A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-021-02766-3 below:

A Three-Limb Teleoperated Robotic System with Foot Control for Flexible Endoscopic Surgery

References
  1. A. Donno, L. Zorn, P. Zanne, F. Nageotte, and M. De Mathelin, “Introducing stras: A new flexible robotic system for minimally invasive surgery,” in IEEE International Conference on Robotics and Automation, 2013, pp. 1213–1220.

  2. A. L. Simeone, E. Velloso, J. Alexander, and H. Gellersen, “Feet movement in desktop 3d interaction,” in IEEE Symposium on 3D User Interfaces, 2014, pp. 71–74.

  3. A. Polanczyk, K. Markus, J. Nanobachvili, I. Huk, and C. Neumayer, “Artificial circulatory model for analysis of human and artificial vessels”, Appl Sci. 8(7):1017, 2018.

    Article  Google Scholar 

  4. Abdi, E., E. Burdet, M. Bouri, S. Himidan, and H. Bleuler. In a demanding task, three-handed manipulation is preferred to two-handed manipulation. Sci. Rep. 6:21758, 2016.

    Article  CAS  Google Scholar 

  5. B. Cetinsaya, M. Gromski, S. Lee, Z. Xia, D. Demirel, T. Halic, C. Bayrak, C. Jackson, S. De, S. Hegde, J. Cohen, M. Sawhney, S. Stavropoulos, and D. Jones, “A task and performance analysis of endoscopic submucosal dissection (ESD) surgery”, Surg Endosc. 33(2): 592–606, 2019.

    Article  Google Scholar 

  6. B. Bardou, F. Nageotte, P. Zanne, and M. de Mathelin, “Improvements in the control of a flexible endoscopic system,” in IEEE International Conference on Robotics and Automation, 2012, pp. 3725–3732.

  7. P. Berthet-Rayne, G. Gras, K. Leibrandt, P. Wisanuvej, A. Schmitz, C. Seneci, and G.-Z. Yang. The isnake robotic platform for endoscopic surgery. Ann. Biomed. Eng. 46(10):1663–1697, 2018.

    Article  Google Scholar 

  8. C. B. Williams, Insertion Technique. John Wiley & Sons, Ltd, 2009, ch. 40, pp. 535–559.

  9. D. J. Abbott, C. Becke, R. I. Rothstein, and W. J. Peine, “Design of an endoluminal notes robotic system,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp. 410–416.

  10. Dardona, T., S. Eslamian, L. Reisner, and A. Pandya. Remote presence: Development and usability evaluation of a head-mounted display for camera control on the da vinci surgical system. Robotics 8:31, 2019.

    Article  Google Scholar 

  11. DellaFlora, E., T. Wilson, I. Martin, N. O’Rourke, and G. Maddern. A review of natural orifice translumenal endoscopic surgery (notes) for intra-abdominal surgery: Experimental models, techniques, and applicability to the clinical setting. Ann. Surg. 247(4):583–602, 2008.

    Article  Google Scholar 

  12. Eslamian, S., L. Reisner, and A. Pandya. Development and evaluation of an autonomous camera control algorithm on the da vinci surgical system. Int. J. Med. Robot. Comput. Assist. Surg. 16:09, 2019.

    Google Scholar 

  13. F. Zhong, P. Li, J. Shi, Z. Wang, J. Wu, J. Y. K. Chan, N. Leung, I. Leung, M. C. F. Tong, and Y. Liu, “Foot-controlled robot-enabled endoscope manipulator (FREEDOM) for sinus surgery: Design, control, and evaluation”, IEEE Trans Biomed Eng. 67(6): 1530–1541, 2020.

    Google Scholar 

  14. Fujii, K., G. Gras, A. Salerno, and G.-Z. Yang. Gaze gesture based human robot interaction for laparoscopic surgery. Med. Image Anal. 44:196–214, 2018.

    Article  Google Scholar 

  15. Huang, Y., E. Burdet, L. Cao, P. T. Phan, A. H. T. Meng, and L. Phee. A subject-specific four-degree-of-freedom foot interface to control a surgical robot. IEEE/ASME Trans. Mechatron. 25(2):951–963, 2020.

    Article  Google Scholar 

  16. Huang, Y., E. Burdet, L. Cao, P. T. Phan, A. M. H. Tiong, P. Zheng, and S. J. Phee. Performance evaluation of a foot interface to operate a robot arm. IEEE Robot. Autom. Lett. 4(4):3302–3309, 2019.

    Article  Google Scholar 

  17. Huang, Y., J. Eden, L. Cao, E. Burdet, and S. J. Phee. Tri-manipulation: An evaluation of human performance in 3-handed teleoperation. IEEE Trans. Med. Robot. Bionics 2(4):545–548, 2020.

    Article  Google Scholar 

  18. Hwang, M., and D. Kwon. K-flex: A flexible robotic platform for scar-free endoscopic surgery. Int. J. Med. Robot. Comput. Assist. Surg. 16(2):2e2078, 2020.

    Article  Google Scholar 

  19. Iwasa, T., R. Nakadate, S. Onogi, Y. Okamoto, J. Arata, S. Oguri, H. Ogino, E. Ihara, K. Ohuchida, T. Akahoshi, T. Ikeda, Y. Ogawa, and M. Hashizume. A new robotic-assisted flexible endoscope with single-hand control: endoscopic submucosal dissection in the ex vivo porcine stomach. Surg. Endosc. 32(7):3386–3392, 2018.

    Article  Google Scholar 

  20. J. Reynoso, A. Meyer, J. Unnirevi, and D. Oleynikov, Robotics for minimally invasive surgery (MIS) and natural orifice transluminal endoscopic surgery (NOTES). Elsevier Ltd, 2012, pp. 210–223.

  21. J. H. Sanchez, W. Amanhoud, A. Haget, H. Bleuler, A. Billard, and M. Bouri, “Four-arm manipulation via feet interfaces,” ArXiv, vol. abs/1909.04993, 2019.

  22. Kommu, S. S., P. Rimington, C. Anderson, and A. Rané. Initial experience with the endoassist camera-holding robot in laparoscopic urological surgery. J. Robot. Surg. 1(2):133–137, 2007.

    Article  Google Scholar 

  23. Kume, K., N. Sakai, and T. Goto. Development of a novel endoscopic manipulation system: the endoscopic operation robot ver3. Endoscopy 47(9):815–819, 2015.

    Article  Google Scholar 

  24. L. Cao, X. Li, P. T. Phan, A. M. H. Tiong, J. Liu, and S. J. Phee, “A novel robotic suturing system for flexible endoscopic surgery,” in IEEE International Conference on Robotics and Automation, 2019, pp. 1514–1520.

  25. Lai, W., L. Cao, R. X. Tan, P. T. Phan, J. Hao, S. C. Tjin, and S. J. Phee. Force sensing with 1 mm fiber bragg gratings for flexible endoscopic surgical robots. IEEE/ASME Trans. Mechatron. 25(1):371–382, 2020.

    Article  Google Scholar 

  26. Li, X., L. Cao, A. M. H. Tiong, P. T. Phan, and S. J. Phee. Distal-end force prediction of tendon-sheath mechanisms for flexible endoscopic surgical robots using deep learning. Mech. Mach. Theory 134:323–337, 2019.

    Article  CAS  Google Scholar 

  27. M. Y. Saraiji, T. Sasaki, K. Kunze, K. Minamizawa, and M. Inami, “Metaarms: Body remapping using feet-controlled artificial arms,” in ACM Symposium on User Interface Software and Technology, 2018, pp. 65–74.

  28. Matsui, N., K. Akahoshi, K. Nakamura, E. Ihara, and H. Kita. Endoscopic submucosal dissection for removal of superficial gastrointestinal neoplasms: A technical review. World J Gastrointest. Endosc. 4:123–136, 2012.

    Article  Google Scholar 

  29. Milsom, J., B. Bohm, K. Hammerhofer, V. Fazio, E. Steiger, and P. Elson. A prospective, randomized trial comparing laparoscopic versus conventional techniques in colorectal cancer surgery: a preliminary report. J. Am. Coll. Surg. 187(1):46–54, 1998.

    Article  CAS  Google Scholar 

  30. Mirbagheri, A., F. Farahmand, B. Ghannadi, K. Amini, S. Porsa, J. Shamsollahi, F. Karimian, K. Toulabi, and M. Owlia. Operation and human clinical trials of robolens: an assistant robot for laparoscopic surgery. Front. Biomed. Technol. 2(3):172–178, 2015.

    Google Scholar 

  31. Nurok, M., T. M. Sundt, and A. Frankel. Teamwork and communication in the operating room: Relationship to discrete outcomes and research challenges. Anesthesiol. Clin. 29(1):1–11, 2011.

    Article  Google Scholar 

  32. Phee, S., N. Reddy, P. Chiu, P. Re, G. Rao, Z. Wang, Z. Sun, and K. Ho. Robotassisted endoscopic submucosal dissection is effective in treating patients with early-stage gastric neoplasia. Clin. Gastroenterol. Hepatol. 10(10):1117–1121, 2012.

    Article  Google Scholar 

  33. Polet, R., and J. Donnez. Using a laparoscope manipulator (lapman) in laparoscopic gynecological surgery. Surg. Technol. Int. 17:187–191, 2008.

    PubMed  Google Scholar 

  34. Remacle, M., V. Prasad, G. Lawson, L. Plisson, V. Bachy, and S. Van Der Vorst. Transoral robotic surgery (tors) with the medrobotics flexTM system: first surgical application on humans. Eur. Arch. Otorhinolaryngol. 272(6):1451–1455, 2015.

    Article  CAS  Google Scholar 

  35. Ruiter, J., G. Bonnema, M. Van der Voort, and I. Broeders. Robotic control of a traditional flexible endoscope for therapy. J. Robot. Surg. 7(3):227–234, 2013.

    Article  CAS  Google Scholar 

  36. Elprama, S., K. Kilpi, P. Duysburgh, A. Jacobs, L. Vermeulen, and J. Van Looy, “Identifying barriers in telesurgery by studying current team practices in robot-assisted surgery,” International Conference on Pervasive Computing Technologies for Healthcare and Workshops, 2013, pp. 224–231.

  37. Schlachterman, A. M., A. P.-C. Goddard, D. M. Yang, T. M. Gotoda, and P. M. Draganov. Endoscopic submucosal dissection (esd) training in the west: Where do we stand? Am. J. Gastroenterol. 111:S160, 2016.

    Article  Google Scholar 

  38. Sun, Z., R. Ang, E. Lim, Z. Wang, K. Ho, and S. Phee. Enhancement of a master-slave robotic system for natural orifice transluminal endoscopic surgery. Ann. Acad. Med. Singapore 40:223–230, 2011.

    Article  PubMed  Google Scholar 

  39. Sun, Z., Z. Wang, and S. J. Phee. Elongation modeling and compensation for the flexible tendon–sheath system. IEEE/ASME Trans. Mechatron. 19(4):1243–1250, 2014.

    Article  Google Scholar 

  40. Velloso, E., D. Schmidt, J. Alexander, H. Gellersen, and A. Bulling. The feet in human-computer interaction: A survey of foot-based interaction. ACM Comput. Surv. 48(2):1–35, 2015.

    Article  Google Scholar 

  41. Voros, S., G.-P. Haber, J.-F. Menudet, J.-A. Long, and P. Cinquin. ViKY robotic scope holder: Initial clinical experience and preliminary results using instrument tracking. IEEE/ASME Trans. Mechatron. 15(6):879–886, 2010.

    Google Scholar 

  42. W. Lai, L. Cao, P. T. Phan, I.-W. Wu, S. C. Tjin, and S. J. Phee, “Joint rotation angle sensing of flexible endoscopic surgical robots,” in IEEE International Conference on Robotics and Automation, 2020, pp. 4789–4795.

  43. Wang, Z., B. Liang, Y. Sun, and T. Zhang. Adaptive fault-tolerant prescribedtime control for teleoperation systems with position error constraints. IEEE Trans. Industr. Inf. 16(7):4889–4899, 2020.

    Article  Google Scholar 

  44. Yeung, B. P. M., and T. Gourlay. A technical review of flexible endoscopic multitasking platforms. Int. J. Surg. 10(7):345–354, 2012.

    Article  Google Scholar 

  45. Z. Wang, H. Lam, B. Xiao, Z. Chen, B. Liang, and T. Zhang, “Event-triggered prescribed-time fuzzy control for space teleoperation systems subject to multiple constraints and uncertainties”, IEEE Trans. Fuzzy Syst. 2020. https://doi.org/10.1109/TFUZZ.2020.3007438.

    Article  Google Scholar 

  46. Zorn, L., F. Nageotte, P. Zanne, A. Legner, B. Dallemagne, J. Marescaux, and M. de Mathelin. A novel telemanipulated robotic assistant for surgical endoscopy: Preclinical application to esd. IEEE Trans. Biomed. Eng. 65(4):797–808, 2018.

    Article  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4