A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-021-02774-3 below:

A Dynamic Optimization Approach for Solving Spine Kinematics While Calibrating Subject-Specific Mechanical Properties

References
  1. Breen, A., and A. Breen. Uneven intervertebral motion sharing is related to disc degeneration and is greater in patients with chronic, non-specific low back pain: an in vivo, cross-sectional cohort comparison of intervertebral dynamics using quantitative fluoroscopy. Eur. Spine J. 27:145–153, 2018.

    Article  PubMed  Google Scholar 

  2. Bruno, A. G., M. L. Bouxsein, and D. E. Anderson. Development and validation of a musculoskeletal model of the fully articulated thoracolumbar spine and Rib cage. J. Biomech. Eng. 137:2015.

    Article  PubMed  Google Scholar 

  3. Christophy, M., N. A. Faruk Senan, J. C. Lotz, and O. M. O’Reilly. A musculoskeletal model for the lumbar spine. Biomech. Model Mechanobiol. 11:19–34, 2012.

    Article  PubMed  Google Scholar 

  4. De Groote, F., A. L. Kinney, A. V. Rao, and B. J. Fregly. Evaluation of direct collocation optimal control problem formulations for solving the muscle redundancy problem. Ann. Biomed. Eng. 44:2922–2936, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dvorak, J., M. M. Panjabi, J. E. Novotny, D. G. Chang, and D. Grob. Clinical validation of functional flexion-extension roentgenograms of the lumbar spine. Spine 16:943–950, 1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eskandari, A. H., N. Arjmand, A. Shirazi-Adl, and F. Farahmand. Hypersensitivity of trunk biomechanical model predictions to errors in image-based kinematics when using fully displacement-control techniques. J. Biomech. 84:161–171, 2019.

    Article  CAS  PubMed  Google Scholar 

  7. Falisse, A., S. V. Rossom, I. Jonkers, and F. De Groote. EMG-driven optimal estimation of subject-SPECIFIC hill model muscle-tendon parameters of the knee joint actuators. IEEE Trans. Biomed. Eng. 64:2253–2262, 2017.

    Article  PubMed  Google Scholar 

  8. Falisse, A., G. Serrancoli, C. L. Dembia, J. Gillis, I. Jonkers, and F. De Groote. Rapid predictive simulations with complex musculoskeletal models suggest that diverse healthy and pathological human gaits can emerge from similar control strategies. J. R. Soc. Interface 16:20190402, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hayes, M. A., T. C. Howard, C. R. Gruel, and J. A. Kopta. Roentgenographic evaluation of lumbar spine flexion-extension in asymptomatic individuals. Spine 14:327–331, 1989.

    Article  CAS  PubMed  Google Scholar 

  10. Ignasiak, D., S. Dendorfer, and S. J. Ferguson. Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading. J. Biomech. 49:959–966, 2016.

    Article  PubMed  Google Scholar 

  11. Kettler, A., F. Rohlmann, C. Ring, C. Mack, and H. J. Wilke. Do early stages of lumbar intervertebral disc degeneration really cause instability? Evaluation of an in vitro database. Eur. Spine J. 20:578–584, 2011.

    Article  PubMed  Google Scholar 

  12. Li, G., S. Wang, P. Passias, Q. Xia, G. Li, and K. Wood. Segmental in vivo vertebral motion during functional human lumbar spine activities. Eur. Spine J. 18:1013–1021, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ma, H. T., Z. Yang, J. F. Griffith, P. C. Leung, and R. Y. Lee. A new method for determining lumbar spine motion using Bayesian belief network. Med. Biol. Eng. Comput. 46:333–340, 2008.

    Article  PubMed  Google Scholar 

  14. Marra, M. A., V. Vanheule, R. Fluit, B. H. Koopman, J. Rasmussen, N. Verdonschot, and M. S. Andersen. A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty. J. Biomech. Eng. 137:2015.

    Article  PubMed  Google Scholar 

  15. Mimura, M., M. M. Panjabi, T. R. Oxland, J. J. Crisco, I. Yamamoto, and A. Vasavada. Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine 19:1371–1380, 1994.

    Article  CAS  PubMed  Google Scholar 

  16. Nagel, T. M., J. L. Zitnay, V. H. Barocas, and D. J. Nuckley. Quantification of continuous in vivo flexion-extension kinematics and intervertebral strains. Eur. Spine J. 23:754–761, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Needham, R., R. Naemi, A. Healy, and N. Chockalingam. Multi-segment kinematic model to assess three-dimensional movement of the spine and back during gait. Prosthet. Orthot. Int. 40:624–635, 2016.

    Article  PubMed  Google Scholar 

  18. Overbergh, T., P. Severijns, E. Beaucage-Gauvreau, I. Jonkers, L. Moke, and L. Scheys. Development and validation of a modeling workflow for the generation of image-based, subject-specific thoracolumbar models of spinal deformity. J. Biomech. 110:2020.

    Article  PubMed  Google Scholar 

  19. Pearcy, M., and J. Shepherd. Is there instability in spondylolisthesis? Spine 10:175–177, 1985.

    Article  CAS  PubMed  Google Scholar 

  20. Petit, Y., C. É. Aubin, and H. Labelle. Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine. Med. Biol. Eng. Comput. 42:55–60, 2004.

    Article  CAS  PubMed  Google Scholar 

  21. Rozumalski, A., M. H. Schwartz, R. Wervey, A. Swanson, D. C. Dykes, and T. Novacheck. The in vivo three-dimensional motion of the human lumbar spine during gait. Gait Posture 28:378–384, 2008.

    Article  PubMed  Google Scholar 

  22. Severijns, P., T. Overbergh, A. Thauvoye, J. Baudewijns, D. Monari, L. Moke, K. Desloovere, and L. Scheys. A subject-specific method to measure dynamic spinal alignment in adult spinal deformity. Spine J. 20:934–946, 2020.

    Article  PubMed  Google Scholar 

  23. Shojaei, I., N. Arjmand, J. R. Meakin, and B. Bazrgari. A model-based approach for estimation of changes in lumbar segmental kinematics associated with alterations in trunk muscle forces. J. Biomech. 70:82–87, 2018.

    Article  PubMed  Google Scholar 

  24. Smit, T. H., M. S. van Tunen, A. J. van der Veen, I. Kingma, and J. H. van Dieen. Quantifying intervertebral disc mechanics: a new definition of the neutral zone. BMC Musculoskelet. Disord. 12:38, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Takayanagi, K., K. Takahashi, M. Yamagata, H. Moriya, H. Kitahara, and T. Tamaki. Using cineradiography for continuous dynamic-motion analysis of the lumbar spine. Spine 26:1858–1865, 2001.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, W., D. M. Wang, F. De Groote, L. Scheys, and I. Jonkers. Implementation of physiological functional spinal units in a rigid-body model of the thoracolumbar spine. J. Biomech. 98:2019.

    Article  PubMed  Google Scholar 

  27. Wang, W., D. M. Wang, M. Wesseling, B. Xue, and F. Y. Li. Comparison of modelling and tracking methods for analysing elbow and forearm kinematics. Proc. Inst. Mech. Eng. Part H 233(11):1113–1121, 2019.

    Article  Google Scholar 

  28. Widmer, J., P. Fornaciari, M. Senteler, T. Roth, J. G. Snedeker, and M. Farshad. Kinematics of the spine under healthy and degenerative conditions: a systematic review. Ann. Biomed. Eng. 47:1491–1522, 2019.

    Article  PubMed  Google Scholar 

  29. Wilke, H. J., A. Herkommer, K. Werner, and C. Liebsch. In vitro analysis of the segmental flexibility of the thoracic spine. PLoS ONE 12:2017.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zemp, R., R. List, T. Gulay, J. P. Elsig, J. Naxera, W. R. Taylor, and S. Lorenzetti. Soft tissue artefacts of the human back: comparison of the sagittal curvature of the spine measured using skin markers and an open upright MRI. PLoS ONE 9:2014.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4