A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-020-02680-0 below:

A Computationally-Efficient, Online-Learning Algorithm for Detecting High-Voltage Spindles in the Parkinsonian Rats

References
  1. Beudel, M., and P. Brown. Adaptive deep brain stimulation in Parkinson’s disease. Parkinsonism Relat. Disord. 22:S123–S126, 2016.

    Article  Google Scholar 

  2. Bowerman, B. L., and R. T. O’Connell. Forecasting and Time Series: An Applied Approach. Belmont, CA: Duxbury Press, 1993.

    Google Scholar 

  3. Broersen, P. M. T., and S. de Waele. Time series analysis in a frequency subband. IEEE Trans. Instrum. Meas. 52(4):1054–1060, 2003.

    Article  Google Scholar 

  4. Buonamici, M., R. Maj, F. Pagani, A. C. Rossi, and N. Khazan. Tremor at rest episodes in unilaterally 6-OHDA-induced substantia-nigra lesioned rats: EEG-EMG and behavior. Neuropharmacology 25(3):323–325, 1986.

    Article  CAS  Google Scholar 

  5. Buzsaki, G., A. Smith, S. Berger, L. J. Fisher, and F. H. Gage. Petit mal epilepsy and Parkinsonian tremor: hypothesis of a common pacemaker. Neuroscience 36(1):1–14, 1990.

    Article  CAS  Google Scholar 

  6. Camara, C., P. Isasi, K. Warwick, V. Ruiz, T. Aziz, J. Stein, and E. Bakstein. Resting tremor classification and detection in Parkinson’s disease patients. Biomed. Signal Process. Control 16:88–97, 2015.

    Article  Google Scholar 

  7. Carron, R., A. Chaillet, A. Filipchuk, W. Pasillas-Lépine, and C. Hammond. Closing the loop of deep brain stimulation. Front. Syst. Neurosci. 7(112):1–18, 2013.

    Google Scholar 

  8. Chen, Y. C., C. C. Chang, R. Perumal, S. R. Yeh, Y. C. Chang, and H. Chen. Optimization and implementation of wavelet-based algorithms for detecting high-voltage spindles in neuron signals. ACM Trans. Embed. Comput. Syst. 18(5):1–16, 2019.

    Article  Google Scholar 

  9. Chen, Y. C., R. Perumal, C. H. Hwang, and H. Chen. Hardware-based simplified discrete wavelet transform for detecting high-voltage spindles in neuron signals. 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Turin, Italy, 2017.

  10. Daniely. A., N. Linial, and S. Shalev-Shwartz. From average case complexity to improper learning complexity. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, New York, USA, pp. 441–448, 2014.

  11. De Waele, S., and P. M. T. Broersen. Multirate autoregressive modeling. In: Selected Topics in Signals, Systems and Control, edited by O. H. Bosgra, P. M. J. Van Den Hof, and C. W. Scherer. Amsterdam: IOS Press, 2001, pp. 75–80.

    Google Scholar 

  12. Dejean, C., C. E. Gross, B. Bioulac, and T. Boraud. Dynamic changes in the cortex-basal ganglia network after dopamine depletion in the rat. J. Neurophysiol. 100:385–396, 2008.

    Article  Google Scholar 

  13. Ge, S., C. Yang, M. Li, J. Li, X. Chang, J. Fu, L. Chen, C. Chang, X. Wang, J. Zhu, and G. Gao. Dopamine depletion increases the power and coherence of high-voltage spindles in the globus pallidus and motor cortex of freely moving rats. Brain Res. 1465:66–79, 2012.

    Article  CAS  Google Scholar 

  14. Gilmour, T. P., and T. Subramanian. Multiscale autoregressive identification of neuro-electrophysiological systems. 33rd Annual International Conference of the IEEE EMBS. Boston, USA, 2011.

  15. Hebb, A. O., J. J. Zhang, M. H. Mahoor, C. Tsiokos, C. Matlack, H. J. Chizeck, and N. Pouratian. Creating the feedback loop: closed-loop neurostimulation. Neurosurg. Clin. N. Am. 25(1):187–204, 2014.

    Article  Google Scholar 

  16. Huberdeau, D., H. Walker, H. Huang, E. Montgomery, and S. V. Sarma. Analysis of local field potential signals: a systems approach. 33rd Annual International Conference of the IEEE EMBS. Boston, USA, 2011.

  17. Lazic, K., J. Ciric, and J. Saponjic. Sleep spindle dynamics during NREM and REM sleep following distinct general anaesthesia in control rats and in a rat model of Parkinson’s disease cholinopathy. J. Sleep Res. 28(1):e12758, 2019.

    Article  Google Scholar 

  18. Li, H., S. Kwong, L. Yang, D. Huang, and D. Xiao. Hilbert-Huang transform for analysis of heart rate variability in cardiac health. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(6):1557–1567, 2011.

    Article  Google Scholar 

  19. Little, S., A. Pogosyan, S. Neal, B. Zavala, L. Zrinzo, M. Hariz, T. Foltynie, P. Limousin, K. Ashkan, J. FitzGerald, A. L. Green, T. Z. Aziz, and P. Brown. Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 74(3):449–457, 2013.

    Article  Google Scholar 

  20. Nguyen, D. P., M. A. Wilson, E. N. Brown, and R. Barbieri. Measuring instantaneous frequency of local field potential oscillations using the Kalman smoother. J. Neurosci. Methods 184(2):365–374, 2009.

    Article  Google Scholar 

  21. Parastarfeizabadi, M., and A. Z. Kouzani. Advances in closed-loop deep brain stimulation devices. J. Neuroeng. Rehabil. 14(1), 2017.

  22. Perumal, R., and H. Chen. Performance analysis in a wavelet-based algorithm for automatic detection of high-voltage spindles in Parkinson’s disease rat models. In: IFMBE Proceedings. 1st Global Conference on Biomedical Engineering & 9th Asian-Pacific Conference on Medical and Biological Engineering, Cham:Springer, pp. 170–173, 2015.

  23. Priori, A., G. Foffani, L. Rossi, and S. Marceglia. Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp. Neurol. 245:77–86, 2013.

    Article  Google Scholar 

  24. Quinn, E. J., Z. Blumenfeld, A. Velisar, M. M. Koop, L. A. Shreve, M. H. Trager, B. C. Hill, C. Kilbane, J. M. Henderson, and H. Bronte-Stewart. Beta oscillations in freely moving Parkinson’s subjects are attenuated during deep brain stimulation. Mov. Disord. 30(13):1750–1758, 2015.

    Article  Google Scholar 

  25. Radek, R. J., P. Curzon, and M. W. Decker. Characterization of high voltage spindles and spatial memory in young, mature and aged rats. Brain Res. Bull. 33(2):183–188, 1994.

    Article  CAS  Google Scholar 

  26. Rosa, M., M. Arlotti, G. Ardolino, F. Cogiamanian, S. Marceglia, A. D. Fonzo, F. Cortese, P. M. Rampini, and A. Priori. Adaptive deep brain stimulation in a freely moving Parkinsonian patient. Mov. Disord. 30(7):1003–1005, 2015.

    Article  Google Scholar 

  27. Ross, S. E., Z. Ouyang, S. Rajagopalan, and T. M. Bruns. Evaluation of decoding algorithms for estimating bladder pressure from dorsal root ganglia neural recordings. Ann. Biomed. Eng. 46(2):233–246, 2018.

    Article  Google Scholar 

  28. Schlögl, A. The Electroencephalogram and the Adaptive Autoregressive Model: Theory and Applications. Aachen: Shaker-Verlag, 2000.

    Google Scholar 

  29. Tatinati, S., K. C. Veluvolu, S. Hong, W. T. Latt, and W. T. Ang. Physiological tremor estimation with autoregressive (AR) model and Kalman filter for robotics applications. IEEE Sensors J. 13(12):4977–4985, 2013.

    Article  Google Scholar 

  30. Uhlhaas, P. J., and W. Singer. Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 11(2):100–113, 2010.

    Article  CAS  Google Scholar 

  31. Yang, C., J. R. Zhang, L. Chen, S. N. Ge, J. L. Wang, Z. Q. Yan, D. Jia, J. L. Zhu, and G. D. Gao. High frequency stimulation of the STN restored the abnormal high-voltage spindles in the cortex and the globus pallidus of 6-OHDA lesioned rats. Neurosci. Lett. 595:122–127, 2015.

    Article  CAS  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4