Abdal-hay, A., M. Taha, H. M. Mousa, M. Bartnikowski, M. L. Hassan, M. Dewidar, and S. Ivanovski. Engineering of electrically-conductive poly (ε-caprolactone)/multi-walled carbon nanotubes composite nanofibers for tissue engineering applications. Ceram. Int. 45(12):15736–15740, 2019.
Abdelbar, M. F., R. S. Shams, O. M. Morsy, M. A. Hady, K. Shoueir, and R. Abdelmonem. Highly ordered functionalized mesoporous silicate nanoparticles reinforced poly (lactic acid) gatekeeper surface for infection treatment. Int. J. Biol. Macromol. 156:858–868, 2020.
Ahn, E. S., N. J. Gleason, and J. Y. Ying. The effect of zirconia reinforcing agents on the microstructure and mechanical properties of hydroxyapatite based nanocomposites. J. Am. Ceram. Soc. 88(12):3374–3379, 2005.
Ajarem, J. S., S. N. Maodaa, A. A. Allam, M. M. Taher, and M. Khalaf. Benign synthesis of cobalt oxide nanoparticles containing red algae extract: antioxidant, antimicrobial, anticancer, and anticoagulant activity. J. Clust. Sci. 25:1–12, 2021.
Al-Ahmed, Z. A., B. A. Al-Jahdaly, H. A. Radwan, A. A. Hassana, A. Almahri, M. Ahmed, and M. M. Taher. Electrospun nanofibrous scaffolds of ε-polycaprolactone containing graphene oxide and encapsulated with magnetite nanoparticles for wound healing utilizations. Mater. Res. Express 8(2):2021.
Al-Jahdaly, B. A., N. S. Al-Radadi, G. M. Eldin, A. Almahri, M. Ahmed, K. Shoueir, and I. Janowska. Selenium nanoparticles synthesized using an eco-friendly method: dye decolorization from aqueous solutions, cell viability, antioxidant, and antibacterial effectiveness. J. Mater. Res. Technol. 11:85–97, 2021.
Al-Sowayan, B., F. Alammari, and A. Alshareeda. Preparing the bone tissue regeneration ground by exosomes: from diagnosis to therapy. Molecules 25(18):4205, 2020.
Alidadi, S. Nanoscale bioceramics in bone tissue engineering-an overview. Indian J Vet. Sci. Biotechnol. 16(2–4):07–11, 2020.
Anil, A., A. Sadasivan, E. Koshi, and C. Dentistry. Physicochemical characterization of five different bone graft substitutes used in periodontal regeneration: an in vitro study. J. Int. Soc. Prev. Commun. Dent. 10(5):634, 2020.
Arcos, D., and M. Vallet-Regí. Substituted hydroxyapatite coatings of bone implants. J. Mater. Chem. B 8(9):1781–1800, 2020.
Arjama, M., S. Mehnath, M. Rajan, and M. Jeyaraj. Injectable cuttlefish HAP and macromolecular fibroin protein hydrogel for natural bone mimicking matrix for enhancement of osteoinduction progression. React. Funct. Polym. 160:2021.
Asgarian, R., A. Khalghi, R. K. Harchegani, M. Monshi, D. A. Samani, and A. Doostmohammadi. Synthesis of nanostructured hardystonite (HT) bioceramic coated on titanium alloy (Ti-6Al-4 V) substrate and assessment of its corrosion behavior, bioactivity and cytotoxicity. Appl. Phys. A 127(1):1–10, 2021.
Ashrafi, M., J. E. Gubaua, J. T. Pereira, F. Gahlichi, and M. Doblaré. A mechano-chemo-biological model for bone remodeling with a new mechano-chemo-transduction approach. Biomech. Model. Mechanobiol. 19(6):2499–2523, 2020.
Atta, A. M., E. Abdel-Bary, K. Rezk, and A. Abdel-Azim. Fast responsive poly (acrylic acid-co-N-isopropyl acrylamide) hydrogels based on new crosslinker. J. Appl. Polym. Sci. 112(1):114–122, 2009.
Atta, A. M., G. A. El-Mahdy, H. A. Al-Lohedan, and K. R. Shoueir. Electrochemical behavior of smart N-isopropyl acrylamide copolymer nanogel on steel for corrosion protection in acidic solution. Int. J. Electrochem. Sci. 10:870–882, 2015.
Barbeck, M., O. Jung, R. Smeets, M. Gosau, R. Schnettler, P. Rider, A. Houshmand, and T. Korzinskas. Implantation of an injectable bone substitute material enables integration following the principles of guided bone regeneration. ViVo 34(2):557–568, 2020.
Bauer, L., M. Antunović, A. Rogina, M. Ivanković, and H. Ivanković. Bone-mimetic porous hydroxyapatite/whitlockite scaffolds: preparation, characterization and interactions with human mesenchymal stem cells. J. Mater. Sci. 56(5):3947–3969, 2021.
Beig, B., U. Liaqat, M. F. K. Niazi, I. Douna, M. Zahoor, and M. B. K. Niazi. Current challenges and innovative developments in hydroxyapatite-based coatings on metallic materials for bone implantation: a review. Coatings 10(12):1249, 2020.
Bezerra, K. J. A., I. N. de Sena-Silva, L. J. A. Bezerra, L. M. O. Cavalcante, D. C. Amorim, D. P. J. Machado, F. A. Ximenes, A. C. Almeida, L. V. Costa, N. V. Nunes, and L. A. R. Valadas. Biomedical applications of calcium phosphate ceramics as biomaterials. J. Young Pharm. 12(3):190, 2020.
Bhattarai, S. R., K. A. R. Khalil, M. Dewidar, P. H. Hwang, H. K. Yi, and H. Y. Kim. Novel production method and in vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering. J. Biomed. Mater. Res. Part A 86(2):289–299, 2007.
Bim-Júnior, O., F. Curylofo-Zotti, M. Reis, Y. Alania, P. N. Lisboa-Filho, and A. K. Bedran-Russo. Surface-directed mineralization of fibrous collagen scaffolds in simulated body fluid for tissue engineering applications. ACS Appl. Bio Mater. 4(3):2514–2522, 2021.
Biswal, T., S. K. BadJena, and D. Pradhan. Sustainable biomaterials and their applications: a short review. Mater. Today 30:274–282, 2020.
Black, J. D., and B. J. Tadros. Bone structure: from cortical to calcium. Orthop. Trauma 34(3):113–119, 2020.
Blaudez, F., S. Ivanovski, S. Hamlet, and C. Vaquette. An overview of decellularisation techniques of native tissues and tissue engineered products for bone, ligament and tendon regeneration. Methods 171:28–40, 2020.
Blokhuis, T. J., G. M. Calori, and G. Schmidmaier. Autograft versus BMPs for the treatment of non-unions: what is the evidence? Injury 44:S40–S42, 2013.
Bose, S., and N. Sarkar. Natural medicinal compounds in bone tissue engineering. Chem. Rev. 38(4):404–417, 2020.
Brink, O. The choice between allograft or demineralized bone matrix is not unambiguous in trauma surgery. Injury 52:S23–S28, 2020.
Brzezińska-Miecznik, J., B. Macherzyńska, R. Lach, and B. Nowak. The effect of calcination and zirconia addition on HAp hot pressed materials. Ceram. Int. 40(10):15815–15819, 2014.
Bu, S., S. Yan, R. Wang, P. Xia, K. Zhang, G. Li, and J. Yin. In situ precipitation of cluster and acicular hydroxyapatite onto porous poly (γ-benzyl-l-glutamate) microcarriers for bone tissue engineering. ACS Appl. Mater. Interfaces. 12(11):12468–12477, 2020.
Bulina, N. V., M. V. Chaikina, I. Y. Prosanov, and D. V. Dudina. Strontium and silicate co-substituted hydroxyapatite: mechanochemical synthesis and structural characterization. Mater. Sci. Eng., B 262:2020.
Castkova, K., H. Hadraba, A. Matousek, P. Roupcova, Z. Chlup, L. Novotna, and J. Cihlar. Synthesis of Ca, Y-zirconia/hydroxyapatite nanoparticles and composites. J. Eur. Ceram. Soc. 36(12):2903–2912, 2016.
Chai, Y., M. Nishikawa, and M. Tagaya. Preparation of gold/hydroxyapatite hybrids using natural fish scale template and their effective albumin interactions. Adv. Powder Technol. 29(5):1198–1203, 2018.
Chakravarty, J., M. F. Rabbi, V. Chalivendra, T. Ferreira, and C. J. Brigham. Mechanical and biological properties of chitin/polylactide (PLA)/hydroxyapatite (HAP) composites cast using ionic liquid solutions. Int. J. Biol. Macromol. 151:1213–1223, 2020.
Chen, K., Y. Jiao, L. Liu, M. Huang, C. He, W. He, J. Hou, M. Yang, X. Luo, C. Li, and D. Biology. Communications between bone marrow macrophages and bone cells in bone remodeling. Front. Cell Dev. Biol. 8:1608, 2020.
Chen, S., J. V. John, A. McCarthy, and J. Xie. New forms of electrospun nanofiber materials for biomedical applications. J. Mater. Chem. B 8(17):3733–3746, 2020.
Chen, Y., Z. Liu, T. Jiang, X. Zou, L. Lei, W. Yan, J. Yang, and B. Li. Strontium-substituted biphasic calcium phosphate microspheres promoted degradation performance and enhanced bone regeneration. J. Biomed. Mater. Res. Part A 108(4):895–905, 2020.
Cheng, G., J. Dai, J. Dai, H. Wang, S. Chen, X. Liu, X. Li, X. Zhou, H. Deng, and Z. Li. Extracellular matrix imitation utilizing nanofibers-embedded biomimetic scaffolds for facilitating cartilage regeneration. Chem. Eng. J. 410:2021.
Chesley, M., R. Kennard, S. Roozbahani, S. M. Kim, K. Kukk, and M. Mason. One-step hydrothermal synthesis with in situ milling of biologically relevant hydroxyapatite. Mater. Sci. Eng. C 113:2020.
Chiu, C. Y., H. C. Hsu, and W. H. Tuan. Effect of zirconia addition on the microstructural evolution of porous hydroxyapatite. Ceram. Int. 33(5):715–718, 2007.
Clarke, B. Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol. 3(3):S131–S139, 2008.
Coakley, G., C. Mathews, M. Field, A. Jones, G. Kingsley, D. Walker, M. Phillips, C. Bradish, A. McLachlan, and R. J. R. Mohammed. BSR & BHPR, BOA, RCGP and BSAC guidelines for management of the hot swollen joint in adults. Rheumatology 45(8):1039–1041, 2006.
Curran, D. J., T. J. Fleming, M. R. Towler, and S. Hampshire. Mechanical parameters of strontium doped hydroxyapatite sintered using microwave and conventional methods. J. Mech. Behav. Biomed. Mater. 4(8):2063–2073, 2011.
Deepthi, S., M. N. Sundaram, J. D. Kadavan, and R. Jayakumar. Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Carbohyd. Polym. 153:492–500, 2016.
Dempster, D. W., A. Chines, M. P. Bostrom, J. W. Nieves, H. Zhou, L. Chen, N. Pannacciulli, R. B. Wagman, and F. Cosman. Modeling-based bone formation in the human femoral neck in subjects treated with denosumab. J. Bone Miner. Res. 35(7):1282–1288, 2020.
Deng, S., M. R. Gigliobianco, R. Censi, and P. Di Martino. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: current status, challenges and opportunities. Nanomaterials 10(5):847, 2020.
Ding, Y., Y. Hao, Z. Yuan, B. Tao, M. Chen, C. Lin, P. Liu, and K. Cai. A dual-functional implant with an enzyme-responsive effect for bacterial infection therapy and tissue regeneration. Biomater. Sci. 8(7):1840–1854, 2020.
Durko, A. P., M. H. Yacoub, and J. Kluin. Tissue engineered materials in cardiovascular surgery: the surgeon’s perspective. Front. Cardiovasc. Med. 7:55, 2020.
D’Elía, N. L., A. N. Gravina, J. M. Ruso, J. A. Laiuppa, G. E. Santillán, and P. V. Messina. Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: effects on mineral coating morphology and growth kinetic. Biochim. Biophys. Acta (BBA) 1830(11):5014–5026, 2013.
El-Bindary, A. A., E. A. Toson, K. R. Shoueir, H. A. Aljohani, and M. M. Abo-Ser. Metal-organic frameworks as efficient materials for drug delivery: synthesis, characterization, antioxidant, anticancer, antibacterial and molecular docking investigation. Appl. Organomet. Chem. 34(11):2020.
El-Desouky, N., K. R. Shoueir, I. El-Mehasseb, and M. El-Kemary. Bio-inspired green manufacturing of plasmonic silver nanoparticles/Degussa using Banana Waste Peduncles: photocatalytic, antimicrobial, and cytotoxicity evaluation. J. Mater. Res. Technol. 10:671–686, 2021.
Elsayed, M. T., A. A. Hassan, S. A. Abdelaal, M. M. Taher, M. KhalafAhmed, and K. R. Shoueir. Morphological, antibacterial, and cell attachment of cellulose acetate nanofibers containing modified hydroxyapatite for wound healing utilizations. J. Mater. Res. Technol. 9(6):13927–13936, 2020.
Esposito, S., and S. Leone. Prosthetic joint infections: microbiology, diagnosis, management and prevention. Int. J. Antimicrob. Agents 32(4):287–293, 2008.
Evis, Z. Reactions in hydroxylapatite–zirconia composites. Ceram. Int. 33(6):987–991, 2007.
Ferreira, F. V., C. G. Otoni, J. H. Lopes, L. P. de Souza, L. H. Mei, L. M. Lona, K. Lozano, A. O. Lobo, and L. H. Mattoso. Ultrathin polymer fibers hybridized with bioactive ceramics: a review on fundamental pathways of electrospinning towards bone regeneration. Mater. Sci. Eng. C 123:2021.
Fouda, M. M., J. S. Ajarem, S. N. Maodaa, A. A. Allam, M. M. Taher, and M. Ahmed. Carboxymethyl cellulose supported green synthetic features of gold nanoparticles: antioxidant, cell viability, and antibacterial effectiveness. Synth. Met. 269:2020.
Fratzl-Zelman, N., S. Gamsjaeger, S. Blouin, R. Kocijan, P. Plasenzotti, S. Rokidi, K. Nawrot-Wawrzyniak, K. Roetzer, G. Uyanik, and G. Haeusler. Alterations of bone material properties in adult patients with X-linked hypophosphatemia (XLH). J. Struct. Biol. 211(3):2020.
Gadalla, D., and A. S. Goldstein. Improving the osteogenicity of PCL fiber substrates by surface-immobilization of bone morphogenic protein-2. Ann. Biomed. Eng. 48(3):1006–1015, 2020.
Galán-Olleros, M., J. Marco, D. Oteo, R. Cristóbal-Bilbao, E. Manrique, R. García-Maroto, F. Marco, and J. L. Cebrián-Parra. Orthopedic surgical treatment and perioperative complications in multiple myeloma bone disease: analysis of a series (2009–2018). Ann. Surg. Oncol. 28(2):1158–1166, 2021.
Ghanaati, S., M. Barbeck, R. Detsch, U. Deisinger, U. Hilbig, V. Rausch, R. Sader, R. E. Unger, G. Ziegler, and C. J. Kirkpatrick. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics. Biomed. Mater. 7(1):2012.
GGilani, M., S. Shepherd, B. Nichols, K. Gerasimidis, J. Wong, and A. Mason, Evaluation of body composition in paediatric osteogenesis imperfecta. J. Clin. Densitom. 2021.
Hassan, M. N., M. M. Mahmoud, A. Abd-El-Fattah, and S. Kandil. Microwave-assisted preparation of nano-hydroxyapatite for bone substitutes. Ceram. Int. 42(3):3725–3744, 2016.
Hassan, A. A., H. A. Radwan, S. A. Abdelaal, N. S. Al-Radadi, M. Ahmed, K. R. Shoueir, and M. A. Hady. Polycaprolactone based electrospun matrices loaded with Ag/hydroxyapatite as wound dressings: morphology, cell adhesion, and antibacterial activity. Int. J. Pharm. 593:2021.
He, F., T. Lu, X. Fang, Y. Li, F. Zuo, X. Deng, and J. Ye. Effects of strontium amount on the mechanical strength and cell-biological performance of magnesium-strontium phosphate bioceramics for bone regeneration. Mater. Sci. Eng., C 112:2020.
Hofstee, M. I., G. Muthukrishnan, G. J. Atkins, M. Riool, K. Thompson, M. Morgenstern, M. J. Stoddart, R. G. Richards, S. A. Zaat, and T. F. Moriarty. Current concepts of osteomyelitis: from pathologic mechanisms to advanced research methods. Am. J. Pathol. 190(6):1151–1163, 2020.
Huang, L. H., J. Han, J. M. Ouyang, and B. S. Gui. Shape-dependent adhesion and endocytosis of hydroxyapatite nanoparticles on A7R5 aortic smooth muscle cells. J. Cell. Physiol. 235(1):465–479, 2020.
In, Y., U. Amornkitbamrung, M.-H. Hong, and H. Shin. On the crystallization of hydroxyapatite under hydrothermal conditions: role of sebacic acid as an additive. ACS Omega 5(42):27204–27210, 2020.
Inuzuka, M., S. Nakamura, S. Kishi, K. Yoshida, K. Hashimoto, Y. Toda, and K. Yamashita. Hydroxyapatite-doped zirconia for preparation of biomedical composites ceramics. Solid State Ion. 172(1–4):509–513, 2004.
Irfan, M., and M. Irfan. Overview of hydroxyapatite; composition, structure, synthesis methods and its biomedical uses. Biomed. Lett. 6(1):17–22, 2020.
Irfan, M., P. Suprajaa, P. Baraneedharan, and B. M. Reddy. A comparative study of nanohydroxyapetite obtained from natural shells and wet chemical process. J. Mater. Sci. Surf. Eng 7:938–943, 2020.
Irfan, M., P. Suprajaa, R. Praveen, and B. M. Reddy. Microwave-assisted one-step synthesis of nanohydroxyapetite from fish bones and mussel shells. Mater. Lett. 282:2021.
Jahromi, E. Z., A. Divsalar, A. A. Saboury, S. Khaleghizadeh, H. Mansouri-Torshizi, and I. Kostova. Palladium complexes: new candidates for anti-cancer drugs. J. Iran. Chem. Soc. 13(5):967–989, 2016.
Javadinejad, H. R., and R. Ebrahimi-Kahrizsangi. Thermal and kinetic study of hydroxyapatite formation by solid-state reaction. Int. J. Chem. Kinet. 53(5):583–595, 2021.
Jiang, S., X. Liu, Y. Liu, J. Liu, W. He, and Y. Dong. Biology, Synthesis of silver@ hydroxyapatite nanoparticles based biocomposite and their assessment for viability of Osseointegration for rabbit knee joint anterior cruciate ligament rehabilitation. J. Photochem. Photobiol. B 202:2020.
Kaka, G., J. Arum, S. H. Sadraie, A. Emamgholi, and A. Mohammadi. Bone marrow stromal cells associated with poly l-lactic-co-glycolic acid (PLGA) nanofiber scaffold improve transected sciatic nerve regeneration. Iran. J. Biotechnol. 15(3):149, 2017.
Kalbarczyk, M., and A. Szcześ. Microwave assistant synthesis of calcium phosphate minerals using hen’s eggshells as a calcium source. Physicochem. Probl. Mineral Process. 56:167–177, 2020.
Kawashima, N., K. Soetanto, K.-I. Watanabe, K. Ono, T. Matsuno, and S. B. Biointerfaces. The surface characteristics of the sintered body of hydroxyapatite-zirconia composite particles. Colloids Surf. B 10(1):23–27, 1997.
Khalil, M., J. Yu, N. Liu, and R. L. Lee. Hydrothermal synthesis, characterization, and growth mechanism of hematite nanoparticles. J. Nanopart. Res. 16(4):1–10, 2014.
Khan, M. U. A., M. A. Al-Thebaiti, M. U. Hashmi, S. Aftab, S. I. Abd-Razak, S. Abu Hassan, M. R. Abdul-Kadir, and R. Amin. Synthesis of silver-coated bioactive nanocomposite scaffolds based on grafted beta-glucan/hydroxyapatite via freeze-drying method: Anti-microbial and biocompatibility evaluation for bone tissue engineering. Materials 13(4):971, 2020.
Kolmas, J., A. Jaklewicz, A. Zima, M. Bućko, Z. Paszkiewicz, J. Lis, A. Ślósarczyk, and W. Kolodziejski. Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite: the effect on physicochemical properties. J. Mol. Struct. 987(1–3):40–50, 2011.
Koons, G. L., M. Diba, and A. G. Mikos. Materials design for bone-tissue engineering. Nat. Rev. Mater. 5(8):584–603, 2020.
Kowalczyk, P., R. Podgórski, M. Wojasiński, G. Gut, W. Bojar, and T. Ciach. Chitosan-human bone composite granulates for guided bone regeneration. Int. J. Mol. Sci. 22(5):2324, 2021.
Kuczumow, A., R. Chałas, J. Nowak, W. Smułek, and M. Jarzębski. Novel approach to tooth chemistry: quantification of human enamel apatite in context for new biomaterials and nanomaterials development. Int. J. Mol. Sci. 22(1):279, 2020.
Kumar, A., S. Kargozar, F. Baino, and S. S. Han. Additive manufacturing methods for producing hydroxyapatite and hydroxyapatite-based composite scaffolds: a review. Front. Mater. 6:313, 2019.
Laurencin, D., N. Almora-Barrios, N. H. de Leeuw, C. Gervais, C. Bonhomme, F. Mauri, W. Chrzanowski, J. C. Knowles, R. J. Newport, and A. Wong. Magnesium incorporation into hydroxyapatite. Biomaterials 32(7):1826–1837, 2011.
Li, X., M. Liu, F. Chen, Y. Wang, M. Wang, X. Chen, Y. Xiao, and X. Zhang. Design of hydroxyapatite bioceramics with micro-/nano-topographies to regulate the osteogenic activities of bone morphogenetic protein-2 and bone marrow stromal cells. Nanoscale 12(13):7284–7300, 2020.
Li, X., Y. Yuan, L. Liu, Y.-S. Leung, Y. Chen, Y. Guo, Y. Chai, and Y. Chen. 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration. Bio-Des. Manuf. 3(1):15–29, 2020.
Lin, X., S. Patil, Y.-G. Gao, and A. Qian. The bone extracellular matrix in bone formation and regeneration. Front. Pharmacol. 11:757, 2020.
Lino, A. B., A. D. McCarthy, and J. M. Fernández. Evaluation of strontium-containing PCL-PDIPF scaffolds for bone tissue engineering: in vitro and in vivo studies. Ann. Biomed. Eng. 47(3):902–912, 2019.
Liu, J., X. Ye, H. Wang, M. Zhu, B. Wang, and H. Yan. The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceram. Int. 29(6):629–633, 2003.
López-Ortiz, S., D. Mendoza-Anaya, D. Sánchez-Campos, M. Fernandez-García, E. Salinas-Rodríguez, M. Reyes-Valderrama, and V. Rodríguez-Lugo. The pH effect on the growth of hexagonal and monoclinic hydroxyapatite synthesized by the hydrothermal method. J. Nanomater. 2020:5912592, 2020.
Manoj, M. and A. Yuan. A plant-mediated synthesis of nanostructured hydroxyapatite for biomedical applications: a review. RSC Adv. 10:40923–40939, 2020.
Mansour, S., S. El-Dek, and M. K. Ahmed. Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals. Sci. Rep. 7(1):1–21, 2017.
Masters, E. A., K. L. de MesyBentley, A. L. Gill, S. P. Hao, C. A. Galloway, A. T. Salminen, D. R. Guy, J. L. McGrath, H. A. Awad, and S. R. Gill. Identification of Penicillin Binding Protein 4 (PBP4) as a critical factor for Staphylococcus aureus bone invasion during osteomyelitis in mice. PLoS Pathog. 16(10):2020.
McLain, R. F., and F. Techy. Trephine technique for iliac crest bone graft harvest: long-term results. Spine 46(1):41–47, 2021.
Metwally, S., S. Ferraris, S. Spriano, Z. J. Krysiak, Ł. Kaniuk, M. M. Marzec, S. K. Kim, P. K. Szewczyk, A. Gruszczyński, and M. Wytrwal-Sarna. Surface potential and roughness controlled cell adhesion and collagen formation in electrospun PCL fibers for bone regeneration. Mater. Des. 194:2020.
Mi, J., J. Xu, H. Yao, X. Li, W. Tong, Y. Li, B. Dai, X. He, D. H. K. Chow, and L. Qin. Calcitonin gene-related peptide enhances distraction osteogenesis by increasing angiogenesis. Tissue Eng. Part A 27(1–2):87–102, 2021.
Mikael, P. E., A. A. Golebiowska, X. Xin, D. W. Rowe, and S. P. Nukavarapu. Evaluation of an engineered hybrid matrix for bone regeneration via endochondral ossification. Ann. Biomed. Eng. 48(3):992–1005, 2020.
Mishra, V. K., S. B. Rai, B. P. Asthana, O. Parkash, and D. Kumar. Effect of annealing on nanoparticles of hydroxyapatite synthesized via microwave irradiation: structural and spectroscopic studies. Ceram. Int. 40(7):11319–11328, 2014.
Miszuk, J., Z. Liang, J. Hu, H. Sanyour, Z. Hong, H. Fong, and H. Sun. Elastic mineralized 3D electrospun PCL nanofibrous scaffold for drug release and bone tissue engineering. ACS Appl. Bio Mater. 4(4):3639–3648, 2021.
Mobika, J., M. Rajkumar, S. L. Sibi, and V. N. Priya. Fabrication of bioactive hydroxyapatite/silk fibroin/gelatin cross-linked nanocomposite for biomedical application. Mater. Chem. Phys. 250:2020.
Mushtaq, A., R. Zhao, D. Luo, E. Dempsey, X. Wang, M. Z. Iqbal, and X. Kong. Magnetic hydroxyapatite nanocomposites: the advances from synthesis to biomedical applications. Mater. Des. 197:2020.
Neacsu, I. A., A. P. Serban, A. I. Nicoara, R. Trusca, V. L. Ene, and F. Iordache. Biomimetic composite scaffold based on naturally derived biomaterials. Polymers 12(5):1161, 2020.
Nonoyama, T. Robust hydrogel–bioceramics composite and its osteoconductive properties. Polym. J. 52(7):709–716, 2020.
Obada, D., E. Dauda, J. Abifarin, D. Dodoo-Arhin, and N. D. Bansod. Mechanical properties of natural hydroxyapatite using low cold compaction pressure: effect of sintering temperature. Mater. Chem. Phys. 239:2020.
Okazaki, Y., and S.-I. Katsuda. Biological safety evaluation and surface modification of biocompatible Ti–15Zr–4Nb alloy. Materials 14:731, 2021.
Palmer, L. C., C. J. Newcomb, S. R. Kaltz, E. D. Spoerke, and S. I. Stupp. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem. Rev. 108(11):4754–4783, 2008.
Papastavrou, A., I. Schmidt, K. Deng, and P. Steinmann. On age-dependent bone remodeling. J. Biomech. 103:2020.
Parisi, C., L. Salvatore, L. Veschini, M. P. Serra, C. Hobbs, M. Madaghiele, A. Sannino, and L. Di Silvio. Biomimetic gradient scaffold of collagen–hydroxyapatite for osteochondral regeneration. J. Tissue Eng. 11:1–13, 2020.
Peccati, F., C. Bernocco, P. Ugliengo, and M. Corno. Properties and reactivity toward water of a type carbonated apatite and hydroxyapatite surfaces. J. Phys. Chem. C 122(7):3934–3944, 2018.
Philip, N. S., R. P. Jakribettu, R. Boloor, and R. Adiga. Characterisation of aerobic bacteria isolated from orthopaedic implant-associated infections. J. Acad. Clin. Microbiol. 20(1):33, 2018.
Prabhakaran, M. P., J. Venugopal, and S. Ramakrishna. Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater. 5(8):2884–2893, 2009.
Preeth, D. R., S. Saravanan, M. Shairam, N. Selvakumar, I. S. Raja, A. Dhanasekaran, S. Vimalraj, and S. Rajalakshmi. Bioactive Zinc (II) complex incorporated PCL/gelatin electrospun nanofiber enhanced bone tissue regeneration. Eur. J. Pharm. Sci. 160:2021.
Qi, H., Z. Ye, H. Ren, N. Chen, Q. Zeng, X. Wu, and T. Lu. Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Life Sci. 148:139–144, 2016.
Rahmati, M., D. Mills, A. Urbanska, M. Saeb, J. Venugopal, S. Ramakrishna, and M. Mozafari. Electrospinning for tissue engineering applications. Prog. Mater Sci. 117:2020.
Raju, R., M. Oshima, M. Inoue, T. Morita, Y. Huijiao, A. Waskitho, O. Baba, M. Inoue, and Y. Matsuka. Three-dimensional periodontal tissue regeneration using a bone-ligament complex cell sheet. Sci. Rep. 10(1):1–16, 2020.
Ramesh, S., C. Tan, C. Peralta, and W. D. Teng. The effect of manganese oxide on the sinterability of hydroxyapatite. Sci. Technol. Adv. Mater. 8(4):257–263, 2007.
Rapacz-Kmita, A., A. Ślósarczyk, Z. Paszkiewicz, and C. Paluszkiewicz. Phase stability of hydroxyapatite–zirconia (HAp–ZrO2) composites for bone replacement. J. Mol. Struct. 704(1–3):333–340, 2004.
Ratnayake, J. T., M. Mucalo, and G. J. Dias. Substituted hydroxyapatites for bone regeneration: a review of current trends. J. Biomed. Mater. Res. B 105(5):1285–1299, 2017.
Reichelt, M., S. Gehmert, A. Krieg, and A. M. Nowakowski. Bone crushing in infected pseudarthrosis–an extraordinary way to treat osteomyelitis caused by resistant bacteria. J. Orthop. Case Rep. 9(6):74, 2020.
Ren, F., Y. Leng, R. Xin, and X. Ge. Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater. 6(7):2787–2796, 2010.
Ribeiro, A., Y. A. Manrique, I. C. Ferreira, M. F. Barreiro, J. C. B. Lopes, and M. M. Dias. Nanohydroxyapatite (n-HAp) as a pickering stabilizer in oil-in-water (O/W) emulsions: a stability study. J. Dispers. Sci. Technol. 24:1–13, 2020.
Rouhollahi, A., O. Ilegbusi, S. Florczyk, K. Xu, and H. Foroosh. Effect of mold geometry on pore size in freeze-cast chitosan-alginate scaffolds for tissue engineering. Ann. Biomed. Eng. 48(3):1090–1102, 2020.
RubanKumar, A., S. Kalainathan, and A. M. Saral. Microwave assisted synthesis of hydroxyapatite nano strips. Cryst. Res. Technol. 45(7):776–778, 2010.
Sachlos, E., D. Gotora, and J. T. Czernuszka. Collagen scaffolds reinforced with biomimetic composite nano-sized carbonate-substituted hydroxyapatite crystals and shaped by rapid prototyping to contain internal microchannels. Tissue Eng. 12(9):2479–2487, 2006.
Sadat-Shojai, M., M.-T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 9(8):7591–7621, 2013.
Salama, A., H. A. Aljohani, and K. R. Shoueir. Oxidized cellulose reinforced silica gel: new hybrid for dye adsorption. Mater. Lett. 230:293–296, 2018.
Salama, A., M. A. Diab, R. E. Abou-Zeid, H. A. Aljohani, and K. R. Shoueir. Crosslinked alginate/silica/zinc oxide nanocomposite: a sustainable material with antibacterial properties. Compos. Commun. 7:7–11, 2018.
Samadian, H., H. Mobasheri, M. Azami, and R. Faridi-Majidi. Osteoconductive and electroactive carbon nanofibers/hydroxyapatite nanocomposite tailored for bone tissue engineering: in vitro and in vivo studies. Sci. Rep. 10(1):1–14, 2020.
Sans, J., V. Sanz, J. Puiggalí, P. Turon, and C. Alemán. Controlled anisotropic growth of hydroxyapatite by additive-free hydrothermal synthesis. Cryst. Growth Des. 21:748–756, 2020.
dos Santos, C. F., P. S. Gomes, M. M. Almeida, M.-G. Willinger, R.-P. Franke, M. H. Fernandes, and M. E. Costa. Gold-dotted hydroxyapatite nanoparticles as multifunctional platforms for medical applications. RSC Adv. 5(85):69184–69195, 2015.
Sathiyavimal, S., S. Vasantharaj, F. LewisOscar, R. Selvaraj, K. Brindhadevi, and A. Pugazhendhi. Natural organic and inorganic–hydroxyapatite biopolymer composite for biomedical applications. Prog. Org. Coat. 147:2020.
Sayed, M. M., H. M. Mousa, M. El-Aassar, N. M. El-Deeb, N. M. Ghazaly, M. M. Dewidar, and A. Abdal-hay. Enhancing mechanical and biodegradation properties of polyvinyl alcohol/silk fibroin nanofibers composite patches for Cardiac Tissue Engineering. Mater. Lett. 255:2019.
Sayko, R., Z. Wang, H. Liang, M. L. Becker, and A. V. Dobrynin. Degradation of films of block copolymers: molecular dynamics simulations. Macromolecules 53(4):1270–1280, 2020.
Seo, S. J., and Y. G. Kim. In-situ analysis of the hydration ability of bone graft material using a synchrotron radiation X-ray micro-CT. J. Appl. Biomater. Funct. Mater. 18:1–8, 2020.
Seo, J. J., N. Mandakhbayar, M. S. Kang, J.-Y. Yoon, N.-H. Lee, J. Ahn, H.-H. Lee, J. H. Lee, and H. W. Kim. Antibacterial, proangiogenic, and osteopromotive nanoglass paste coordinates regenerative process following bacterial infection in hard tissue. Biomaterials 268:2021.
Shaban, N. Z., A. M. Aboelsaad, K. R. Shoueir, S. A. Abdulmalek, D. Awad, S. Y. Shaban, and H. Mansour. Chitosan-based dithiophenolato nanoparticles: preparation, mechanistic information of DNA binding, antibacterial and cytotoxic activities. J. Mol. Liq. 318:2020.
Shaban, N. Z., S. A. Yehia, K. R. Shoueir, S. R. Saleh, D. Awad, and S. Y. Shaban. Design, DNA binding and kinetic studies, antibacterial and cytotoxic activities of stable dithiophenolato titanium (IV)-chitosan Nanocomposite. J. Mol. Liq. 287:2019.
Shafiei, S., M. Omidi, F. Nasehi, H. Golzar, D. Mohammadrezaei, M. R. Rad, and A. Khojasteh. Egg shell-derived calcium phosphate/carbon dot nanofibrous scaffolds for bone tissue engineering: fabrication and characterization. Mater. Sci. Eng. C 100:564–575, 2019.
Shanmugam, S., and B. Gopal. Copper substituted hydroxyapatite and fluorapatite: synthesis, characterization and antimicrobial properties. Ceram. Int. 40(10):15655–15662, 2014.
Sharifi, M., F. Attar, A. A. Saboury, K. Akhtari, N. Hooshmand, A. Hasan, and Falahati El-Sayed. Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy. J. Control. Release 311:170–189, 2019.
Shi, H., Z. Zhou, W. Li, Y. Fan, Z. Li, and J. Wei. Hydroxyapatite based materials for bone tissue engineering: a brief and comprehensive introduction. Crystals 11(2):149, 2021.
Shokraei, S., E. Mirzaei, N. Shokraei, M. A. Derakhshan, H. Ghanbari, and R. Faridi-Majidi. Fabrication and characterization of chitosan/kefiran electrospun nanofibers for tissue engineering applications. J. Appl. Polym. Sci. 138(24):50547, 2021.
Shoueir, K. R. Green microwave synthesis of functionalized chitosan with robust adsorption capacities for Cr(VI) and/or RHB in complex aqueous solutions. Environ. Sci. Pollut. Res. 27(26):33020–33031, 2020.
Shoueir, K., M. Ahmed, S. A. A. Gaber, and M. El-Kemary. Thallium and selenite doped carbonated hydroxyapatite: microstructural features and anticancer activity assessment against human lung carcinoma. Ceram. Int. 46(4):5201–5212, 2020.
Shoueir, K. R., N. El-Desouky, M. M. Rashad, M. Ahmed, I. Janowska, and M. El-Kemary. Chitosan based-nanoparticles and nanocapsules: overview, physicochemical features, applications of a nanofibrous scaffold, and bioprinting. Int. J. Biol. Macromol. 167:1176–1197, 2020.
Shoueir, K., H. El-Sheshtawy, M. Misbah, H. El-Hosainy, I. El-Mehasseb, and M. El-Kemary. Fenton-like nanocatalyst for photodegradation of methylene blue under visible light activated by hybrid green DNSA@Chitosan@ MnFe2O4. Carbohyd. Polym. 197:17–28, 2018.
Shoueir, K., S. Kandil, H. El-hosainy, and M. El-Kemary. Tailoring the surface reactivity of plasmonic Au@ TiO2 photocatalyst bio-based chitosan fiber towards cleaner of harmful water pollutants under visible-light irradiation. J.f Clean. Prod. 230:383–393, 2019.
Shoueir, K., A. R. Wassel, M. Ahmed, and M. E. El-Naggar. Encapsulation of extremely stable polyaniline onto Bio-MOF: photo-activated antimicrobial and depletion of ciprofloxacin from aqueous solutions. J. Photochem. Photobiol., A 400:2020.
Shuai, C., L. Yu, W. Yang, S. Peng, Y. Zhong, and P. Feng. Phosphonic acid coupling agent modification of HAP nanoparticles: interfacial effects in PLLA/HAP bone scaffold. Polymers 12(1):199, 2020.
Sigrist, B., S. Ferguson, E. Boehm, C. Jung, M. Scheibel, and P. Moroder. The biomechanical effect of bone grafting and bone graft remodeling in patients with anterior shoulder instability. Am. J. Sports Med. 48(8):1857–1864, 2020.
Singh, G., R. P. Singh, and S. S. Jolly. Customized hydroxyapatites for bone-tissue engineering and drug delivery applications: a review. J. Sol-Gel. Sci. Technol. 94(3):505–530, 2020.
Singh, B. N., V. Veeresh, S. P. Mallick, S. Sinha, A. Rastogi, and P. Srivastava. Generation of scaffold incorporated with nanobioglass encapsulated in chitosan/chondroitin sulfate complex for bone tissue engineering. Int. J. Biol. Macromol. 153:1–16, 2020.
Snyder, A. D., and I. Salehinia. Study of nanoscale deformation mechanisms in bulk hexagonal hydroxyapatite under uniaxial loading using molecular dynamics. Mech. Behav. Biomed. Mater. 110:2020.
Soni, A., J. Smith, A. Thompson, and G. Brightwell. Microwave-induced thermal sterilization-A review on history, technical progress, advantages and challenges as compared to the conventional methods. Trends Food Sci. Technol. 97:433–442, 2020.
Sridhar, R., R. Lakshminarayanan, K. Madhaiyan, V. A. Barathi, K. H. C. Lim, and S. Ramakrishna. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem. Soc. Rev. 44(3):790–814, 2015.
Stevanovic, M., M. Djosic, A. Jankovic, K. Nesovic, V. Kojic, J. Stojanovic, S. Grujic, I. Matic Bujagic, K. Y. Rhee, and V. Miskovic-Stankovic. Assessing the bioactivity of gentamicin-preloaded hydroxyapatite/chitosan composite coating on titanium substrate. ACS Omega 5(25):15433–15445, 2020.
Stevanović, M., M. Djošić, A. Janković, V. Kojić, M. Vukašinović-Sekulić, J. Stojanović, J. Odović, M. Crevar Sakač, R. Kyong Yop, and V. Mišković-Stanković. Antibacterial graphene-based hydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering. J. Biomed. Mater. Res. Part A 108(11):2175–2189, 2020.
Sun, J., X. Zheng, H. Li, D. Fan, Z. Song, H. Ma, X. Hua, and J. Hui. Monodisperse selenium-substituted hydroxyapatite: controllable synthesis and biocompatibility. Mater. Sci. Eng. C 73:596–602, 2017.
Sánchez-Campos, D., D. Mendoza-Anaya, M. Reyes-Valderrama, S. Esteban-Gómez, and V. Rodríguez-Lugo. Cationic surfactant at high pH in microwave HAp synthesis. Mater. Lett. 265:2020.
Taha, M. A., R. A. Youness, and M. Ibrahim. Biocompatibility, physico-chemical and mechanical properties of hydroxyapatite-based silicon dioxide nanocomposites for biomedical applications. Ceram. Int. 46(15):23599–23610, 2020.
Taichman, R. S. Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105(7):2631–2639, 2005.
Tautkus, S., K. Ishikawa, R. Ramanauskas, and A. Kareiva. Zinc and chromium co-doped calcium hydroxyapatite: sol-gel synthesis, characterization, behaviour in simulated body fluid and phase transformations. J. Solid State Chem. 284:2020.
Teaima, M. H., F. A. Abdelnaby, M. Fadel, M. A. El-Nabarawi, and K. R. Shoueir. Synthesis of biocompatible and environmentally nanofibrous mats loaded with moxifloxacin as a model drug for biomedical applications. Pharmaceutics 12(11):1029, 2020.
Teaima, M. H., M. K. Elasaly, S. A. Omar, M. A. El-Nabarawi, and K. R. Shoueir. Eco-friendly synthesis of functionalized chitosan-based nanoantibiotic system for potential delivery of linezolid as antimicrobial agents. Saudi Pharm. J. 28(7):859–868, 2020.
Toullec, C., J. Le Bideau, V. Geoffroy, B. Halgand, N. Buchtova, R. Molina-Peña, E. Garcion, S. Avril, L. Sindji, and A. Dube. Curdlan-chitosan electrospun fibers as potential scaffolds for bone regeneration. Polymers 13(4):526, 2021.
Tsai, S. W., S. S. Huang, W.-X. Yu, Y.-W. Hsu, and F. Y. Hsu. Collagen scaffolds containing hydroxyapatite-CaO fiber fragments for bone tissue engineering. Polymers 12(5):1174, 2020.
Udomluck, N., W.-G. Koh, D.-J. Lim, and H. Park. Recent developments in nanofiber fabrication and modification for bone tissue engineering. Int. J. Mol. Sci. 21(1):99, 2020.
Um, S. H., Y. W. Chung, Y. Seo, H. Seo, M. R. Ok, Y. C. Kim, H. S. Han, J. J. Chung, J. R. Edwards, and H. Jeon. Robust hydroxyapatite coating by laser-induced hydrothermal synthesis. Adv. Func. Mater. 30(48):2005233, 2020.
Vallet-Regi, M., and J. M. González-Calbet. Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem. 32(1–2):1–31, 2004.
Varma, A., A. S. Mukasyan, A. S. Rogachev, and K. V. Manukyan. Solution combustion synthesis of nanoscale materials. Chem. Rev. 116(23):14493–14586, 2016.
Venkatraman, S. K., and S. Swamiappan. Review on calcium-and magnesium-based silicates for bone tissue engineering applications. J. Biomed. Mater. Res. Part A 108(7):1546–1562, 2020.
Venugopal, J. R., S. Low, A. T. Choon, A. B. Kumar, and S. Ramakrishna. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif. Organs 32(5):388–397, 2008.
Venugopal, J., S. Low, A. T. Choon, and S. Ramakrishna. Interaction of cells and nanofiber scaffolds in tissue engineering. J. Biomed. Mater. Res. B 84(1):34–48, 2008.
Virginia, M., A. D. Laksono, W. P. K. Asih, and D. T. Agustiningtyas. Study on biocompatibility of chitosan/hydroxyapatite doped silicon composite as material for alveolar socket preservation. J. Phys. 2:1–2, 2021.
Vu, A. A., and S. Bose. Vitamin D 3 release from traditionally and additively manufactured tricalcium phosphate bone tissue engineering scaffolds. Ann. Biomed. Eng. 48(3):1025–1033, 2020.
Wang, L., and G. H. Nancollas. Calcium orthophosphates: crystallization and dissolution. Chem. Rev. 108(11):4628–4669, 2008.
Wang, J., and L. L. Shaw. Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomaterials 30(34):6565–6572, 2009.
Wang, X., J. Xu, J. Kou, W. Tian, C. Gao, F. Cui, and Z. Qiu. The clinical results of treating Kummell’s disease with mineralized collagen modified polymethyl methacrylate. J. Biomater. Appl. 35:1366–1371, 2021.
Wu, T., H. Shi, Y. Liang, T. Lu, Z. Lin, and J. Ye. Improving osteogenesis of calcium phosphate bone cement by incorporating with manganese doped β-tricalcium phosphate. Mater. Sci. Eng. C 109:2020.
Xie, X., Y. Chen, X. Wang, X. Xu, Y. Shen, A. Aldalbahi, A. E. Fetz, G. L. Bowlin, M. El-Newehy, and X. Mo. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration. J. Mater. Sci. Technol. 59:243–261, 2020.
Yan, L., Y. Li, Z. X. Deng, J. Zhuang, and X. Sun. Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods. Int. J. Inorg. Mater. 3(7):633–637, 2001.
Yinka, K. M., A. J. Olayiwola, A. Sulaiman, A. Ali, and F. Iqbal. Preparation and characterization of hydroxyapatite powder for biomedical applications from giant African land snail shell using a hydrothermal technique. Eng. Appl. Sci. Res. 47(3):275–286, 2020.
Yoshida, K., K. Hashimoto, Y. Toda, S. Udagawa, and T. Kanazawa. Fabrication of structure-controlled hydroxyapatite/zirconia composite. J. Eur. Ceram. Soc. 26(4–5):515–518, 2006.
Yu, M., Y. Wang, Y. Zhang, D. Cui, G. Gu, and D. Zhao. Gallium ions promote osteoinduction of human and mouse osteoblasts via the TRPM7/Akt signaling pathway. Mol. Med. Rep. 22(4):2741–2752, 2020.
Zandi, M., H. Mirzadeh, C. Mayer, H. Urch, M. B. Eslaminejad, F. Bagheri, and H. Mivehchi. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. J. Biomed. Mater. Res. Part A 92(4):1244–1255, 2009.
Zhang, Z., Y. Song, S. I. Wang, S. H. Ha, K. Y. Jang, B. H. Park, Y. J. Moon, and J. R. Kim. Osteoblasts/osteocytes sirtuin6 is vital to preventing ischemic osteonecrosis through targeting VDR-RANKL signaling. J. Bone Miner. Res. 36(3):579–590, 2020.
Zhang, T., and X. Xiao. Hydrothermal synthesis of hydroxyapatite assisted by gemini cationic surfactant. J. Nanomater. 2020:6173867, 2020.
Zhang, X. X., Z. J. Yang, F. Nie, and Q. L. Yan. Recent advances on the crystallization engineering of energetic materials. Energ. Mater. Front. 1:141–156, 2020.
Zhou, Q., T. Wang, C. Wang, Z. Wang, Y. Yang, P. Li, R. Cai, M. Sun, H. Yuan, and L. Nie. Synthesis and characterization of silver nanoparticles-doped hydroxyapatite/alginate microparticles with promising cytocompatibility and antibacterial properties. Colloids Surf. A 585:2020.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4