A. Donno, L. Zorn, P. Zanne, F. Nageotte, and M. De Mathelin, “Introducing stras: A new flexible robotic system for minimally invasive surgery,” in IEEE International Conference on Robotics and Automation, 2013, pp. 1213–1220.
A. L. Simeone, E. Velloso, J. Alexander, and H. Gellersen, “Feet movement in desktop 3d interaction,” in IEEE Symposium on 3D User Interfaces, 2014, pp. 71–74.
A. Polanczyk, K. Markus, J. Nanobachvili, I. Huk, and C. Neumayer, “Artificial circulatory model for analysis of human and artificial vessels”, Appl Sci. 8(7):1017, 2018.
Abdi, E., E. Burdet, M. Bouri, S. Himidan, and H. Bleuler. In a demanding task, three-handed manipulation is preferred to two-handed manipulation. Sci. Rep. 6:21758, 2016.
B. Cetinsaya, M. Gromski, S. Lee, Z. Xia, D. Demirel, T. Halic, C. Bayrak, C. Jackson, S. De, S. Hegde, J. Cohen, M. Sawhney, S. Stavropoulos, and D. Jones, “A task and performance analysis of endoscopic submucosal dissection (ESD) surgery”, Surg Endosc. 33(2): 592–606, 2019.
B. Bardou, F. Nageotte, P. Zanne, and M. de Mathelin, “Improvements in the control of a flexible endoscopic system,” in IEEE International Conference on Robotics and Automation, 2012, pp. 3725–3732.
P. Berthet-Rayne, G. Gras, K. Leibrandt, P. Wisanuvej, A. Schmitz, C. Seneci, and G.-Z. Yang. The i2 snake robotic platform for endoscopic surgery. Ann. Biomed. Eng. 46(10):1663–1697, 2018.
C. B. Williams, Insertion Technique. John Wiley & Sons, Ltd, 2009, ch. 40, pp. 535–559.
D. J. Abbott, C. Becke, R. I. Rothstein, and W. J. Peine, “Design of an endoluminal notes robotic system,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp. 410–416.
Dardona, T., S. Eslamian, L. Reisner, and A. Pandya. Remote presence: Development and usability evaluation of a head-mounted display for camera control on the da vinci surgical system. Robotics 8:31, 2019.
DellaFlora, E., T. Wilson, I. Martin, N. O’Rourke, and G. Maddern. A review of natural orifice translumenal endoscopic surgery (notes) for intra-abdominal surgery: Experimental models, techniques, and applicability to the clinical setting. Ann. Surg. 247(4):583–602, 2008.
Eslamian, S., L. Reisner, and A. Pandya. Development and evaluation of an autonomous camera control algorithm on the da vinci surgical system. Int. J. Med. Robot. Comput. Assist. Surg. 16:09, 2019.
F. Zhong, P. Li, J. Shi, Z. Wang, J. Wu, J. Y. K. Chan, N. Leung, I. Leung, M. C. F. Tong, and Y. Liu, “Foot-controlled robot-enabled endoscope manipulator (FREEDOM) for sinus surgery: Design, control, and evaluation”, IEEE Trans Biomed Eng. 67(6): 1530–1541, 2020.
Fujii, K., G. Gras, A. Salerno, and G.-Z. Yang. Gaze gesture based human robot interaction for laparoscopic surgery. Med. Image Anal. 44:196–214, 2018.
Huang, Y., E. Burdet, L. Cao, P. T. Phan, A. H. T. Meng, and L. Phee. A subject-specific four-degree-of-freedom foot interface to control a surgical robot. IEEE/ASME Trans. Mechatron. 25(2):951–963, 2020.
Huang, Y., E. Burdet, L. Cao, P. T. Phan, A. M. H. Tiong, P. Zheng, and S. J. Phee. Performance evaluation of a foot interface to operate a robot arm. IEEE Robot. Autom. Lett. 4(4):3302–3309, 2019.
Huang, Y., J. Eden, L. Cao, E. Burdet, and S. J. Phee. Tri-manipulation: An evaluation of human performance in 3-handed teleoperation. IEEE Trans. Med. Robot. Bionics 2(4):545–548, 2020.
Hwang, M., and D. Kwon. K-flex: A flexible robotic platform for scar-free endoscopic surgery. Int. J. Med. Robot. Comput. Assist. Surg. 16(2):2e2078, 2020.
Iwasa, T., R. Nakadate, S. Onogi, Y. Okamoto, J. Arata, S. Oguri, H. Ogino, E. Ihara, K. Ohuchida, T. Akahoshi, T. Ikeda, Y. Ogawa, and M. Hashizume. A new robotic-assisted flexible endoscope with single-hand control: endoscopic submucosal dissection in the ex vivo porcine stomach. Surg. Endosc. 32(7):3386–3392, 2018.
J. Reynoso, A. Meyer, J. Unnirevi, and D. Oleynikov, Robotics for minimally invasive surgery (MIS) and natural orifice transluminal endoscopic surgery (NOTES). Elsevier Ltd, 2012, pp. 210–223.
J. H. Sanchez, W. Amanhoud, A. Haget, H. Bleuler, A. Billard, and M. Bouri, “Four-arm manipulation via feet interfaces,” ArXiv, vol. abs/1909.04993, 2019.
Kommu, S. S., P. Rimington, C. Anderson, and A. Rané. Initial experience with the endoassist camera-holding robot in laparoscopic urological surgery. J. Robot. Surg. 1(2):133–137, 2007.
Kume, K., N. Sakai, and T. Goto. Development of a novel endoscopic manipulation system: the endoscopic operation robot ver3. Endoscopy 47(9):815–819, 2015.
L. Cao, X. Li, P. T. Phan, A. M. H. Tiong, J. Liu, and S. J. Phee, “A novel robotic suturing system for flexible endoscopic surgery,” in IEEE International Conference on Robotics and Automation, 2019, pp. 1514–1520.
Lai, W., L. Cao, R. X. Tan, P. T. Phan, J. Hao, S. C. Tjin, and S. J. Phee. Force sensing with 1 mm fiber bragg gratings for flexible endoscopic surgical robots. IEEE/ASME Trans. Mechatron. 25(1):371–382, 2020.
Li, X., L. Cao, A. M. H. Tiong, P. T. Phan, and S. J. Phee. Distal-end force prediction of tendon-sheath mechanisms for flexible endoscopic surgical robots using deep learning. Mech. Mach. Theory 134:323–337, 2019.
M. Y. Saraiji, T. Sasaki, K. Kunze, K. Minamizawa, and M. Inami, “Metaarms: Body remapping using feet-controlled artificial arms,” in ACM Symposium on User Interface Software and Technology, 2018, pp. 65–74.
Matsui, N., K. Akahoshi, K. Nakamura, E. Ihara, and H. Kita. Endoscopic submucosal dissection for removal of superficial gastrointestinal neoplasms: A technical review. World J Gastrointest. Endosc. 4:123–136, 2012.
Milsom, J., B. Bohm, K. Hammerhofer, V. Fazio, E. Steiger, and P. Elson. A prospective, randomized trial comparing laparoscopic versus conventional techniques in colorectal cancer surgery: a preliminary report. J. Am. Coll. Surg. 187(1):46–54, 1998.
Mirbagheri, A., F. Farahmand, B. Ghannadi, K. Amini, S. Porsa, J. Shamsollahi, F. Karimian, K. Toulabi, and M. Owlia. Operation and human clinical trials of robolens: an assistant robot for laparoscopic surgery. Front. Biomed. Technol. 2(3):172–178, 2015.
Nurok, M., T. M. Sundt, and A. Frankel. Teamwork and communication in the operating room: Relationship to discrete outcomes and research challenges. Anesthesiol. Clin. 29(1):1–11, 2011.
Phee, S., N. Reddy, P. Chiu, P. Re, G. Rao, Z. Wang, Z. Sun, and K. Ho. Robotassisted endoscopic submucosal dissection is effective in treating patients with early-stage gastric neoplasia. Clin. Gastroenterol. Hepatol. 10(10):1117–1121, 2012.
Polet, R., and J. Donnez. Using a laparoscope manipulator (lapman) in laparoscopic gynecological surgery. Surg. Technol. Int. 17:187–191, 2008.
Remacle, M., V. Prasad, G. Lawson, L. Plisson, V. Bachy, and S. Van Der Vorst. Transoral robotic surgery (tors) with the medrobotics flexTM system: first surgical application on humans. Eur. Arch. Otorhinolaryngol. 272(6):1451–1455, 2015.
Ruiter, J., G. Bonnema, M. Van der Voort, and I. Broeders. Robotic control of a traditional flexible endoscope for therapy. J. Robot. Surg. 7(3):227–234, 2013.
Elprama, S., K. Kilpi, P. Duysburgh, A. Jacobs, L. Vermeulen, and J. Van Looy, “Identifying barriers in telesurgery by studying current team practices in robot-assisted surgery,” International Conference on Pervasive Computing Technologies for Healthcare and Workshops, 2013, pp. 224–231.
Schlachterman, A. M., A. P.-C. Goddard, D. M. Yang, T. M. Gotoda, and P. M. Draganov. Endoscopic submucosal dissection (esd) training in the west: Where do we stand? Am. J. Gastroenterol. 111:S160, 2016.
Sun, Z., R. Ang, E. Lim, Z. Wang, K. Ho, and S. Phee. Enhancement of a master-slave robotic system for natural orifice transluminal endoscopic surgery. Ann. Acad. Med. Singapore 40:223–230, 2011.
Sun, Z., Z. Wang, and S. J. Phee. Elongation modeling and compensation for the flexible tendon–sheath system. IEEE/ASME Trans. Mechatron. 19(4):1243–1250, 2014.
Velloso, E., D. Schmidt, J. Alexander, H. Gellersen, and A. Bulling. The feet in human-computer interaction: A survey of foot-based interaction. ACM Comput. Surv. 48(2):1–35, 2015.
Voros, S., G.-P. Haber, J.-F. Menudet, J.-A. Long, and P. Cinquin. ViKY robotic scope holder: Initial clinical experience and preliminary results using instrument tracking. IEEE/ASME Trans. Mechatron. 15(6):879–886, 2010.
W. Lai, L. Cao, P. T. Phan, I.-W. Wu, S. C. Tjin, and S. J. Phee, “Joint rotation angle sensing of flexible endoscopic surgical robots,” in IEEE International Conference on Robotics and Automation, 2020, pp. 4789–4795.
Wang, Z., B. Liang, Y. Sun, and T. Zhang. Adaptive fault-tolerant prescribedtime control for teleoperation systems with position error constraints. IEEE Trans. Industr. Inf. 16(7):4889–4899, 2020.
Yeung, B. P. M., and T. Gourlay. A technical review of flexible endoscopic multitasking platforms. Int. J. Surg. 10(7):345–354, 2012.
Z. Wang, H. Lam, B. Xiao, Z. Chen, B. Liang, and T. Zhang, “Event-triggered prescribed-time fuzzy control for space teleoperation systems subject to multiple constraints and uncertainties”, IEEE Trans. Fuzzy Syst. 2020. https://doi.org/10.1109/TFUZZ.2020.3007438.
Zorn, L., F. Nageotte, P. Zanne, A. Legner, B. Dallemagne, J. Marescaux, and M. de Mathelin. A novel telemanipulated robotic assistant for surgical endoscopy: Preclinical application to esd. IEEE Trans. Biomed. Eng. 65(4):797–808, 2018.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4