A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-021-02767-2 below:

Regional Gas Transport During Conventional and Oscillatory Ventilation Assessed by Xenon-Enhanced Computed Tomography

References
  1. Amini, R., and D. W. Kaczka. Impact of ventilation frequency and parenchymal stiffness on flow and pressure distribution in a canine lung model. Ann. Biomed. Eng. 41:2699–2711, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bonett, D. G. Confidence interval for a coefficient of quartile variation. Comput. Stat. Data Anal. 50:2953–2957, 2006.

    Article  Google Scholar 

  3. Calvet, J. H., B. Louis, P. Giry, A. Harf, and D. Isabey. Effect of gas density variations on respiratory input impedance in humans. Respir. Physiol. 104:241–250, 1996.

    Article  CAS  PubMed  Google Scholar 

  4. Chang, H. K. Mechanisms of gas transport during ventilation by high-frequency oscillation. J. Appl. Physiol. 56:553–563, 1984.

    Article  CAS  PubMed  Google Scholar 

  5. Choi, J., G. Xia, M. H. Tawhai, E. A. Hoffman, and C.-L. Lin. Numerical study of high-frequency oscillatory air flow and convective mixing in a CT-based human airway model. Ann. Biomed. Eng. 38:3550–3571, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Conze, P. H., V. Noblet, F. Rousseau, F. Heitz, V. de Blasi, R. Memeo, and P. Pessaux. Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans. Int. J. Comput. Assist. Radiol. Surg. 12:223–233, 2017.

    Article  PubMed  Google Scholar 

  7. Fortune, J. B., and P. D. Wagner. Effects of common dead space on inert gas exchange in mathematical models of the lung. J. Appl. Physiol. 47:896–906, 1979.

    Article  CAS  PubMed  Google Scholar 

  8. Fredberg, J. J., D. H. Keefe, G. M. Glass, R. G. Castile, and I. D. Frantz. Alveolar pressure nonhomogeneity during small-amplitude high-frequency oscillation. J. Appl. Physiol. 57:788–800, 1984.

    Article  CAS  PubMed  Google Scholar 

  9. Fuld, M. K., A. F. Halaweish, J. D. Newell, B. Krauss, and E. A. Hoffman. Optimization of dual-energy xenon-computed tomography for quantitative assessment of regional pulmonary ventilation. Investig. Radiol. 48:629–637, 2013.

    Article  Google Scholar 

  10. Gerard, S. E., J. Herrmann, D. W. Kaczka, G. Musch, A. Fernandez-Bustamante, and J. M. Reinhardt. Multi-resolution convolutional neural networks for fully automated segmentation of acutely injured lungs in multiple species. Med. Image Anal. 60:2020.

    Article  PubMed  Google Scholar 

  11. Gerard, S. E., J. Herrmann, D. W. Kaczka, and J. M. Reinhardt. Transfer learning for segmentation of injured lungs using coarse-to-fine convolutional neural networks. In: Image Analysis for Moving Organ, Breast, and Thoracic Images. Berlin: Springer, pp. 191–201, 2018.

  12. Glenny, R. W., and H. T. Robertson. Spatial distribution of ventilation and perfusion: mechanisms and regulation. Compr. Physiol. 1:375–395, 2011.

    PubMed  Google Scholar 

  13. Herrmann, J., S. E. Gerard, W. Shao, M. L. Hawley, J. M. Reinhardt, G. E. Christensen, E. A. Hoffman, and D. W. Kaczka. Quantifying regional lung deformation using four-dimensional computed tomography: a comparison of conventional and oscillatory ventilation. Front. Physiol. 11:1–20, 2020.

    Article  Google Scholar 

  14. Herrmann, J., E. A. Hoffman, and D. W. Kaczka. Frequency-selective computed tomography: applications during periodic thoracic motion. IEEE Trans. Med. Imaging 36:1722–1732, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Herrmann, J., W. Lilitwat, M. H. Tawhai, and D. W. Kaczka. High-frequency oscillatory ventilation and ventilator-induced lung injury: size does matter. Crit. Care Med. 48:e66–e73, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Herrmann, J., J. M. Reinhardt, E. A. Hoffman, and D. W. Kaczka. Xenon-enhanced CT for measurement of regional gas transport during oscillatory ventilation. Am. J. Respir. Crit. Care Med. 197:A4477, 2018.

    Google Scholar 

  17. Herrmann, J., M. H. Tawhai, and D. W. Kaczka. Regional gas transport in the heterogeneous lung during oscillatory ventilation. J. Appl. Physiol. 121:1306–1318, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Herrmann, J., M. H. Tawhai, and D. W. Kaczka. Parenchymal strain heterogeneity during oscillatory ventilation: why two frequencies are better than one. J. Appl. Physiol. 124:653–663, 2018.

    Article  CAS  PubMed  Google Scholar 

  19. Herrmann, J., M. H. Tawhai, and D. W. Kaczka. Strain, strain rate, and mechanical power: an optimization comparison for oscillatory ventilation. Int. J. Numer. Methods Biomed. Eng. 35:2019.

    Article  Google Scholar 

  20. Hoffman, E. A. Effect of body orientation on regional lung expansion: a computed tomographic approach. J. Appl. Physiol. 59:468–480, 1985.

    Article  CAS  PubMed  Google Scholar 

  21. Hoffman, E. A., and D. Chon. Computed tomography studies of lung ventilation and perfusion. Proc. Am. Thorac. Soc. 2:492–498, 2005.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Johnson, N. J., A. M. Luks, and R. W. Glenny. Gas exchange in the prone posture. Respir. Care 62:1097–1110, 2017.

    Article  PubMed  Google Scholar 

  23. Kaczka, D. W., J. Herrmann, C. E. E. Zonneveld, D. G. Tingay, A. Lavizzari, P. B. Noble, and J. J. Pillow. Multifrequency oscillatory ventilation in the premature lung: effects on gas exchange, mechanics, and ventilation distribution. Anesthesiology 123:1394–1403, 2015.

    Article  CAS  PubMed  Google Scholar 

  24. Klein, S., M. Staring, K. Murphy, M. A. Viergever, and J. P. W. Pluim. Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29:196–205, 2010.

    Article  PubMed  Google Scholar 

  25. Liu, S., Y. Yi, M. Wang, Q. Chen, Y. Huang, L. Liu, J. Xie, D. Zhou, and H. Qiu. Higher frequency ventilation attenuates lung injury during high-frequency oscillatory ventilation in sheep models of acute respiratory distress syndrome. Anesthesiology 119:398–411, 2013.

    Article  PubMed  Google Scholar 

  26. Lusic, H., and M. W. Grinstaff. X-ray computed tomography contrast agents. Chem. Rev. 113:1641–1666, 2013.

    Article  CAS  PubMed  Google Scholar 

  27. Marcucci, C., D. Nyhan, and B. A. Simon. Distribution of pulmonary ventilation using Xe-enhanced computed tomography in prone and supine dogs. J. Appl. Physiol. 90:421–430, 2001.

    Article  CAS  PubMed  Google Scholar 

  28. Mulreany, D. G., B. A. Simon, K. J. Murphy, and R. B. Easley. Volumetric xenon-CT imaging of conventional and high-frequency oscillatory ventilation. Acad. Radiol. 16:718–725, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Perchiazzi, G., C. Rylander, S. Derosa, M. Pellegrini, L. Pitagora, D. Polieri, A. Vena, A. Tannoia, T. Fiore, and G. Hedenstierna. Regional distribution of lung compliance by image analysis of computed tomograms. Respir. Physiol. Neurobiol. 201:60–70, 2014.

    Article  PubMed  Google Scholar 

  30. Reinhardt, J. M., K. Ding, K. Cao, G. E. Christensen, E. A. Hoffman, and S. V. Bodas. Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation. Med. Image Anal. 12:752–763, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rotger, M., R. Farré, D. Navajas, and R. Peslin. Respiratory input impedance up to 256 Hz in healthy humans breathing foreign gases. J. Appl. Physiol. 75:307–320, 1993.

    Article  CAS  PubMed  Google Scholar 

  32. Roth, C. J., K. M. Förster, A. Hilgendorff, B. Ertl-Wagner, W. A. Wall, and A. W. Flemmer. Gas exchange mechanisms in preterm infants on HFOV—a computational approach. Sci. Rep. 8:1–8, 2018.

    Article  Google Scholar 

  33. Rousseeuw, P. J. Least median of squares regression. J. Am. Stat. Assoc. 79:871–880, 1984.

    Article  Google Scholar 

  34. Simon, B. A. Non-invasive imaging of regional lung function using x-ray computed tomography. J. Clin. Monit. Comput. 16:433–442, 2000.

    Article  CAS  PubMed  Google Scholar 

  35. Simon, B. A., C. Marcucci, M. Fung, and S. R. Lele. Parameter estimation and confidence intervals for Xe-CT ventilation studies: a Monte Carlo approach. J. Appl. Physiol. 84:709–716, 1998.

    Article  CAS  PubMed  Google Scholar 

  36. Skillings, J. H., and G. A. Mack. On the use of a Friedman-type statistic in balanced and unbalanced block designs. Technometrics 23:171–177, 1981.

    Article  Google Scholar 

  37. Sklar, M. C., E. Fan, and E. C. Goligher. High-frequency oscillatory ventilation in adults with ARDS: past, present, and future. Chest 152:1306–1317, 2017.

    Article  PubMed  Google Scholar 

  38. Tsuzaki, K., C. A. Hales, D. J. Strieder, and J. G. Venegas. Regional lung mechanics and gas transport in lungs with inhomogeneous compliance. J. Appl. Physiol. 75:206–216, 1993.

    Article  CAS  PubMed  Google Scholar 

  39. Venegas, J. G., K. Tsuzaki, B. J. Fox, B. A. Simon, and C. A. Hales. Regional coupling between chest wall and lung expansion during HFV: a positron imaging study. J. Appl. Physiol. 74:2242–2252, 1993.

    Article  CAS  PubMed  Google Scholar 

  40. Venegas, J. G., Y. Yamada, C. Burnham, and C. A. Hales. Local gas transport in eucapnic ventilation: effects of gravity and breathing frequency. J. Appl. Physiol. 68:2287–2295, 1990.

    Article  CAS  PubMed  Google Scholar 

  41. Venegas, J. G., Y. Yamada, J. Custer, and C. A. Hales. Effects of respiratory variables on regional gas transport during high-frequency ventilation. J. Appl. Physiol. 64:2108–2118, 1988.

    Article  CAS  PubMed  Google Scholar 

  42. West, J. B. Respiratory Physiology: The Essentials. Philadelphia, PA: Lippincott Williams & Wilkins, p. 200, 2012.

    Google Scholar 

  43. Yamada, Y., C. Burnham, C. A. Hales, and J. G. Venegas. Regional mapping of gas transport during high-frequency and conventional ventilation. J. Appl. Physiol. 66:1209–1218, 1989.

    Article  CAS  PubMed  Google Scholar 

  44. Zannin, E., R. L. Dellacà, G. Dognini, L. Marconi, M. Perego, J. J. Pillow, P. E. Tagliabue, and M. L. Ventura. Effect of frequency on pressure cost of ventilation and gas exchange in newborns receiving high-frequency oscillatory ventilation. Pediatr. Res. 82:994–999, 2017.

    Article  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4