated polystyrene culture surface. J. Biomed. Mater. Res. A 109(3):365–373, 2020.

    Article  PubMed  CAS  Google Scholar 

  119. Zhao, F., B. Lei, X. Li, Y. Mo, R. Wang, D. Chen, and X. Chen. Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials 178:36–47, 2018.

    Article  CAS  PubMed  Google Scholar 

  120. Zheng, Z., Y. Chen, H. Hong, Y. Shen, Y. Wang, J. Sun, and X. Wang. The “Yin and Yang” of immunomodulatory magnesium-enriched graphene oxide nanoscrolls decorated biomimetic scaffolds in promoting bone regeneration. Adv. Healthcare Mater. 10(2):2000631, 2021.

    Article  CAS  Google Scholar 

  121. Zhu, Y., Z. Ma, L. Kong, Y. He, H. F. Chan, and H. Li. Modulation of macrophages by bioactive glass/sodium alginate hydrogel is crucial in skin regeneration enhancement. Biomaterials 256:2020.

    Article  CAS  PubMed  Google Scholar 

  122. Zhu, M., Y. Wu, W. Li, X. Dong, H. Chang, K. Wang, P. Wu, J. Zhang, G. Fan, L. Wang, J. Liu, H. Wang, and D. Kong. Biodegradable and elastomeric vascular grafts enable vascular remodeling. Biomaterials 183:306–318, 2018.

    Article  CAS  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4