Alvarez-Elizondo, M. B., C. W. Li, A. Marom, Y.-T. Tung, G. Drillich, Y. Horesh, S. C. Lin, G.-J. Wang, and D. Weihs. Micropatterned topographies reveal measurable differences between cancer and benign cells. Med. Eng. Phys. 75:5–12, 2020.
Alvarez-Elizondo, M. B., and D. Weihs. Cell-gel mechanical interactions as an approach to rapidly and quantitatively reveal invasive subpopulations of metastatic cancer cells. Tissue Eng. Part C Methods 23:180–187, 2017.
Blajeski, A. L., V. A. Phan, T. J. Kottke, and S. H. Kaufmann. G1 and G2 cell-cycle arrest following microtubule depolymerization in human breast cancer cells. J. Clin. Invest. 110:91–99, 2002.
Caswell, P. T., and T. Zech. Actin-based cell protrusion in a 3D matrix. Trends Cell Biol. 28:823–834, 2018.
Cheung, K. J., V. Padmanaban, V. Silvestri, K. Schipper, J. D. Cohen, A. N. Fairchild, M. A. Gorin, J. E. Verdone, K. J. Pienta, J. S. Bader, and A. J. Ewald. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc. Natl. Acad. Sci. USA 113:E854–E863, 2016.
Clark, A. G. A. G., and D. M. D. M. Vignjevic. Modes of cancer cell invasion and the role of the microenvironment. Curr. Opin. Cell Biol. 36:13–22, 2015.
Dudaie, M., D. Weihs, F. J. Vermolen, and A. Gefen. Modeling migration in cell colonies in two and three dimensional substrates with varying stiffnesses. Silico Cell Tissue Sci. 2:1–14, 2015.
Dvir, L., R. Nissim, M. B. Alvarez-Elizondo, and D. Weihs. Quantitative measures to reveal coordinated cytoskeleton-nucleus reorganization during in vitro invasion of cancer cells. N. J. Phys. 17:043010, 2015.
Fidler, I. J. In vitro studies of cellular-mediated immunostimulation of tumor growth. J. Natl. Cancer Inst. 50:1307–1312, 1973.
Fife, C. M., J. A. McCarroll, and M. Kavallaris. Movers and shakers: cell cytoskeleton in cancer metastasis. Br. J. Pharmacol. 171:5507–5523, 2014.
Friedl, P., and S. Alexander. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009, 2011.
Friedl, P., J. Locker, E. Sahai, and J. E. Segall. Classifying collective cancer cell invasion. Nat. Cell Biol. 14:777–783, 2012.
Gal, N., and D. Weihs. Intracellular mechanics and activity of breast cancer cells correlate with metastatic potential. Cell Biochem. Biophys. 63:199–209, 2012.
Galbraith, C. G., K. M. Yamada, and M. P. Sheetz. The relationship between force and focal complex development. J. Cell Biol. 159:695–705, 2002.
Geiger, B., and K. M. Yamada. Molecular architecture and function of matrix adhesions. Cold Spring Harb. Perspect. Biol. 3:a005033, 2011.
Ghibaudo, M., A. Saez, L. Trichet, A. Xayaphoummine, J. Browaeys, P. Silberzan, A. Buguin, and B. Ladoux. Traction forces and rigidity sensing regulate cell functions. Soft Matter 4:1836–1843, 2008.
Gladilin, E., S. Ohse, M. Boerries, H. Busch, C. Xu, M. Schneider, M. Meister, and R. Eils. TGFβ-induced cytoskeletal remodeling mediates elevation of cell stiffness and invasiveness in NSCLC. Sci. Rep. 9:1–12, 2019.
Goldstein, D., T. Elhanan, M. Aronovitch, and D. Weihs. Origin of active transport in breast-cancer cells. Soft Matter 9:7167–7173, 2013.
Guck, J., S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88:3689–3698, 2005.
Guzman, A., M. J. Ziperstein, and L. J. Kaufman. The effect of fibrillar matrix architecture on tumor cell invasion of physically challenging environments. Biomaterials 35:6954–6963, 2014.
Haeger, A., S. Alexander, M. Vullings, F. M. P. Kaiser, C. Veelken, U. Flucke, G. E. Koehl, M. Hirschberg, M. Flentje, R. M. Hoffman, E. K. Geissler, S. Kissler, and P. Friedl. Collective cancer invasion forms an integrin-dependent radioresistant niche. J. Exp. Med. 217(1):e20181184, 2020.
Isogai, T., R. van der Kammen, and M. Innocenti. SMIFH2 has effects on formins and p53 that perturb the cell cytoskeleton. Sci. Rep. 5:9802, 2015.
Khalil, A. A., O. Ilina, P. G. Gritsenko, P. Bult, P. N. Span, and P. Friedl. Collective invasion in ductal and lobular breast cancer associates with distant metastasis. Clin. Exp. Metastasis 34:421–429, 2017.
Kraning-Rush, C. M., J. P. Califano, and C. A. Reinhart-King. Cellular traction stresses increase with increasing metastatic potential. PLoS ONE 7:e32572, 2012.
Kristal-Muscal, R., L. Dvir, and D. Weihs. Metastatic cancer cells tenaciously indent impenetrable, soft substrates. N. J. Phys. 15:035022, 2013.
Li, Q., Z. Ma, Y. Liu, X. Kan, C. Wang, B. Su, Y. Li, Y. Zhang, P. Wang, Y. Luo, D. Na, L. Wang, G. Zhang, X. Zhu, and L. Wang. Low doses of paclitaxel enhance liver metastasis of breast cancer cells in the mouse model. FEBS J. 283:2836–2852, 2016.
Mak, M., C. A. Reinhart-King, and D. Erickson. Elucidating mechanical transition effects of invading cancer cells with a subnucleus-scaled microfluidic serial dimensional modulation device. Lab Chip 13:340–348, 2013.
Massalha, S., and D. Weihs. Metastatic breast cancer cells adhere strongly on varying stiffness substrates, initially without adjusting their morphology. Biomech. Model. Mechanobiol. 16:961–970, 2017.
Merkher, Y., M. B. Alvarez-Elizondo, and D. Weihs. Taxol reduces synergistic, mechanobiological invasiveness of metastatic cells. Converg. Sci. Phys. Oncol. 3:044002, 2017.
Merkher, Y., Y. Horesh, Z. Abramov, G. Shleifer, O. Ben-Ishay, Y. Kluger, and D. Weihs. Rapid cancer diagnosis and early prognosis of metastatic risk based on mechanical invasiveness of sampled cells. Ann. Biomed. Eng. 2020. https://doi.org/10.1007/s10439-020-02547-4.
Merkher, Y., and D. Weihs. Proximity of metastatic cells enhances their mechanobiological invasiveness. Ann. Biomed. Eng. 45:1399–1406, 2017.
Mierke, C. T. The biomechanical properties of 3d extracellular matrices and embedded cells regulate the invasiveness of cancer cells. Cell Biochem. Biophys. 61:217–236, 2011.
Mierke, C. T., B. Frey, M. Fellner, M. Herrmann, and B. Fabry. Integrin alpha5beta1 facilitates cancer cell invasion through enhanced contractile forces. J. Cell Sci. 124:369–383, 2011.
Mohammadi, A., B. Mansoori, M. Aghapour, S. Shirjang, S. Nami, and B. Baradaran. The urtica dioica extract enhances sensitivity of paclitaxel drug to MDA-MB-468 breast cancer cells. Biomed. Pharmacother. 83:835–842, 2016.
O’Shaughnessy, J., W. J. Gradishar, P. Bhar, and J. Iglesias. nab-Paclitaxel for first-line treatment of patients with metastatic breast cancer and poor prognostic factors: a retrospective analysis. Breast Cancer Res. Treat. 138:829–837, 2013.
Patsialou, A., J. J. Bravo-Cordero, Y. Wang, D. Entenberg, H. Liu, M. Clarke, and J. S. Condeelis. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors. Intravital 2:e25294, 2013.
Peterson, J. A., B. Tian, A. D. Bershadsky, T. Volberg, R. E. Gangnon, I. Spector, B. Geiger, and P. L. Kaufman. Latrunculin-A increases outflow facility in the monkey. Investig. Ophthalmol. Vis. Sci. 40:931–941, 1999.
Poincloux, R., O. Collin, F. Lizarraga, M. Romao, M. Debray, M. Piel, and P. Chavrier. Contractility of the cell rear drives invasion of breast tumor cells in 3D matrigel. Proc. Natl. Acad. Sci. USA 108:1943–1948, 2011.
Seetharaman, S., and S. Etienne-Manneville. Cytoskeletal crosstalk in cell migration. Trends Cell Biol. 30:720–735, 2020.
Sen, S., A. J. Engler, and D. E. Discher. Matrix strains induced by cells: computing how far cells can feel. Cell. Mol. Bioeng. 2:39–48, 2009.
Stearns, M. E., and M. Wang. Taxol blocks processes essential for prostate tumor cell (PC-3 ML) invasion and metastases. Cancer Res. 52:3776–3781, 1992.
Stehn, J. R., N. K. Haass, T. Bonello, M. Desouza, G. Kottyan, H. Treutlein, J. Zeng, P. R. B. B. Nascimento, V. B. Sequeira, T. L. Butler, M. Allanson, T. Fath, T. A. Hill, A. McCluskey, G. Schevzov, S. J. Palmer, E. C. Hardeman, D. Winlaw, V. E. Reeve, I. Dixon, W. Weninger, T. P. Cripe, and P. W. Gunning. A novel class of anticancer compounds targets the actin cytoskeleton in tumor cells. Cancer Res. 73:5169–5182, 2013.
Swaminathan, V., K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 71:5075–5080, 2011.
Tozluoglu, M., A. L. Tournier, R. P. Jenkins, S. Hooper, P. A. Bates, and E. Sahai. Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nat. Cell Biol. 15:751–762, 2013.
Volk-Draper, L., K. Hall, C. Griggs, S. Rajput, P. Kohio, D. DeNardo, and S. Ran. Paclitaxel therapy promotes breast cancer metastasis in a TLR4-dependent manner. Cancer Res. 74:5421–5434, 2014.
Wang, N., and D. E. Ingber. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochem. Cell Biol. 73:327–335, 1995.
Weihs, D., Y. Merkher. A device and method for determining cell indention activity, Patent pending. Patent: PCT/IL2019/050463, 2019.
Weihs, D., T. G. Mason, and M. A. Teitell. Effects of cytoskeletal disruption on transport, structure, and rheology within mammalian cells. Phys. Fluids 19:103102, 2007.
Wyckoff, J. B., S. E. Pinner, S. Gschmeissner, J. S. Condeelis, and E. Sahai. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr. Biol. 16:1515–1523, 2006.
Wyse, M. M., J. Lei, A. L. Nestor-Kalinoski, and K. M. Eisenmann. Dia-interacting protein (DIP) imposes migratory plasticity in mDia2-dependent tumor cells in three-dimensional matrices. PLoS ONE 7:e45085, 2012.
Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60:24–34, 2005.
Yilmaz, M., and G. Christofori. Mechanisms of motility in metastasizing cells. Mol. Cancer Res. 8:629–642, 2010.
Yizraeli, M. L., and D. Weihs. Time-dependent micromechanical responses of breast cancer cells and adjacent fibroblasts to electric treatment. Cell Biochem. Biophys. 61:605–618, 2011.
Zhang, Y., Y. Wang, and J. Xue. Paclitaxel inhibits breast cancer metastasis via suppression of aurora kinase-mediated cofilin-1 activity. Exp. Ther. Med. 15:1269–1276, 2018.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4