A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-021-02810-2 below:

New Prospects in Nano Phased Co-substituted Hydroxyapatite Enrolled in Polymeric Nanofiber Mats for Bone Tissue Engineering Applications

References
  1. Abdal-hay, A., M. Taha, H. M. Mousa, M. Bartnikowski, M. L. Hassan, M. Dewidar, and S. Ivanovski. Engineering of electrically-conductive poly (ε-caprolactone)/multi-walled carbon nanotubes composite nanofibers for tissue engineering applications. Ceram. Int. 45(12):15736–15740, 2019.

    Article  CAS  Google Scholar 

  2. Abdelbar, M. F., R. S. Shams, O. M. Morsy, M. A. Hady, K. Shoueir, and R. Abdelmonem. Highly ordered functionalized mesoporous silicate nanoparticles reinforced poly (lactic acid) gatekeeper surface for infection treatment. Int. J. Biol. Macromol. 156:858–868, 2020.

    Article  CAS  PubMed  Google Scholar 

  3. Ahn, E. S., N. J. Gleason, and J. Y. Ying. The effect of zirconia reinforcing agents on the microstructure and mechanical properties of hydroxyapatite based nanocomposites. J. Am. Ceram. Soc. 88(12):3374–3379, 2005.

    Article  CAS  Google Scholar 

  4. Ajarem, J. S., S. N. Maodaa, A. A. Allam, M. M. Taher, and M. Khalaf. Benign synthesis of cobalt oxide nanoparticles containing red algae extract: antioxidant, antimicrobial, anticancer, and anticoagulant activity. J. Clust. Sci. 25:1–12, 2021.

    Google Scholar 

  5. Al-Ahmed, Z. A., B. A. Al-Jahdaly, H. A. Radwan, A. A. Hassana, A. Almahri, M. Ahmed, and M. M. Taher. Electrospun nanofibrous scaffolds of ε-polycaprolactone containing graphene oxide and encapsulated with magnetite nanoparticles for wound healing utilizations. Mater. Res. Express 8(2):2021.

    Article  CAS  Google Scholar 

  6. Al-Jahdaly, B. A., N. S. Al-Radadi, G. M. Eldin, A. Almahri, M. Ahmed, K. Shoueir, and I. Janowska. Selenium nanoparticles synthesized using an eco-friendly method: dye decolorization from aqueous solutions, cell viability, antioxidant, and antibacterial effectiveness. J. Mater. Res. Technol. 11:85–97, 2021.

    Article  CAS  Google Scholar 

  7. Al-Sowayan, B., F. Alammari, and A. Alshareeda. Preparing the bone tissue regeneration ground by exosomes: from diagnosis to therapy. Molecules 25(18):4205, 2020.

    Article  CAS  PubMed Central  Google Scholar 

  8. Alidadi, S. Nanoscale bioceramics in bone tissue engineering-an overview. Indian J Vet. Sci. Biotechnol. 16(2–4):07–11, 2020.

    Google Scholar 

  9. Anil, A., A. Sadasivan, E. Koshi, and C. Dentistry. Physicochemical characterization of five different bone graft substitutes used in periodontal regeneration: an in vitro study. J. Int. Soc. Prev. Commun. Dent. 10(5):634, 2020.

    Article  Google Scholar 

  10. Arcos, D., and M. Vallet-Regí. Substituted hydroxyapatite coatings of bone implants. J. Mater. Chem. B 8(9):1781–1800, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arjama, M., S. Mehnath, M. Rajan, and M. Jeyaraj. Injectable cuttlefish HAP and macromolecular fibroin protein hydrogel for natural bone mimicking matrix for enhancement of osteoinduction progression. React. Funct. Polym. 160:2021.

    Article  CAS  Google Scholar 

  12. Asgarian, R., A. Khalghi, R. K. Harchegani, M. Monshi, D. A. Samani, and A. Doostmohammadi. Synthesis of nanostructured hardystonite (HT) bioceramic coated on titanium alloy (Ti-6Al-4 V) substrate and assessment of its corrosion behavior, bioactivity and cytotoxicity. Appl. Phys. A 127(1):1–10, 2021.

    Article  CAS  Google Scholar 

  13. Ashrafi, M., J. E. Gubaua, J. T. Pereira, F. Gahlichi, and M. Doblaré. A mechano-chemo-biological model for bone remodeling with a new mechano-chemo-transduction approach. Biomech. Model. Mechanobiol. 19(6):2499–2523, 2020.

    Article  PubMed  Google Scholar 

  14. Atta, A. M., E. Abdel-Bary, K. Rezk, and A. Abdel-Azim. Fast responsive poly (acrylic acid-co-N-isopropyl acrylamide) hydrogels based on new crosslinker. J. Appl. Polym. Sci. 112(1):114–122, 2009.

    Article  CAS  Google Scholar 

  15. Atta, A. M., G. A. El-Mahdy, H. A. Al-Lohedan, and K. R. Shoueir. Electrochemical behavior of smart N-isopropyl acrylamide copolymer nanogel on steel for corrosion protection in acidic solution. Int. J. Electrochem. Sci. 10:870–882, 2015.

    Google Scholar 

  16. Barbeck, M., O. Jung, R. Smeets, M. Gosau, R. Schnettler, P. Rider, A. Houshmand, and T. Korzinskas. Implantation of an injectable bone substitute material enables integration following the principles of guided bone regeneration. ViVo 34(2):557–568, 2020.

    Article  CAS  Google Scholar 

  17. Bauer, L., M. Antunović, A. Rogina, M. Ivanković, and H. Ivanković. Bone-mimetic porous hydroxyapatite/whitlockite scaffolds: preparation, characterization and interactions with human mesenchymal stem cells. J. Mater. Sci. 56(5):3947–3969, 2021.

    Article  CAS  Google Scholar 

  18. Beig, B., U. Liaqat, M. F. K. Niazi, I. Douna, M. Zahoor, and M. B. K. Niazi. Current challenges and innovative developments in hydroxyapatite-based coatings on metallic materials for bone implantation: a review. Coatings 10(12):1249, 2020.

    Article  CAS  Google Scholar 

  19. Bezerra, K. J. A., I. N. de Sena-Silva, L. J. A. Bezerra, L. M. O. Cavalcante, D. C. Amorim, D. P. J. Machado, F. A. Ximenes, A. C. Almeida, L. V. Costa, N. V. Nunes, and L. A. R. Valadas. Biomedical applications of calcium phosphate ceramics as biomaterials. J. Young Pharm. 12(3):190, 2020.

    Article  CAS  Google Scholar 

  20. Bhattarai, S. R., K. A. R. Khalil, M. Dewidar, P. H. Hwang, H. K. Yi, and H. Y. Kim. Novel production method and in vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering. J. Biomed. Mater. Res. Part A 86(2):289–299, 2007.

    Article  CAS  Google Scholar 

  21. Bim-Júnior, O., F. Curylofo-Zotti, M. Reis, Y. Alania, P. N. Lisboa-Filho, and A. K. Bedran-Russo. Surface-directed mineralization of fibrous collagen scaffolds in simulated body fluid for tissue engineering applications. ACS Appl. Bio Mater. 4(3):2514–2522, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Biswal, T., S. K. BadJena, and D. Pradhan. Sustainable biomaterials and their applications: a short review. Mater. Today 30:274–282, 2020.

    CAS  Google Scholar 

  23. Black, J. D., and B. J. Tadros. Bone structure: from cortical to calcium. Orthop. Trauma 34(3):113–119, 2020.

    Article  Google Scholar 

  24. Blaudez, F., S. Ivanovski, S. Hamlet, and C. Vaquette. An overview of decellularisation techniques of native tissues and tissue engineered products for bone, ligament and tendon regeneration. Methods 171:28–40, 2020.

    Article  CAS  PubMed  Google Scholar 

  25. Blokhuis, T. J., G. M. Calori, and G. Schmidmaier. Autograft versus BMPs for the treatment of non-unions: what is the evidence? Injury 44:S40–S42, 2013.

    Article  PubMed  Google Scholar 

  26. Bose, S., and N. Sarkar. Natural medicinal compounds in bone tissue engineering. Chem. Rev. 38(4):404–417, 2020.

    CAS  Google Scholar 

  27. Brink, O. The choice between allograft or demineralized bone matrix is not unambiguous in trauma surgery. Injury 52:S23–S28, 2020.

    Article  PubMed  Google Scholar 

  28. Brzezińska-Miecznik, J., B. Macherzyńska, R. Lach, and B. Nowak. The effect of calcination and zirconia addition on HAp hot pressed materials. Ceram. Int. 40(10):15815–15819, 2014.

    Article  CAS  Google Scholar 

  29. Bu, S., S. Yan, R. Wang, P. Xia, K. Zhang, G. Li, and J. Yin. In situ precipitation of cluster and acicular hydroxyapatite onto porous poly (γ-benzyl-l-glutamate) microcarriers for bone tissue engineering. ACS Appl. Mater. Interfaces. 12(11):12468–12477, 2020.

    Article  CAS  PubMed  Google Scholar 

  30. Bulina, N. V., M. V. Chaikina, I. Y. Prosanov, and D. V. Dudina. Strontium and silicate co-substituted hydroxyapatite: mechanochemical synthesis and structural characterization. Mater. Sci. Eng., B 262:2020.

    Article  CAS  Google Scholar 

  31. Castkova, K., H. Hadraba, A. Matousek, P. Roupcova, Z. Chlup, L. Novotna, and J. Cihlar. Synthesis of Ca, Y-zirconia/hydroxyapatite nanoparticles and composites. J. Eur. Ceram. Soc. 36(12):2903–2912, 2016.

    Article  CAS  Google Scholar 

  32. Chai, Y., M. Nishikawa, and M. Tagaya. Preparation of gold/hydroxyapatite hybrids using natural fish scale template and their effective albumin interactions. Adv. Powder Technol. 29(5):1198–1203, 2018.

    Article  CAS  Google Scholar 

  33. Chakravarty, J., M. F. Rabbi, V. Chalivendra, T. Ferreira, and C. J. Brigham. Mechanical and biological properties of chitin/polylactide (PLA)/hydroxyapatite (HAP) composites cast using ionic liquid solutions. Int. J. Biol. Macromol. 151:1213–1223, 2020.

    Article  CAS  PubMed  Google Scholar 

  34. Chen, K., Y. Jiao, L. Liu, M. Huang, C. He, W. He, J. Hou, M. Yang, X. Luo, C. Li, and D. Biology. Communications between bone marrow macrophages and bone cells in bone remodeling. Front. Cell Dev. Biol. 8:1608, 2020.

    Article  Google Scholar 

  35. Chen, S., J. V. John, A. McCarthy, and J. Xie. New forms of electrospun nanofiber materials for biomedical applications. J. Mater. Chem. B 8(17):3733–3746, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, Y., Z. Liu, T. Jiang, X. Zou, L. Lei, W. Yan, J. Yang, and B. Li. Strontium-substituted biphasic calcium phosphate microspheres promoted degradation performance and enhanced bone regeneration. J. Biomed. Mater. Res. Part A 108(4):895–905, 2020.

    Article  CAS  Google Scholar 

  37. Cheng, G., J. Dai, J. Dai, H. Wang, S. Chen, X. Liu, X. Li, X. Zhou, H. Deng, and Z. Li. Extracellular matrix imitation utilizing nanofibers-embedded biomimetic scaffolds for facilitating cartilage regeneration. Chem. Eng. J. 410:2021.

    Article  CAS  Google Scholar 

  38. Chesley, M., R. Kennard, S. Roozbahani, S. M. Kim, K. Kukk, and M. Mason. One-step hydrothermal synthesis with in situ milling of biologically relevant hydroxyapatite. Mater. Sci. Eng. C 113:2020.

    Article  CAS  Google Scholar 

  39. Chiu, C. Y., H. C. Hsu, and W. H. Tuan. Effect of zirconia addition on the microstructural evolution of porous hydroxyapatite. Ceram. Int. 33(5):715–718, 2007.

    Article  CAS  Google Scholar 

  40. Clarke, B. Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol. 3(3):S131–S139, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Coakley, G., C. Mathews, M. Field, A. Jones, G. Kingsley, D. Walker, M. Phillips, C. Bradish, A. McLachlan, and R. J. R. Mohammed. BSR & BHPR, BOA, RCGP and BSAC guidelines for management of the hot swollen joint in adults. Rheumatology 45(8):1039–1041, 2006.

    Article  CAS  PubMed  Google Scholar 

  42. Curran, D. J., T. J. Fleming, M. R. Towler, and S. Hampshire. Mechanical parameters of strontium doped hydroxyapatite sintered using microwave and conventional methods. J. Mech. Behav. Biomed. Mater. 4(8):2063–2073, 2011.

    Article  CAS  PubMed  Google Scholar 

  43. Deepthi, S., M. N. Sundaram, J. D. Kadavan, and R. Jayakumar. Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Carbohyd. Polym. 153:492–500, 2016.

    Article  CAS  Google Scholar 

  44. Dempster, D. W., A. Chines, M. P. Bostrom, J. W. Nieves, H. Zhou, L. Chen, N. Pannacciulli, R. B. Wagman, and F. Cosman. Modeling-based bone formation in the human femoral neck in subjects treated with denosumab. J. Bone Miner. Res. 35(7):1282–1288, 2020.

    Article  CAS  PubMed  Google Scholar 

  45. Deng, S., M. R. Gigliobianco, R. Censi, and P. Di Martino. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: current status, challenges and opportunities. Nanomaterials 10(5):847, 2020.

    Article  CAS  PubMed Central  Google Scholar 

  46. Ding, Y., Y. Hao, Z. Yuan, B. Tao, M. Chen, C. Lin, P. Liu, and K. Cai. A dual-functional implant with an enzyme-responsive effect for bacterial infection therapy and tissue regeneration. Biomater. Sci. 8(7):1840–1854, 2020.

    Article  CAS  PubMed  Google Scholar 

  47. Durko, A. P., M. H. Yacoub, and J. Kluin. Tissue engineered materials in cardiovascular surgery: the surgeon’s perspective. Front. Cardiovasc. Med. 7:55, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  48. D’Elía, N. L., A. N. Gravina, J. M. Ruso, J. A. Laiuppa, G. E. Santillán, and P. V. Messina. Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: effects on mineral coating morphology and growth kinetic. Biochim. Biophys. Acta (BBA) 1830(11):5014–5026, 2013.

    Article  CAS  Google Scholar 

  49. El-Bindary, A. A., E. A. Toson, K. R. Shoueir, H. A. Aljohani, and M. M. Abo-Ser. Metal-organic frameworks as efficient materials for drug delivery: synthesis, characterization, antioxidant, anticancer, antibacterial and molecular docking investigation. Appl. Organomet. Chem. 34(11):2020.

    Article  CAS  Google Scholar 

  50. El-Desouky, N., K. R. Shoueir, I. El-Mehasseb, and M. El-Kemary. Bio-inspired green manufacturing of plasmonic silver nanoparticles/Degussa using Banana Waste Peduncles: photocatalytic, antimicrobial, and cytotoxicity evaluation. J. Mater. Res. Technol. 10:671–686, 2021.

    Article  CAS  Google Scholar 

  51. Elsayed, M. T., A. A. Hassan, S. A. Abdelaal, M. M. Taher, M. KhalafAhmed, and K. R. Shoueir. Morphological, antibacterial, and cell attachment of cellulose acetate nanofibers containing modified hydroxyapatite for wound healing utilizations. J. Mater. Res. Technol. 9(6):13927–13936, 2020.

    Article  CAS  Google Scholar 

  52. Esposito, S., and S. Leone. Prosthetic joint infections: microbiology, diagnosis, management and prevention. Int. J. Antimicrob. Agents 32(4):287–293, 2008.

    Article  CAS  PubMed  Google Scholar 

  53. Evis, Z. Reactions in hydroxylapatite–zirconia composites. Ceram. Int. 33(6):987–991, 2007.

    Article  CAS  Google Scholar 

  54. Ferreira, F. V., C. G. Otoni, J. H. Lopes, L. P. de Souza, L. H. Mei, L. M. Lona, K. Lozano, A. O. Lobo, and L. H. Mattoso. Ultrathin polymer fibers hybridized with bioactive ceramics: a review on fundamental pathways of electrospinning towards bone regeneration. Mater. Sci. Eng. C 123:2021.

    Article  CAS  Google Scholar 

  55. Fouda, M. M., J. S. Ajarem, S. N. Maodaa, A. A. Allam, M. M. Taher, and M. Ahmed. Carboxymethyl cellulose supported green synthetic features of gold nanoparticles: antioxidant, cell viability, and antibacterial effectiveness. Synth. Met. 269:2020.

    Article  CAS  Google Scholar 

  56. Fratzl-Zelman, N., S. Gamsjaeger, S. Blouin, R. Kocijan, P. Plasenzotti, S. Rokidi, K. Nawrot-Wawrzyniak, K. Roetzer, G. Uyanik, and G. Haeusler. Alterations of bone material properties in adult patients with X-linked hypophosphatemia (XLH). J. Struct. Biol. 211(3):2020.

    Article  CAS  PubMed  Google Scholar 

  57. Gadalla, D., and A. S. Goldstein. Improving the osteogenicity of PCL fiber substrates by surface-immobilization of bone morphogenic protein-2. Ann. Biomed. Eng. 48(3):1006–1015, 2020.

    Article  PubMed  Google Scholar 

  58. Galán-Olleros, M., J. Marco, D. Oteo, R. Cristóbal-Bilbao, E. Manrique, R. García-Maroto, F. Marco, and J. L. Cebrián-Parra. Orthopedic surgical treatment and perioperative complications in multiple myeloma bone disease: analysis of a series (2009–2018). Ann. Surg. Oncol. 28(2):1158–1166, 2021.

    Article  PubMed  Google Scholar 

  59. Ghanaati, S., M. Barbeck, R. Detsch, U. Deisinger, U. Hilbig, V. Rausch, R. Sader, R. E. Unger, G. Ziegler, and C. J. Kirkpatrick. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics. Biomed. Mater. 7(1):2012.

    Article  PubMed  CAS  Google Scholar 

  60. GGilani, M., S. Shepherd, B. Nichols, K. Gerasimidis, J. Wong, and A. Mason, Evaluation of body composition in paediatric osteogenesis imperfecta. J. Clin. Densitom. 2021.

    Google Scholar 

  61. Hassan, M. N., M. M. Mahmoud, A. Abd-El-Fattah, and S. Kandil. Microwave-assisted preparation of nano-hydroxyapatite for bone substitutes. Ceram. Int. 42(3):3725–3744, 2016.

    Article  CAS  Google Scholar 

  62. Hassan, A. A., H. A. Radwan, S. A. Abdelaal, N. S. Al-Radadi, M. Ahmed, K. R. Shoueir, and M. A. Hady. Polycaprolactone based electrospun matrices loaded with Ag/hydroxyapatite as wound dressings: morphology, cell adhesion, and antibacterial activity. Int. J. Pharm. 593:2021.

    Article  CAS  PubMed  Google Scholar 

  63. He, F., T. Lu, X. Fang, Y. Li, F. Zuo, X. Deng, and J. Ye. Effects of strontium amount on the mechanical strength and cell-biological performance of magnesium-strontium phosphate bioceramics for bone regeneration. Mater. Sci. Eng., C 112:2020.

    Article  CAS  Google Scholar 

  64. Hofstee, M. I., G. Muthukrishnan, G. J. Atkins, M. Riool, K. Thompson, M. Morgenstern, M. J. Stoddart, R. G. Richards, S. A. Zaat, and T. F. Moriarty. Current concepts of osteomyelitis: from pathologic mechanisms to advanced research methods. Am. J. Pathol. 190(6):1151–1163, 2020.

    Article  CAS  PubMed  Google Scholar 

  65. Huang, L. H., J. Han, J. M. Ouyang, and B. S. Gui. Shape-dependent adhesion and endocytosis of hydroxyapatite nanoparticles on A7R5 aortic smooth muscle cells. J. Cell. Physiol. 235(1):465–479, 2020.

    Article  CAS  PubMed  Google Scholar 

  66. In, Y., U. Amornkitbamrung, M.-H. Hong, and H. Shin. On the crystallization of hydroxyapatite under hydrothermal conditions: role of sebacic acid as an additive. ACS Omega 5(42):27204–27210, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Inuzuka, M., S. Nakamura, S. Kishi, K. Yoshida, K. Hashimoto, Y. Toda, and K. Yamashita. Hydroxyapatite-doped zirconia for preparation of biomedical composites ceramics. Solid State Ion. 172(1–4):509–513, 2004.

    Article  CAS  Google Scholar 

  68. Irfan, M., and M. Irfan. Overview of hydroxyapatite; composition, structure, synthesis methods and its biomedical uses. Biomed. Lett. 6(1):17–22, 2020.

    Google Scholar 

  69. Irfan, M., P. Suprajaa, P. Baraneedharan, and B. M. Reddy. A comparative study of nanohydroxyapetite obtained from natural shells and wet chemical process. J. Mater. Sci. Surf. Eng 7:938–943, 2020.

    CAS  Google Scholar 

  70. Irfan, M., P. Suprajaa, R. Praveen, and B. M. Reddy. Microwave-assisted one-step synthesis of nanohydroxyapetite from fish bones and mussel shells. Mater. Lett. 282:2021.

    Article  CAS  Google Scholar 

  71. Jahromi, E. Z., A. Divsalar, A. A. Saboury, S. Khaleghizadeh, H. Mansouri-Torshizi, and I. Kostova. Palladium complexes: new candidates for anti-cancer drugs. J. Iran. Chem. Soc. 13(5):967–989, 2016.

    Article  CAS  Google Scholar 

  72. Javadinejad, H. R., and R. Ebrahimi-Kahrizsangi. Thermal and kinetic study of hydroxyapatite formation by solid-state reaction. Int. J. Chem. Kinet. 53(5):583–595, 2021.

    Article  CAS  Google Scholar 

  73. Jiang, S., X. Liu, Y. Liu, J. Liu, W. He, and Y. Dong. Biology, Synthesis of silver@ hydroxyapatite nanoparticles based biocomposite and their assessment for viability of Osseointegration for rabbit knee joint anterior cruciate ligament rehabilitation. J. Photochem. Photobiol. B 202:2020.

    Article  CAS  PubMed  Google Scholar 

  74. Kaka, G., J. Arum, S. H. Sadraie, A. Emamgholi, and A. Mohammadi. Bone marrow stromal cells associated with poly l-lactic-co-glycolic acid (PLGA) nanofiber scaffold improve transected sciatic nerve regeneration. Iran. J. Biotechnol. 15(3):149, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kalbarczyk, M., and A. Szcześ. Microwave assistant synthesis of calcium phosphate minerals using hen’s eggshells as a calcium source. Physicochem. Probl. Mineral Process. 56:167–177, 2020.

    Article  Google Scholar 

  76. Kawashima, N., K. Soetanto, K.-I. Watanabe, K. Ono, T. Matsuno, and S. B. Biointerfaces. The surface characteristics of the sintered body of hydroxyapatite-zirconia composite particles. Colloids Surf. B 10(1):23–27, 1997.

    Article  Google Scholar 

  77. Khalil, M., J. Yu, N. Liu, and R. L. Lee. Hydrothermal synthesis, characterization, and growth mechanism of hematite nanoparticles. J. Nanopart. Res. 16(4):1–10, 2014.

    Article  CAS  Google Scholar 

  78. Khan, M. U. A., M. A. Al-Thebaiti, M. U. Hashmi, S. Aftab, S. I. Abd-Razak, S. Abu Hassan, M. R. Abdul-Kadir, and R. Amin. Synthesis of silver-coated bioactive nanocomposite scaffolds based on grafted beta-glucan/hydroxyapatite via freeze-drying method: Anti-microbial and biocompatibility evaluation for bone tissue engineering. Materials 13(4):971, 2020.

    Article  CAS  PubMed Central  Google Scholar 

  79. Kolmas, J., A. Jaklewicz, A. Zima, M. Bućko, Z. Paszkiewicz, J. Lis, A. Ślósarczyk, and W. Kolodziejski. Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite: the effect on physicochemical properties. J. Mol. Struct. 987(1–3):40–50, 2011.

    Article  CAS  Google Scholar 

  80. Koons, G. L., M. Diba, and A. G. Mikos. Materials design for bone-tissue engineering. Nat. Rev. Mater. 5(8):584–603, 2020.

    Article  CAS  Google Scholar 

  81. Kowalczyk, P., R. Podgórski, M. Wojasiński, G. Gut, W. Bojar, and T. Ciach. Chitosan-human bone composite granulates for guided bone regeneration. Int. J. Mol. Sci. 22(5):2324, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kuczumow, A., R. Chałas, J. Nowak, W. Smułek, and M. Jarzębski. Novel approach to tooth chemistry: quantification of human enamel apatite in context for new biomaterials and nanomaterials development. Int. J. Mol. Sci. 22(1):279, 2020.

    Article  PubMed Central  CAS  Google Scholar 

  83. Kumar, A., S. Kargozar, F. Baino, and S. S. Han. Additive manufacturing methods for producing hydroxyapatite and hydroxyapatite-based composite scaffolds: a review. Front. Mater. 6:313, 2019.

    Article  Google Scholar 

  84. Laurencin, D., N. Almora-Barrios, N. H. de Leeuw, C. Gervais, C. Bonhomme, F. Mauri, W. Chrzanowski, J. C. Knowles, R. J. Newport, and A. Wong. Magnesium incorporation into hydroxyapatite. Biomaterials 32(7):1826–1837, 2011.

    Article  CAS  PubMed  Google Scholar 

  85. Li, X., M. Liu, F. Chen, Y. Wang, M. Wang, X. Chen, Y. Xiao, and X. Zhang. Design of hydroxyapatite bioceramics with micro-/nano-topographies to regulate the osteogenic activities of bone morphogenetic protein-2 and bone marrow stromal cells. Nanoscale 12(13):7284–7300, 2020.

    Article  CAS  PubMed  Google Scholar 

  86. Li, X., Y. Yuan, L. Liu, Y.-S. Leung, Y. Chen, Y. Guo, Y. Chai, and Y. Chen. 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration. Bio-Des. Manuf. 3(1):15–29, 2020.

    Article  CAS  Google Scholar 

  87. Lin, X., S. Patil, Y.-G. Gao, and A. Qian. The bone extracellular matrix in bone formation and regeneration. Front. Pharmacol. 11:757, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lino, A. B., A. D. McCarthy, and J. M. Fernández. Evaluation of strontium-containing PCL-PDIPF scaffolds for bone tissue engineering: in vitro and in vivo studies. Ann. Biomed. Eng. 47(3):902–912, 2019.

    Article  PubMed  Google Scholar 

  89. Liu, J., X. Ye, H. Wang, M. Zhu, B. Wang, and H. Yan. The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceram. Int. 29(6):629–633, 2003.

    Article  CAS  Google Scholar 

  90. López-Ortiz, S., D. Mendoza-Anaya, D. Sánchez-Campos, M. Fernandez-García, E. Salinas-Rodríguez, M. Reyes-Valderrama, and V. Rodríguez-Lugo. The pH effect on the growth of hexagonal and monoclinic hydroxyapatite synthesized by the hydrothermal method. J. Nanomater. 2020:5912592, 2020.

    Article  CAS  Google Scholar 

  91. Manoj, M. and A. Yuan. A plant-mediated synthesis of nanostructured hydroxyapatite for biomedical applications: a review. RSC Adv. 10:40923–40939, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mansour, S., S. El-Dek, and M. K. Ahmed. Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals. Sci. Rep. 7(1):1–21, 2017.

    Article  Google Scholar 

  93. Masters, E. A., K. L. de MesyBentley, A. L. Gill, S. P. Hao, C. A. Galloway, A. T. Salminen, D. R. Guy, J. L. McGrath, H. A. Awad, and S. R. Gill. Identification of Penicillin Binding Protein 4 (PBP4) as a critical factor for Staphylococcus aureus bone invasion during osteomyelitis in mice. PLoS Pathog. 16(10):2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. McLain, R. F., and F. Techy. Trephine technique for iliac crest bone graft harvest: long-term results. Spine 46(1):41–47, 2021.

    Article  PubMed  Google Scholar 

  95. Metwally, S., S. Ferraris, S. Spriano, Z. J. Krysiak, Ł. Kaniuk, M. M. Marzec, S. K. Kim, P. K. Szewczyk, A. Gruszczyński, and M. Wytrwal-Sarna. Surface potential and roughness controlled cell adhesion and collagen formation in electrospun PCL fibers for bone regeneration. Mater. Des. 194:2020.

    Article  CAS  Google Scholar 

  96. Mi, J., J. Xu, H. Yao, X. Li, W. Tong, Y. Li, B. Dai, X. He, D. H. K. Chow, and L. Qin. Calcitonin gene-related peptide enhances distraction osteogenesis by increasing angiogenesis. Tissue Eng. Part A 27(1–2):87–102, 2021.

    Article  CAS  PubMed  Google Scholar 

  97. Mikael, P. E., A. A. Golebiowska, X. Xin, D. W. Rowe, and S. P. Nukavarapu. Evaluation of an engineered hybrid matrix for bone regeneration via endochondral ossification. Ann. Biomed. Eng. 48(3):992–1005, 2020.

    Article  PubMed  Google Scholar 

  98. Mishra, V. K., S. B. Rai, B. P. Asthana, O. Parkash, and D. Kumar. Effect of annealing on nanoparticles of hydroxyapatite synthesized via microwave irradiation: structural and spectroscopic studies. Ceram. Int. 40(7):11319–11328, 2014.

    Article  CAS  Google Scholar 

  99. Miszuk, J., Z. Liang, J. Hu, H. Sanyour, Z. Hong, H. Fong, and H. Sun. Elastic mineralized 3D electrospun PCL nanofibrous scaffold for drug release and bone tissue engineering. ACS Appl. Bio Mater. 4(4):3639–3648, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mobika, J., M. Rajkumar, S. L. Sibi, and V. N. Priya. Fabrication of bioactive hydroxyapatite/silk fibroin/gelatin cross-linked nanocomposite for biomedical application. Mater. Chem. Phys. 250:2020.

    Article  CAS  Google Scholar 

  101. Mushtaq, A., R. Zhao, D. Luo, E. Dempsey, X. Wang, M. Z. Iqbal, and X. Kong. Magnetic hydroxyapatite nanocomposites: the advances from synthesis to biomedical applications. Mater. Des. 197:2020.

    Article  CAS  Google Scholar 

  102. Neacsu, I. A., A. P. Serban, A. I. Nicoara, R. Trusca, V. L. Ene, and F. Iordache. Biomimetic composite scaffold based on naturally derived biomaterials. Polymers 12(5):1161, 2020.

    Article  CAS  PubMed Central  Google Scholar 

  103. Nonoyama, T. Robust hydrogel–bioceramics composite and its osteoconductive properties. Polym. J. 52(7):709–716, 2020.

    Article  CAS  Google Scholar 

  104. Obada, D., E. Dauda, J. Abifarin, D. Dodoo-Arhin, and N. D. Bansod. Mechanical properties of natural hydroxyapatite using low cold compaction pressure: effect of sintering temperature. Mater. Chem. Phys. 239:2020.

    Article  CAS  Google Scholar 

  105. Okazaki, Y., and S.-I. Katsuda. Biological safety evaluation and surface modification of biocompatible Ti–15Zr–4Nb alloy. Materials 14:731, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Palmer, L. C., C. J. Newcomb, S. R. Kaltz, E. D. Spoerke, and S. I. Stupp. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem. Rev. 108(11):4754–4783, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Papastavrou, A., I. Schmidt, K. Deng, and P. Steinmann. On age-dependent bone remodeling. J. Biomech. 103:2020.

    Article  PubMed  Google Scholar 

  108. Parisi, C., L. Salvatore, L. Veschini, M. P. Serra, C. Hobbs, M. Madaghiele, A. Sannino, and L. Di Silvio. Biomimetic gradient scaffold of collagen–hydroxyapatite for osteochondral regeneration. J. Tissue Eng. 11:1–13, 2020.

    Article  CAS  Google Scholar 

  109. Peccati, F., C. Bernocco, P. Ugliengo, and M. Corno. Properties and reactivity toward water of a type carbonated apatite and hydroxyapatite surfaces. J. Phys. Chem. C 122(7):3934–3944, 2018.

    Article  CAS  Google Scholar 

  110. Philip, N. S., R. P. Jakribettu, R. Boloor, and R. Adiga. Characterisation of aerobic bacteria isolated from orthopaedic implant-associated infections. J. Acad. Clin. Microbiol. 20(1):33, 2018.

    Article  Google Scholar 

  111. Prabhakaran, M. P., J. Venugopal, and S. Ramakrishna. Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater. 5(8):2884–2893, 2009.

    Article  CAS  PubMed  Google Scholar 

  112. Preeth, D. R., S. Saravanan, M. Shairam, N. Selvakumar, I. S. Raja, A. Dhanasekaran, S. Vimalraj, and S. Rajalakshmi. Bioactive Zinc (II) complex incorporated PCL/gelatin electrospun nanofiber enhanced bone tissue regeneration. Eur. J. Pharm. Sci. 160:2021.

    Article  CAS  Google Scholar 

  113. Qi, H., Z. Ye, H. Ren, N. Chen, Q. Zeng, X. Wu, and T. Lu. Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Life Sci. 148:139–144, 2016.

    Article  CAS  PubMed  Google Scholar 

  114. Rahmati, M., D. Mills, A. Urbanska, M. Saeb, J. Venugopal, S. Ramakrishna, and M. Mozafari. Electrospinning for tissue engineering applications. Prog. Mater Sci. 117:2020.

    Article  CAS  Google Scholar 

  115. Raju, R., M. Oshima, M. Inoue, T. Morita, Y. Huijiao, A. Waskitho, O. Baba, M. Inoue, and Y. Matsuka. Three-dimensional periodontal tissue regeneration using a bone-ligament complex cell sheet. Sci. Rep. 10(1):1–16, 2020.

    Article  CAS  Google Scholar 

  116. Ramesh, S., C. Tan, C. Peralta, and W. D. Teng. The effect of manganese oxide on the sinterability of hydroxyapatite. Sci. Technol. Adv. Mater. 8(4):257–263, 2007.

    Article  CAS  Google Scholar 

  117. Rapacz-Kmita, A., A. Ślósarczyk, Z. Paszkiewicz, and C. Paluszkiewicz. Phase stability of hydroxyapatite–zirconia (HAp–ZrO2) composites for bone replacement. J. Mol. Struct. 704(1–3):333–340, 2004.

    Article  CAS  Google Scholar 

  118. Ratnayake, J. T., M. Mucalo, and G. J. Dias. Substituted hydroxyapatites for bone regeneration: a review of current trends. J. Biomed. Mater. Res. B 105(5):1285–1299, 2017.

    Article  CAS  Google Scholar 

  119. Reichelt, M., S. Gehmert, A. Krieg, and A. M. Nowakowski. Bone crushing in infected pseudarthrosis–an extraordinary way to treat osteomyelitis caused by resistant bacteria. J. Orthop. Case Rep. 9(6):74, 2020.

    PubMed  PubMed Central  Google Scholar 

  120. Ren, F., Y. Leng, R. Xin, and X. Ge. Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater. 6(7):2787–2796, 2010.

    Article  CAS  PubMed  Google Scholar 

  121. Ribeiro, A., Y. A. Manrique, I. C. Ferreira, M. F. Barreiro, J. C. B. Lopes, and M. M. Dias. Nanohydroxyapatite (n-HAp) as a pickering stabilizer in oil-in-water (O/W) emulsions: a stability study. J. Dispers. Sci. Technol. 24:1–13, 2020.

    CAS  Google Scholar 

  122. Rouhollahi, A., O. Ilegbusi, S. Florczyk, K. Xu, and H. Foroosh. Effect of mold geometry on pore size in freeze-cast chitosan-alginate scaffolds for tissue engineering. Ann. Biomed. Eng. 48(3):1090–1102, 2020.

    Article  PubMed  Google Scholar 

  123. RubanKumar, A., S. Kalainathan, and A. M. Saral. Microwave assisted synthesis of hydroxyapatite nano strips. Cryst. Res. Technol. 45(7):776–778, 2010.

    Article  CAS  Google Scholar 

  124. Sachlos, E., D. Gotora, and J. T. Czernuszka. Collagen scaffolds reinforced with biomimetic composite nano-sized carbonate-substituted hydroxyapatite crystals and shaped by rapid prototyping to contain internal microchannels. Tissue Eng. 12(9):2479–2487, 2006.

    Article  CAS  PubMed  Google Scholar 

  125. Sadat-Shojai, M., M.-T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 9(8):7591–7621, 2013.

    Article  CAS  PubMed  Google Scholar 

  126. Salama, A., H. A. Aljohani, and K. R. Shoueir. Oxidized cellulose reinforced silica gel: new hybrid for dye adsorption. Mater. Lett. 230:293–296, 2018.

    Article  CAS  Google Scholar 

  127. Salama, A., M. A. Diab, R. E. Abou-Zeid, H. A. Aljohani, and K. R. Shoueir. Crosslinked alginate/silica/zinc oxide nanocomposite: a sustainable material with antibacterial properties. Compos. Commun. 7:7–11, 2018.

    Article  Google Scholar 

  128. Samadian, H., H. Mobasheri, M. Azami, and R. Faridi-Majidi. Osteoconductive and electroactive carbon nanofibers/hydroxyapatite nanocomposite tailored for bone tissue engineering: in vitro and in vivo studies. Sci. Rep. 10(1):1–14, 2020.

    Article  CAS  Google Scholar 

  129. Sans, J., V. Sanz, J. Puiggalí, P. Turon, and C. Alemán. Controlled anisotropic growth of hydroxyapatite by additive-free hydrothermal synthesis. Cryst. Growth Des. 21:748–756, 2020.

    Article  CAS  Google Scholar 

  130. dos Santos, C. F., P. S. Gomes, M. M. Almeida, M.-G. Willinger, R.-P. Franke, M. H. Fernandes, and M. E. Costa. Gold-dotted hydroxyapatite nanoparticles as multifunctional platforms for medical applications. RSC Adv. 5(85):69184–69195, 2015.

    Article  CAS  Google Scholar 

  131. Sathiyavimal, S., S. Vasantharaj, F. LewisOscar, R. Selvaraj, K. Brindhadevi, and A. Pugazhendhi. Natural organic and inorganic–hydroxyapatite biopolymer composite for biomedical applications. Prog. Org. Coat. 147:2020.

    Article  CAS  Google Scholar 

  132. Sayed, M. M., H. M. Mousa, M. El-Aassar, N. M. El-Deeb, N. M. Ghazaly, M. M. Dewidar, and A. Abdal-hay. Enhancing mechanical and biodegradation properties of polyvinyl alcohol/silk fibroin nanofibers composite patches for Cardiac Tissue Engineering. Mater. Lett. 255:2019.

    Article  CAS  Google Scholar 

  133. Sayko, R., Z. Wang, H. Liang, M. L. Becker, and A. V. Dobrynin. Degradation of films of block copolymers: molecular dynamics simulations. Macromolecules 53(4):1270–1280, 2020.

    Article  CAS  Google Scholar 

  134. Seo, S. J., and Y. G. Kim. In-situ analysis of the hydration ability of bone graft material using a synchrotron radiation X-ray micro-CT. J. Appl. Biomater. Funct. Mater. 18:1–8, 2020.

    CAS  Google Scholar 

  135. Seo, J. J., N. Mandakhbayar, M. S. Kang, J.-Y. Yoon, N.-H. Lee, J. Ahn, H.-H. Lee, J. H. Lee, and H. W. Kim. Antibacterial, proangiogenic, and osteopromotive nanoglass paste coordinates regenerative process following bacterial infection in hard tissue. Biomaterials 268:2021.

    Article  CAS  PubMed  Google Scholar 

  136. Shaban, N. Z., A. M. Aboelsaad, K. R. Shoueir, S. A. Abdulmalek, D. Awad, S. Y. Shaban, and H. Mansour. Chitosan-based dithiophenolato nanoparticles: preparation, mechanistic information of DNA binding, antibacterial and cytotoxic activities. J. Mol. Liq. 318:2020.

    Article  CAS  Google Scholar 

  137. Shaban, N. Z., S. A. Yehia, K. R. Shoueir, S. R. Saleh, D. Awad, and S. Y. Shaban. Design, DNA binding and kinetic studies, antibacterial and cytotoxic activities of stable dithiophenolato titanium (IV)-chitosan Nanocomposite. J. Mol. Liq. 287:2019.

    Article  CAS  Google Scholar 

  138. Shafiei, S., M. Omidi, F. Nasehi, H. Golzar, D. Mohammadrezaei, M. R. Rad, and A. Khojasteh. Egg shell-derived calcium phosphate/carbon dot nanofibrous scaffolds for bone tissue engineering: fabrication and characterization. Mater. Sci. Eng. C 100:564–575, 2019.

    Article  CAS  Google Scholar 

  139. Shanmugam, S., and B. Gopal. Copper substituted hydroxyapatite and fluorapatite: synthesis, characterization and antimicrobial properties. Ceram. Int. 40(10):15655–15662, 2014.

    Article  CAS  Google Scholar 

  140. Sharifi, M., F. Attar, A. A. Saboury, K. Akhtari, N. Hooshmand, A. Hasan, and Falahati El-Sayed. Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy. J. Control. Release 311:170–189, 2019.

    Article  PubMed  CAS  Google Scholar 

  141. Shi, H., Z. Zhou, W. Li, Y. Fan, Z. Li, and J. Wei. Hydroxyapatite based materials for bone tissue engineering: a brief and comprehensive introduction. Crystals 11(2):149, 2021.

    Article  CAS  Google Scholar 

  142. Shokraei, S., E. Mirzaei, N. Shokraei, M. A. Derakhshan, H. Ghanbari, and R. Faridi-Majidi. Fabrication and characterization of chitosan/kefiran electrospun nanofibers for tissue engineering applications. J. Appl. Polym. Sci. 138(24):50547, 2021.

    Article  CAS  Google Scholar 

  143. Shoueir, K. R. Green microwave synthesis of functionalized chitosan with robust adsorption capacities for Cr(VI) and/or RHB in complex aqueous solutions. Environ. Sci. Pollut. Res. 27(26):33020–33031, 2020.

    Article  CAS  Google Scholar 

  144. Shoueir, K., M. Ahmed, S. A. A. Gaber, and M. El-Kemary. Thallium and selenite doped carbonated hydroxyapatite: microstructural features and anticancer activity assessment against human lung carcinoma. Ceram. Int. 46(4):5201–5212, 2020.

    Article  CAS  Google Scholar 

  145. Shoueir, K. R., N. El-Desouky, M. M. Rashad, M. Ahmed, I. Janowska, and M. El-Kemary. Chitosan based-nanoparticles and nanocapsules: overview, physicochemical features, applications of a nanofibrous scaffold, and bioprinting. Int. J. Biol. Macromol. 167:1176–1197, 2020.

    Article  PubMed  CAS  Google Scholar 

  146. Shoueir, K., H. El-Sheshtawy, M. Misbah, H. El-Hosainy, I. El-Mehasseb, and M. El-Kemary. Fenton-like nanocatalyst for photodegradation of methylene blue under visible light activated by hybrid green DNSA@Chitosan@ MnFe2O4. Carbohyd. Polym. 197:17–28, 2018.

    Article  CAS  Google Scholar 

  147. Shoueir, K., S. Kandil, H. El-hosainy, and M. El-Kemary. Tailoring the surface reactivity of plasmonic Au@ TiO2 photocatalyst bio-based chitosan fiber towards cleaner of harmful water pollutants under visible-light irradiation. J.f Clean. Prod. 230:383–393, 2019.

    Article  CAS  Google Scholar 

  148. Shoueir, K., A. R. Wassel, M. Ahmed, and M. E. El-Naggar. Encapsulation of extremely stable polyaniline onto Bio-MOF: photo-activated antimicrobial and depletion of ciprofloxacin from aqueous solutions. J. Photochem. Photobiol., A 400:2020.

    Article  CAS  Google Scholar 

  149. Shuai, C., L. Yu, W. Yang, S. Peng, Y. Zhong, and P. Feng. Phosphonic acid coupling agent modification of HAP nanoparticles: interfacial effects in PLLA/HAP bone scaffold. Polymers 12(1):199, 2020.

    Article  CAS  PubMed Central  Google Scholar 

  150. Sigrist, B., S. Ferguson, E. Boehm, C. Jung, M. Scheibel, and P. Moroder. The biomechanical effect of bone grafting and bone graft remodeling in patients with anterior shoulder instability. Am. J. Sports Med. 48(8):1857–1864, 2020.

    Article  PubMed  Google Scholar 

  151. Singh, G., R. P. Singh, and S. S. Jolly. Customized hydroxyapatites for bone-tissue engineering and drug delivery applications: a review. J. Sol-Gel. Sci. Technol. 94(3):505–530, 2020.

    Article  CAS  Google Scholar 

  152. Singh, B. N., V. Veeresh, S. P. Mallick, S. Sinha, A. Rastogi, and P. Srivastava. Generation of scaffold incorporated with nanobioglass encapsulated in chitosan/chondroitin sulfate complex for bone tissue engineering. Int. J. Biol. Macromol. 153:1–16, 2020.

    Article  CAS  PubMed  Google Scholar 

  153. Snyder, A. D., and I. Salehinia. Study of nanoscale deformation mechanisms in bulk hexagonal hydroxyapatite under uniaxial loading using molecular dynamics. Mech. Behav. Biomed. Mater. 110:2020.

    Article  CAS  Google Scholar 

  154. Soni, A., J. Smith, A. Thompson, and G. Brightwell. Microwave-induced thermal sterilization-A review on history, technical progress, advantages and challenges as compared to the conventional methods. Trends Food Sci. Technol. 97:433–442, 2020.

    Article  CAS  Google Scholar 

  155. Sridhar, R., R. Lakshminarayanan, K. Madhaiyan, V. A. Barathi, K. H. C. Lim, and S. Ramakrishna. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem. Soc. Rev. 44(3):790–814, 2015.

    Article  CAS  PubMed  Google Scholar 

  156. Stevanovic, M., M. Djosic, A. Jankovic, K. Nesovic, V. Kojic, J. Stojanovic, S. Grujic, I. Matic Bujagic, K. Y. Rhee, and V. Miskovic-Stankovic. Assessing the bioactivity of gentamicin-preloaded hydroxyapatite/chitosan composite coating on titanium substrate. ACS Omega 5(25):15433–15445, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Stevanović, M., M. Djošić, A. Janković, V. Kojić, M. Vukašinović-Sekulić, J. Stojanović, J. Odović, M. Crevar Sakač, R. Kyong Yop, and V. Mišković-Stanković. Antibacterial graphene-based hydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering. J. Biomed. Mater. Res. Part A 108(11):2175–2189, 2020.

    Article  CAS  Google Scholar 

  158. Sun, J., X. Zheng, H. Li, D. Fan, Z. Song, H. Ma, X. Hua, and J. Hui. Monodisperse selenium-substituted hydroxyapatite: controllable synthesis and biocompatibility. Mater. Sci. Eng. C 73:596–602, 2017.

    Article  CAS  Google Scholar 

  159. Sánchez-Campos, D., D. Mendoza-Anaya, M. Reyes-Valderrama, S. Esteban-Gómez, and V. Rodríguez-Lugo. Cationic surfactant at high pH in microwave HAp synthesis. Mater. Lett. 265:2020.

    Article  CAS  Google Scholar 

  160. Taha, M. A., R. A. Youness, and M. Ibrahim. Biocompatibility, physico-chemical and mechanical properties of hydroxyapatite-based silicon dioxide nanocomposites for biomedical applications. Ceram. Int. 46(15):23599–23610, 2020.

    Article  CAS  Google Scholar 

  161. Taichman, R. S. Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105(7):2631–2639, 2005.

    Article  CAS  PubMed  Google Scholar 

  162. Tautkus, S., K. Ishikawa, R. Ramanauskas, and A. Kareiva. Zinc and chromium co-doped calcium hydroxyapatite: sol-gel synthesis, characterization, behaviour in simulated body fluid and phase transformations. J. Solid State Chem. 284:2020.

    Article  CAS  Google Scholar 

  163. Teaima, M. H., F. A. Abdelnaby, M. Fadel, M. A. El-Nabarawi, and K. R. Shoueir. Synthesis of biocompatible and environmentally nanofibrous mats loaded with moxifloxacin as a model drug for biomedical applications. Pharmaceutics 12(11):1029, 2020.

    Article  CAS  PubMed Central  Google Scholar 

  164. Teaima, M. H., M. K. Elasaly, S. A. Omar, M. A. El-Nabarawi, and K. R. Shoueir. Eco-friendly synthesis of functionalized chitosan-based nanoantibiotic system for potential delivery of linezolid as antimicrobial agents. Saudi Pharm. J. 28(7):859–868, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Toullec, C., J. Le Bideau, V. Geoffroy, B. Halgand, N. Buchtova, R. Molina-Peña, E. Garcion, S. Avril, L. Sindji, and A. Dube. Curdlan-chitosan electrospun fibers as potential scaffolds for bone regeneration. Polymers 13(4):526, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Tsai, S. W., S. S. Huang, W.-X. Yu, Y.-W. Hsu, and F. Y. Hsu. Collagen scaffolds containing hydroxyapatite-CaO fiber fragments for bone tissue engineering. Polymers 12(5):1174, 2020.

    Article  CAS  PubMed Central  Google Scholar 

  167. Udomluck, N., W.-G. Koh, D.-J. Lim, and H. Park. Recent developments in nanofiber fabrication and modification for bone tissue engineering. Int. J. Mol. Sci. 21(1):99, 2020.

    Article  CAS  Google Scholar 

  168. Um, S. H., Y. W. Chung, Y. Seo, H. Seo, M. R. Ok, Y. C. Kim, H. S. Han, J. J. Chung, J. R. Edwards, and H. Jeon. Robust hydroxyapatite coating by laser-induced hydrothermal synthesis. Adv. Func. Mater. 30(48):2005233, 2020.

    Article  CAS  Google Scholar 

  169. Vallet-Regi, M., and J. M. González-Calbet. Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem. 32(1–2):1–31, 2004.

    Article  CAS  Google Scholar 

  170. Varma, A., A. S. Mukasyan, A. S. Rogachev, and K. V. Manukyan. Solution combustion synthesis of nanoscale materials. Chem. Rev. 116(23):14493–14586, 2016.

    Article  CAS  PubMed  Google Scholar 

  171. Venkatraman, S. K., and S. Swamiappan. Review on calcium-and magnesium-based silicates for bone tissue engineering applications. J. Biomed. Mater. Res. Part A 108(7):1546–1562, 2020.

    Article  CAS  Google Scholar 

  172. Venugopal, J. R., S. Low, A. T. Choon, A. B. Kumar, and S. Ramakrishna. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif. Organs 32(5):388–397, 2008.

    Article  CAS  PubMed  Google Scholar 

  173. Venugopal, J., S. Low, A. T. Choon, and S. Ramakrishna. Interaction of cells and nanofiber scaffolds in tissue engineering. J. Biomed. Mater. Res. B 84(1):34–48, 2008.

    Article  CAS  Google Scholar 

  174. Virginia, M., A. D. Laksono, W. P. K. Asih, and D. T. Agustiningtyas. Study on biocompatibility of chitosan/hydroxyapatite doped silicon composite as material for alveolar socket preservation. J. Phys. 2:1–2, 2021.

    Google Scholar 

  175. Vu, A. A., and S. Bose. Vitamin D 3 release from traditionally and additively manufactured tricalcium phosphate bone tissue engineering scaffolds. Ann. Biomed. Eng. 48(3):1025–1033, 2020.

    Article  PubMed  Google Scholar 

  176. Wang, L., and G. H. Nancollas. Calcium orthophosphates: crystallization and dissolution. Chem. Rev. 108(11):4628–4669, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wang, J., and L. L. Shaw. Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomaterials 30(34):6565–6572, 2009.

    Article  CAS  PubMed  Google Scholar 

  178. Wang, X., J. Xu, J. Kou, W. Tian, C. Gao, F. Cui, and Z. Qiu. The clinical results of treating Kummell’s disease with mineralized collagen modified polymethyl methacrylate. J. Biomater. Appl. 35:1366–1371, 2021.

    Article  CAS  PubMed  Google Scholar 

  179. Wu, T., H. Shi, Y. Liang, T. Lu, Z. Lin, and J. Ye. Improving osteogenesis of calcium phosphate bone cement by incorporating with manganese doped β-tricalcium phosphate. Mater. Sci. Eng. C 109:2020.

    Article  CAS  Google Scholar 

  180. Xie, X., Y. Chen, X. Wang, X. Xu, Y. Shen, A. Aldalbahi, A. E. Fetz, G. L. Bowlin, M. El-Newehy, and X. Mo. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration. J. Mater. Sci. Technol. 59:243–261, 2020.

    Article  Google Scholar 

  181. Yan, L., Y. Li, Z. X. Deng, J. Zhuang, and X. Sun. Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods. Int. J. Inorg. Mater. 3(7):633–637, 2001.

    Article  CAS  Google Scholar 

  182. Yinka, K. M., A. J. Olayiwola, A. Sulaiman, A. Ali, and F. Iqbal. Preparation and characterization of hydroxyapatite powder for biomedical applications from giant African land snail shell using a hydrothermal technique. Eng. Appl. Sci. Res. 47(3):275–286, 2020.

    Google Scholar 

  183. Yoshida, K., K. Hashimoto, Y. Toda, S. Udagawa, and T. Kanazawa. Fabrication of structure-controlled hydroxyapatite/zirconia composite. J. Eur. Ceram. Soc. 26(4–5):515–518, 2006.

    Article  CAS  Google Scholar 

  184. Yu, M., Y. Wang, Y. Zhang, D. Cui, G. Gu, and D. Zhao. Gallium ions promote osteoinduction of human and mouse osteoblasts via the TRPM7/Akt signaling pathway. Mol. Med. Rep. 22(4):2741–2752, 2020.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Zandi, M., H. Mirzadeh, C. Mayer, H. Urch, M. B. Eslaminejad, F. Bagheri, and H. Mivehchi. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. J. Biomed. Mater. Res. Part A 92(4):1244–1255, 2009.

    Google Scholar 

  186. Zhang, Z., Y. Song, S. I. Wang, S. H. Ha, K. Y. Jang, B. H. Park, Y. J. Moon, and J. R. Kim. Osteoblasts/osteocytes sirtuin6 is vital to preventing ischemic osteonecrosis through targeting VDR-RANKL signaling. J. Bone Miner. Res. 36(3):579–590, 2020.

    Article  PubMed  CAS  Google Scholar 

  187. Zhang, T., and X. Xiao. Hydrothermal synthesis of hydroxyapatite assisted by gemini cationic surfactant. J. Nanomater. 2020:6173867, 2020.

    Article  Google Scholar 

  188. Zhang, X. X., Z. J. Yang, F. Nie, and Q. L. Yan. Recent advances on the crystallization engineering of energetic materials. Energ. Mater. Front. 1:141–156, 2020.

    Article  Google Scholar 

  189. Zhou, Q., T. Wang, C. Wang, Z. Wang, Y. Yang, P. Li, R. Cai, M. Sun, H. Yuan, and L. Nie. Synthesis and characterization of silver nanoparticles-doped hydroxyapatite/alginate microparticles with promising cytocompatibility and antibacterial properties. Colloids Surf. A 585:2020.

    Article  CAS  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4